Trapped ion quantum computing, simulation, and sensing

John Bollinger, NIST, Boulder CO

Monday, July 2, 11:00 AM – Trapped ion quantum computing

Tuesday, July 3, 11:00 AM – Trapped ion quantum simulation

Thursday, July 5, 9:00 AM – Trapped ion quantum sensing

Trapped ion quantum computing, simulation, and sensing

John Bollinger, NIST, Boulder CO

Thursday, July 5, 9:00 AM – Trapped ion quantum sensing

Al⁺ quantum logic clock (Quantum measurement, Ancilla-assisted readout)

- •T. Rosenband, et al., "Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place," Science 319, 1808 1812 (2008).
- C.W. Chou, et al., "Optical Clocks and Relativity," Science 329, 1630 (2010).
- C. Chou, et al., "Quantum coherence between two atoms beyond Q=10¹⁵," Phys. Rev. Lett. 106, 160801 (2011).

Weak force sensing (Amplitude sensing below the zero point fluctuations)

• K.A. Gilmore, et al., "Amplitude sensing below the zero-point fluctuations with a two-dimensional trapped-ion mechanical oscillator", Phys. Rev. Lett., 118, 263602 (2017).

Atomic Clock Operation Principle (Passive)

Thank you to Sam Brewer, NIST for slides

Atomic Clock Performance

f(t)

 f_0

- Systematic uncertainty in clock frequency.
- Two types of shifts
 - **1. Field shifts** e.g. Zeeman shift and black body shift
 - 2. Motional shifts e.g. Relativistic Doppler

$$\frac{\Delta f}{f} = \frac{\left\langle \vec{v} \cdot \hat{k} \right\rangle}{c} - \frac{\left\langle v^2 \right\rangle}{2c^2} + \cdots$$

 Average fractional frequency variations

Stability

• Typically characterized by the *Allan deviation*:

$$\sigma_y(\tau) \cong \frac{1}{Q} \frac{1}{SNR} \sqrt{\frac{T_C}{\tau}}$$

Motivation: Why use ²⁷Al+?

Al⁺ has two electrons outside a closed shell

Motivation: Why use ²⁷Al+?

Quantum Logic Spectroscopy - Overview

Quantum Logic Spectroscopy - Details

(Efficient detection with ancilla qubits) (D. Hume, T. Rosenband, P Schmidt, D. Wineland)

Task: determine if ${}^{27}\text{Al}^+\text{qubit is in } |\downarrow\rangle$ (${}^{1}\text{S}_0$) state

$$\tau \simeq 300 \ \mu s \ {}^{3}P_{1}$$

$$\tau \simeq 20 \ s \ {}^{3}P_{0}$$

 $|\uparrow\rangle_{Be}$

 $\Psi(0) = (\alpha|^{1}S_{0}\rangle_{Al} + \beta|^{3}P_{0}\rangle_{Al}) \otimes |\downarrow\rangle_{Be}$

 $|\rangle_{Be}$ $|^{1}S_{0} - | \downarrow \rangle_{Al}$

Quantum Logic Spectroscopy - Details

5. Al^{+ 3}P₁ spontaneous decay (300 μ s)

Al⁺ quantum-logic spectroscopy

Al⁺ quantum-logic spectroscopy

 $AI^{+1}S_0 \leftrightarrow {}^{3}P_0$ clock transition

New trap design

➢ Laser-machined diamond wafer (300 µm thick)➢ Gold-sputtered electrodes

Al⁺ Clock Uncertainty Budget

Sources	Fractional Uncertainty (10 ⁻¹⁸)		
	Shift	Uncertainty	Previous clock
Time-dilation: Excess micromotion	-4.7	0.6	-9.0(6.0)
Time-dilation: Secular motion	-1.8	0.3	-16.3(5.0)
BBR shift	-2.6	0.3	-9.0(3.0)
Cooling light shift	0.0	0.0	-3.6(1.5)
Quadratic Zeeman shift	-925.9	0.6	-1079.9(0.7)
Linear Doppler shift	0.0	0.2	0.0(0.3)
Clock light shift	0.0	0.2	0.0(0.2)
Background gas collision	0.0	0.3	0.0(0.5)
AOM phase chirp	0.0	< 0.1	0.0(0.2)
Total	-935.0	1.0	-1117.8(8.6)

Historical Accuracy of Atomic Clocks

Frequency ratio measurements: Al⁺ vs Yb vs Sr lattice clocks

- Goal: Compare optical frequencies of Al⁺ ion and both the NIST Yb and JILA Sr lattice clocks with a total uncertainty of 10⁻¹⁷ or better.
- All clocks send atom stabilized light to frequency combs in Bldg. 81.
- Current ratios involving Al+ are limited at the 10⁻¹⁶ level.
- Potentially interesting for investigating time-variation of the fine-structure constant.

What about stability?

Mg⁺ - Al⁺ clock:
$$\sigma_y(\tau) \sim 1.2 \times 10^{-15} \tau^{-\frac{1}{2}}$$

Future improvements:

• cryogenic sapphire cavity \rightarrow increase probe time by more than order of magnitude

- multiple set-ups (Ca⁺-Al⁺), and with multiple ions
- entangled states
- \Rightarrow stabilities near $\sigma_y(\tau) \approx 10^{-16} \tau^{-\frac{1}{2}}$ appear reasonable

Quantum Control and Precision Spectroscopy of Trapped Molecular Ions

James (Chin-wen) Chou, Dietrich Leibfried, David Leibrandt

Quantum-logic spectroscopy enables quantum state control and precision spectroscopy for CaH⁺, applicable to **many species** of **molecular ions**

applications: enable key advances in physics, chemistry and medicine

- molecular fingerprints with unprecedented detail
- benchmarks for molecular models, reaction rate calculations in quantum chemistry and drug discovery
- better tests of dark matter, time variation of fundamental constants and the Standard Model
- controlled chemical reactions

Proposal: D. Leibfried, New J. Phys. 14, 023029 (2012); Proof-of-principle experiment: C. W. Chou et al., Nature 545, 203 (2017) Trapped ion quantum computing, simulation, and sensing

John Bollinger, NIST, Boulder CO

Thursday, July 5, 9:00 AM – Trapped ion quantum sensing

Al⁺ quantum logic clock (Quantum measurement, Ancilla-assisted readout)

- •T. Rosenband, et al., "Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place," Science 319, 1808 1812 (2008).
- C.W. Chou, et al., "Optical Clocks and Relativity," Science 329, 1630 (2010).

• C. Chou, et al., "Quantum coherence between two atoms beyond Q=10¹⁵," Phys. Rev. Lett. 106, 160801 (2011).

Weak force sensing (Amplitude sensing below the zero point fluctuations)

• K.A. Gilmore, et al., "Amplitude sensing below the zero-point fluctuations with a two-dimensional trapped-ion mechanical oscillator", Phys. Rev. Lett., 118, 263602 (2017).

NIST Penning trap

NIST Penning trap

Single-plane ion crystals, 20 < N < 250

Be⁺ high magnetic field qubit

Optical dipole force spin-motion coupling

 $^9\text{Be}^+$, B \sim 4.5 T, $\omega_{_{\rm O}}$ /2 π \sim 124.1 GHz

 $H_I = \sum_i F_0 \cos(\mu t) \, \hat{z}_i \hat{\sigma}_i^z$

Motional amplitude sensing or Trapped ions as sensitive \vec{E} -field and force detectors

Biercuk et al., Nature Nanotechnology, 2010 – 100-ion crystal (400 yN Hz^{-1/2})

Sensing small center-of-mass motion

Implement classical COM oscillation: $\hat{z}_i \rightarrow \hat{z}_i + Z_c \cos(\omega t + \phi)$ $H_I \cong F_0 \cdot Z_c \cos[(\omega - \mu)t + \phi] \sum_i \frac{\hat{\sigma}_i^Z}{2}$ $= F_0 \cdot Z_c \cos[(\omega - \mu)t + \phi] \hat{S}_z$

For $\mu = \omega$, produces spin precession with rate $\propto F_0 \cdot Z_c \cos(\phi)$

Measuring spin precession

Precession θ , $\theta = \frac{F_0}{\hbar} Z_c \tau \cos(\phi)$ $-\frac{F_0}{\hbar} Z_c \tau < \theta < \frac{F_0}{\hbar} Z_c \tau$

Probability of measuring spin up:

$$\langle P_{\uparrow} \rangle = \frac{1}{2} \left(1 - e^{-\Gamma \tau} \langle \cos \theta \rangle \right)$$

$$= \frac{1}{2} \left(1 - e^{-\Gamma \tau} J_0 \left(\frac{F_0}{\hbar} Z_c \tau \right) \right)$$

Measuring spin precession

Spin dephasing vs measurement strength

Gilmore et al., PRL 118 (2017)

Sensitivity limits/ signal-to-noise

Sensing small center-of-mass motion

Summary:

- measure 50 pm amplitude 40x smaller than the ground state wave function size $z_{zpt} = 2$ nm
- demonstrates force sensitivity of 73 yN/ion (at 400 kHz)

Future:

- Fixed phase sensing off-resonance (i.e. fixed ϕ in $Z_c cos(\omega t + \phi)$)
 - 74 pm in single experimental trial
 - 18 pm/ \sqrt{Hz}
 - Exploit spins: squeezed states
- On-resonance with COM mode
 - Enhance force and electric field sensitivities by $Q\!\sim\!10^6$
 - Protocols for canceling zero-point fluctuations, evading backaction ??
 - nV/m sensitivity ⇒ potential for dark matter search (axions and hidden photons)

Canceling zero-point fluctuations (idea)

Is this possible without violating the Heisenberg uncertainty principle?

Canceling zero-point fluctuations (idea)

• zero-point fluctuations canceled through split ODF applications

 sensitive to weak force exciting the COM mode for T between the ODF applications

References:

"Entanglement-enhanced detection of single-photon scattering events, C.
 Hempel, B. P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, C. F. Roos, Nature
 Photonics (2013)

• "Sub-Planck phase-space structures and Heisenberg-limited measurements," F. Toscano, D. A. R. Dalvit, L. Davidovich, and W. H. Zurek, Phys. Rev. A 73 (2006)

Electric field sensing

20 pm amplitude from a resonant 100 ms coherent drive

- force/ion of 5×10^{-5} yN
- electric field of 0.35 nV/m

NOT a practical

E-field sensor

4.5 Tesla superconducting solenoid

Electric field sensing

20 pm amplitude from a resonant 100 ms coherent drive

- force/ion of 5×10^{-5} yN
- electric field of 0.35 nV/m

-14

-16

-18

-14

-13

-12

-11

-10

-9

 $\log_{10} m \ [eV]$

S. Chaudhuri, et al., Phys. Rev. D (2015).

-2

-1

-3

Technical improvement – near gnd state cooling

EIT ground state cooling – Morigi et al., PRL 2000

Lechner, ..., Blatt, Roos, PRA 2016

EIT cooling time 200 μ s

Questions ?

2017

Elena Jordan Kevin Gilmore Leopoldina PD CU grad student

Theory (EIT cooling)

Murray Holland Athreya Shankar

Ana Maria Rey

Martin Gärttner

Michael Wall

Arghavan Safavi-Naini

Michael Foss-Feig (ARL)

NIST ion storage group (2017)

