LECTURE 1 - Introduction to Granular Materials
Jamming, Random Close Packing, The Isostatic State

Granular materials

e particles only interact when they touch
hard cores: rigid, incompressible, particles
soft cores: deformable particles repel with a finite force when they overlap

e particles are large - thermal fluctuations can be ignored

e collisions inelastic, energy is dissipated and not conserved

Due to above properties, granular materials are effectively at 7" = 0. The various allowed
configurations of grains are not sampled according to a thermal Gibbs ensemble. Different
configurations can only get sampled via external perturbations such as stirring, shearing,
vibrating, etc. Although granular materials are thus a non-equilibrium system, we never-
theless will try to describe them using methods borrowed from statistical mechanics. But it
always remains a question what particular properties are general and what may vary with
the particular way the material is prepared.

Jamming

Consider N particles (grains), each of a fixed volume vy, all confined to a box of volume
V. A key parameter of the system is the packing fraction, or volume density (or simply
“density”), ¢,

¢ = Nuvy/V (1)

which gives the fraction of the total volume of the box that is physically occupied by the
particles. The free volume is (1 — ¢)V.

When ¢ is sufficiently small, particles do not touch each other and the pressure of the
granular system is p = 0. If one agitates the particles via some external perturbation, the
particles will bounce around like particles in a gas or liquid. If one orients the particles in a
gravitational field they will flow like a liquid.

Now imagine increasing ¢, for example by slowly pushing in a piston to decrease the volume
V' of the box while the number of particles N remains constant. As ¢ increases one will reach
a value ¢; at which the particles touch and (except for isolated rattlers) lock into a rigid but
disordered structure. Pushing on the piston to further increase ¢ the system will exert a a
pressure p > 0 back on the piston. This is the jamming transition: a transition from a liquid-
like state to a rigid but disordered solid state as the packing fraction ¢ is varied through
a critical value ¢;. For a system with a finite number of particles N, the specific value of
¢; may depend somewhat on the initial state of the system as it is compressed. However



Figure 1: left: particles in a liquid-like state; right: particles in a jammed state

as N — oo, ¢ is believed to approach a unique value independent of initial configuration
(however it may still be that the value of ¢; might depend slightly on the particular physical
process that measures the response - more later on this).

The jammed state for ¢ > ¢, is one in which each particle (except for isolated rattlers that
are not locked into the rest of the structure) is in a mechanically stable equilibrium:

e Forces on each particle balance to zero - if displace a particle, forces from its neighbors
will push it back.

e Torques on each particle balance to zero - if rotate a particle, torques from its neighbors
will push it back

The nature of the jammed state and the value ¢; of the jamming transition depends on the
dimensionality d of the system as well as the properties of the individual particles.

e frictionless vs frictional particles: When particles contact, there will be a repulsive
normal force F,,. If particle surfaces are rough, there can also be a tangential frictional
force, Fy, with |Fy| < u|F,|, where p is the coefficient of friction in a simple Coulomb
model of static friction. If p = 0, we say the particles are frictionless and F; always
vanishes.

e spherical vs non-spherical particles

We will start our discussion by considering the specific case of spherical frictionless particles.
Later we will have some comments about the more general cases. But in the subsequent two
lectures we will return to consider only the simple case of frictionless spheres.

Random Close Packing

For spherical, frictionless, and rigid (incompressible, non-deformable) particles, the density
at which particles jam is often called the random close packing density ¢rcp.



Closed packing means the particles are touching and packed in as tightly as possible. Ordered
close packing Bravais lattices in two and three dimensions are the hexagonal and face centered
cubic (fcc) lattices respectively.

Figure 2: left: hexagonal lattice in two dimensions; right: face centered cubic lattice in three
dimensions

These ordered lattices have packing fractions ey = 7/(2v/3) = 0.9069 and ¢ = v/27/6 =
0.7405 and represent the densest packings of rigid spheres in 2D and 3D respectively.

In random close packing, the particles are put down as close as possible, but randomly.
From numerous experiments and numerical simulations, one finds that for large number of
particles N, the random close packing densities are:

e in 2D ¢RCP ~ (.84
e in 3D ¢RCP ~ (.64

Random close packing occurs at a lower density than ordered close packing. The randomly
closed packed jammed state is therefore in principal only meta-stable. For large N in 3D,
however, this meta-stability is extremely stable!

In 2D, even for large N, perturbing the randomly packed state of uniform disks will often
result in its crystallization into the ordered hexagonal lattice. To study random packing
in 2D one therefore usually uses a bidisperse, or polydisperse, mixture of disks of different
radii. Such randomly packed non uniform mixtures are usually very stable against ordering
[although even in this case the random packed state is only in principal meta-stable; the
different size disks could in principal phase separate and then order]. The value of ¢rcp
seems rather robust against the details of the polydisperse distribution in 2D, it is always
around 0.64.

Despite the many consistent experimental and numerical determinations of the values of
¢rcp, a clear mathematical definition of what is meant by RCP, and a precise analytical
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Figure 3: slide of 3D ball bearing packing, stolen from colloquium of Paul Chaikin

calculation of the values of ¢rcp remain elusive. It remains debated even if there is any such
clear mathematical definition!

A very simple model that gives a good estimate for the value of ¢rcp in 2D was given by
Williams in PRE 57, 7344 (1998) [note the relatively recent date!]. Consider a Voronoi
tesselation of a configuration of disks, as shown below.

——

B

FIG. 1. Assembly of four equal disks of diameter 2r packing on
a plane. Lines making up the simplicial net (—) and the Voronoi
polygons (—) are shown.

Figure 4: from Williams, PRE 57, 7344 (1998)

To do a Voronoi tesselation about a particular disk, one draws lines from the center of that
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disk to the centers of all other disks. Then one draws the perpendicular bisectors of all these
lines. The inner envelop of all these bisecting lines encloses the area that is closer to the
center of the disk of interest than to that of any other disk. The lines bisected by this inner
envelop define the nearest neighbors of the disk of interest. One can do the same for all disks
to get a unique, non-overlapping, tiling of the total area.

Consider the four close packed (i.e. touching) nearest neighbor disks above. The four sides
of the rhombus are all of equal length 2r, the diameter of a disk. The largest the angle 6
can be is # = 60°. In this case, the disk opposite disk “O” is actually touching “O” and the
disks are as in an ordered hexagonal structure. The smallest value is # = 45°. In this case,
the disk opposite “O” is no longer a nearest neighbor (the bond connecting its center to the
center of “O” is no longer bisected in the tesselation of “O”).

2r
-— >

T

Williams then argues that in a random close packing, all possible angles 45° < 6 < 60° are
equally likely. The average angle is thus § = 52.5°.

Now the packing fraction associated with a particular angle 6 is just the ratio of the area
of the disks contained within a given triangle (the shaded area below) to the area of the
triangle.

Since the angles of the triangle sum to 180°, the area of the disks contained in the tri-
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angle is just half the area of one disk, %7?7“2. The area of the isosceles triangle is just

(2r cos 0)(2rsinf) = 4r?cosfsinf = 2r?sin26. So the packing fraction associated with a
particular angle 6 is

L

© 2r2sin20  4sin26

¢(0) (2)

If we set §# = § = 52.5°, the average value, we then get Williams’ value ¢grcp =~ 0.813. We
can do a little better by averaging ¢(6) rather than evaluating ¢(0), i.e.

3 [™3 o T
~ — =0.824
drer T /7r/4 4 sin 26 0.8 (3)

Despite the extreme simplicity of the calculation, the result is not too far from what is
observed in simulations.

The extension of the above calculation to 3D was done by Jalali and Li, J. Chem. Phys.
120, 1138 (2004) [note the very recent date!]. They estimate in 3D ¢rep ~ 0.6394, which
agrees very well with simulations.

Because the RCP state is only metastable, there always exist mechanically stable states of
higher density (up to the ordered close packed density). One can always trade off density vs
order: include a little ordering, to get to a higher density. In an experiment or simulation it
is therefore possible that the exact value of ¢grcp that one finds may depend somewhat on
the protocol one is using to create the jammed state.

Torquato et al. (Torquato, Truskett, and Debenedetti, PRL 84, 2064 (2000)) have questioned
whether the RCP is indeed a mathematically well defined concept. They propose instead a
“MRJ”, the mazimally random jammed state. One defines some ordering measure 1) that
measures how ordered the packing is (¢ = 1 is ordered close packed). One can then draw the
region in the ¥ — ¢ plane where stable jammed packing can occur. The MRJ is defined as the
jammed state with the smallest possible value of 1. Torquato et al.’s numerical simulations
find ¢ngry =~ 0.64, in agreement with accepted values for ¢rcp.
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FIG. 1. A schematic plot of the order parameter ¢ versus
volume fraction ¢ for a system of identical spheres with pre-
scribed interactions. All structures at a given value of ¢ must
lie between the upper and lower bounds (white region); gray
region is inaccessible. The boundary containing the subset of
jammed structures is shown. The jammed structures are shown
to be one connected set, although, in general, they may exist
as multiply disconnected. Point A represents the jammed struc-
ture with the lowest density and point B represents the densest
ordered jammed structure (e.g., close-packed fcc or hexagonal
lattice for d = 3, depending on the choice for ). The jammed
structure which minimizes the order parameter ¢ is the maxi-
mally random jammed state.

Figure 5: taken from Torquato et al. PRL 84, 2064 (2000)

Isostatic Packings

We return now to the more general case where the particles may be frictional and may have
arbitrary shape. We now consider some aspects of the geometry of the jammed configuration,
in particular the average contact number (z), where z is number of contacts that a particular
grain has with other grains.

In a jammed state, each particle is in a state of stable mechanical equilibrium. Therefore
the total force and the total torque of each particle ¢ should vanish.

/!
force balance on particle i : Z F,;=0 (4)
J
torque balance on particle i : Z/[Fijdij —d;;Fi] =0 (5)
J

Here the sum is over all particles j in contact with ¢, F;; is the force on particle 7 due to
particle j, and d;; is the displacement from the center of particle ¢ to the point of contact
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with particle 7. In expressing the condition of torque balance, we have made use of the
force moment tensor Fd — dF which is the generalization to any dimension of the three
dimensional cross product d x F.

For a given particle geometry (i.e. fixed particle positions and orientations) we can view
the above force and torque balance equations as a set of linear equations for the unknown
contact forces F;;. The number of such equations is determined as follows. Since force is
a vector with d components in dimension d, the force balance gives d equations for each
particle 4, for a total of Nd equations. The force moment tensor is antisymmetric, hence in d
dimensions it has d(d —1)/2 independent components. Thus torque balance gives d(d —1)/2
equations for each particle i, for a total of Nd(d — 1)/2 equations. The total is therefore

Nd+ Nd(d—1)/2 = Nd(d + 1) /2 (6)

linear equations to express the requirement of mechanical stability.

The number of contact forces F;; is just given by the average number of contacts in the
packing. If (z) is the average number of contacts per particle, the number of contact forces
is then N(z)/2.

If the number of linear equations is greater than the number of unknowns, the system is
overconstrained, and in general there is no solution for the F;;, hence no jammed state. If
the number of linear equations is less than the number of unknowns, there are many possible
solutions for the forces (this fact gives rise to the idea of the force ensemble for ¢ > ¢ ;).

When the number of linear equations equals the number of unknowns, there is a unique
solution for the forces. This is termed the marginally stable state, and is generally assumed
to be the case exactly at the jamming transition ¢ ;. Removing one bond from the marginally
stable state is generally believed to make the structure go floppy. The value of (z) that gives
the marginally stable state is called the isostatic value z;,.

Consider particles with a simple Coulomb frictional law at their surface. At a contact point
between two particles, the tangential frictional force is related to the repulsive normal force
by |F¢| < u|F,| where p is the coefficient of friction. Consider the extreme limits of perfectly
rough particles with p = oo, and frictionless particles with p = 0.

e 1 = oo, perfect frictional
The tangential force F; can be as large as one wishes, with no constraint on it. There-
fore, in d dimensions, each contact force F;; has d independent components. Since the
number of contact forces is (2) N/2, the number of “unknowns” in the linear equations
for mechanical stability is thus (z) Nd/2. Equating the number of equations with the
number of unknowns give the isostatic value of z in this perfect frictional case.
Nd(d+1) (z)Nd

: =5 =  Zio=d+1 (perfect frictional)




o 1 =0, frictionless
Now the tangential force F; vanishes, and F;; always points in the direction normal
to the surface at the point of contact. Each F;; thus has only one independent com-
ponent. The number of force unknowns is thus (z) N/2. If we limit consideration to
spherical particles, then F;; is always radially outward and so can give no torque. We
can therefore ignore the torque balance equations. Equating the number of force bal-
ance equations to the number of force unknowns, then determines z;,, for frictionless
spherical particles.

()N
2

Nd = = Zigo = 2d (frictionless spheres)

For non-sperical particles we can write instead,

(z) N

Nd; = =

Ziso = 2dy (frictionless)

where here dy is the number of degrees of freedom as determined by the symmetry of
the particles. For a generally shaped particle dy = d(d+ 1)/2, but for more symmetric
cases we have: in 2D, circular disks (d;y = 2, 25, = 4), ellipses (df = 3, 25, = 6); in
3D, spheres (dy = 3, z;5, = 6), spheroids (df = 5, 25, = 10), general ellipsoid (df = 6,
Ziso — 12)

But there is a problem with this analysis for frictionless non-spherical particles. If (z) = a;s,
at jamming, there would seem to be discontinuous behavior. If one just slightly distorted
a spherical particle to make it only slightly ellipsoidal, dy jumps discontinuously from 3
to 6 and so z;5, jumps discontinuously from 6 to 12. This seems unphysical. Numerical
work (Donev, Connelly, Stillenger and Torquato, PRE 75, 051304 (2007)) shows that as one
smoothly increases the aspect ratio to turn a sphere increasingly ellipsoidal, (z) at jamming
smoothly increases (with no jumps or discontinuities) from its isostatic value of 6 for spheres
to the isostatic value of 12 for ellipses, as the aspect ratio gets large. Thus in general,
ellipsoidal particles are hypostatic (i.e. (z) < z,) at jamming. See figure below from Donev
et al.



0.74 T

0.72

0.7 K Q.. i,

- ]
< i
0.68 —
77777777777777777777777777777777777 0O-0 B=1 (oblate) g
; 1 |@-zp=14 .
0.66 G 8 - | oo p=12 7]
1 |Aa-AB=3/4 i
ol | |'# <7 B=0 (prolate) R
= ‘ ) Il Il ) Il Il ‘ Il Il ‘\ Il ‘\ ‘\ Il ‘\ Il i Il \‘ Il \‘ ‘ .
064} 1.5 2 25 3

Aspect ratio o.
FIG. 1. (Color online) Jamming density and average contact
number (inset) for packings of N=10 000 ellipsoids with ratios be-

tween the semi-axes of 1:a?: a (see Fig. 2 in Ref. [4]). The isocon-
strained contact numbers of 10 and 12 are shown as a reference.

Figure 6: from Donev et al., PRE 75 051304 (2007)

10



Note, all the above counting arguments for z;,, only hold for random packings. One is assum-
ing that if the particle positions are random, then the force and torque balance equations
for each particle are linear independent of those of the other particles. This is not so if
particle positions are correlated in some way to make some subset of the equations linearly
dependent; this is the case with ordered packings.

Finally, we return to spherical particles. We had the two limits for jamming,

(zy=d+1 p = oo (perfect frictional) (7)
(z) =2d p = 0 (frictionless) (8)

For finite friction 0 < p < 0o, as p decrease from oo to zero it is believed that (z) at jamming
goes from one limit above to the other, d + 1 < (z) < 2d. For frictional particles, where
generally ¢; < ¢rcop, one sometimes refers to ¢; as random loose packing RLP.

Song, Wang and Makse in Nature 453, 629 (2008), consider frictional spheres in 3D and using
approximate analytic arguments and simulations map out the region in the (z) — ¢ plane
where one can have jamming occur, as p varies. The parameter X in their phase diagram
below is the compactivity, which we will discuss in the next lecture.
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Figure 1| Phase diagram of jamming: theory. Theoretical prediction of the
statistical theory. All disordered packings lie within the yellow triangle
demarcated by the RCP line, RLP line and granular line. Lines of uniform
finite compactivity are in colour. Packings are forbidden in the grey area.

Figure 7: from Song, Wang and Makse, Nature 453, 629 (2008)
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