
LECTURE 1 - Introduction to Granular Materials
Jamming, Random Close Packing, The Isostatic State

Granular materials

• particles only interact when they touch
hard cores: rigid, incompressible, particles
soft cores: deformable particles repel with a finite force when they overlap

• particles are large - thermal fluctuations can be ignored

• collisions inelastic, energy is dissipated and not conserved

Due to above properties, granular materials are effectively at T = 0. The various allowed
configurations of grains are not sampled according to a thermal Gibbs ensemble. Different
configurations can only get sampled via external perturbations such as stirring, shearing,
vibrating, etc. Although granular materials are thus a non-equilibrium system, we never-
theless will try to describe them using methods borrowed from statistical mechanics. But it
always remains a question what particular properties are general and what may vary with
the particular way the material is prepared.

Jamming

Consider N particles (grains), each of a fixed volume v0, all confined to a box of volume
V . A key parameter of the system is the packing fraction, or volume density (or simply
“density”), φ,

φ ≡ Nv0/V (1)

which gives the fraction of the total volume of the box that is physically occupied by the
particles. The free volume is (1− φ)V .

When φ is sufficiently small, particles do not touch each other and the pressure of the
granular system is p = 0. If one agitates the particles via some external perturbation, the
particles will bounce around like particles in a gas or liquid. If one orients the particles in a
gravitational field they will flow like a liquid.

Now imagine increasing φ, for example by slowly pushing in a piston to decrease the volume
V of the box while the number of particles N remains constant. As φ increases one will reach
a value φJ at which the particles touch and (except for isolated rattlers) lock into a rigid but
disordered structure. Pushing on the piston to further increase φ the system will exert a a
pressure p > 0 back on the piston. This is the jamming transition: a transition from a liquid-
like state to a rigid but disordered solid state as the packing fraction φ is varied through
a critical value φJ . For a system with a finite number of particles N , the specific value of
φJ may depend somewhat on the initial state of the system as it is compressed. However

1



Figure 1: left: particles in a liquid-like state; right: particles in a jammed state

as N → ∞, φJ is believed to approach a unique value independent of initial configuration
(however it may still be that the value of φJ might depend slightly on the particular physical
process that measures the response - more later on this).

The jammed state for φ ≥ φJ is one in which each particle (except for isolated rattlers that
are not locked into the rest of the structure) is in a mechanically stable equilibrium:

• Forces on each particle balance to zero - if displace a particle, forces from its neighbors
will push it back.

• Torques on each particle balance to zero - if rotate a particle, torques from its neighbors
will push it back

The nature of the jammed state and the value φJ of the jamming transition depends on the
dimensionality d of the system as well as the properties of the individual particles.

• frictionless vs frictional particles: When particles contact, there will be a repulsive
normal force Fn. If particle surfaces are rough, there can also be a tangential frictional
force, Ft, with |Ft| ≤ µ|Fn|, where µ is the coefficient of friction in a simple Coulomb
model of static friction. If µ = 0, we say the particles are frictionless and Ft always
vanishes.

• spherical vs non-spherical particles

We will start our discussion by considering the specific case of spherical frictionless particles.
Later we will have some comments about the more general cases. But in the subsequent two
lectures we will return to consider only the simple case of frictionless spheres.

Random Close Packing

For spherical, frictionless, and rigid (incompressible, non-deformable) particles, the density
at which particles jam is often called the random close packing density φRCP.
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Closed packing means the particles are touching and packed in as tightly as possible. Ordered
close packing Bravais lattices in two and three dimensions are the hexagonal and face centered
cubic (fcc) lattices respectively.

Figure 2: left: hexagonal lattice in two dimensions; right: face centered cubic lattice in three
dimensions

These ordered lattices have packing fractions φhex = π/(2
√

3) = 0.9069 and φfcc =
√

2π/6 =
0.7405 and represent the densest packings of rigid spheres in 2D and 3D respectively.

In random close packing, the particles are put down as close as possible, but randomly.
From numerous experiments and numerical simulations, one finds that for large number of
particles N , the random close packing densities are:

• in 2D φRCP ' 0.84

• in 3D φRCP ' 0.64

Random close packing occurs at a lower density than ordered close packing. The randomly
closed packed jammed state is therefore in principal only meta-stable. For large N in 3D,
however, this meta-stability is extremely stable!

In 2D, even for large N , perturbing the randomly packed state of uniform disks will often
result in its crystallization into the ordered hexagonal lattice. To study random packing
in 2D one therefore usually uses a bidisperse, or polydisperse, mixture of disks of different
radii. Such randomly packed non uniform mixtures are usually very stable against ordering
[although even in this case the random packed state is only in principal meta-stable; the
different size disks could in principal phase separate and then order]. The value of φRCP

seems rather robust against the details of the polydisperse distribution in 2D, it is always
around 0.64.

Despite the many consistent experimental and numerical determinations of the values of
φRCP, a clear mathematical definition of what is meant by RCP, and a precise analytical
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Figure 3: slide of 3D ball bearing packing, stolen from colloquium of Paul Chaikin

calculation of the values of φRCP remain elusive. It remains debated even if there is any such
clear mathematical definition!

A very simple model that gives a good estimate for the value of φRCP in 2D was given by
Williams in PRE 57, 7344 (1998) [note the relatively recent date!]. Consider a Voronoi
tesselation of a configuration of disks, as shown below.

Packing fraction of a disk assembly randomly close packed on a plane

D. E. G. Williams
Department of Physics, Loughborough University, Loughborough LE11 3TU, England

!Received 6 January 1998"

A simple model is used to show that, in principle, random close packing of equal disks on a plane should be

stable when the packing fraction is 0.813, the average number of contacts per disk is 3.42, and the connectivity

of the simplicial net is 4. The assembly is unstable with respect to shear stresses, which will be a consequence

of compressive stresses applied to the randomly packed assembly. In practice, the packing fraction of the

assembly will increase until it reaches the value associated with the triangulated simplicial net, the regularly

packed disk assembly. #S1063-651X!98"07906-9$

PACS number!s": 81.05.Rm, 82.70.!y

A two-dimensional assembly of randomly close-packed
!RCP" equally sized disks may be represented by a simplicial
graph in which the centers of the disks neighboring, but not
necessarily in contact with, each disk are joined by straight
lines. Alternatively, it may be represented by the Voronoi
construction in which the lines in the simplicial net are bi-
sected perpendicularly and the bisectors form polygons sur-
rounding each disk. Two disks are neighbors when the bisec-
tor of the line joining their centers forms a side of their
Voronoi polygons. The relationship between these two rep-
resentations can be used to define a critical separation of
centers beyond which two disks cannot be neighbors and
leads to an average separation of noncontacting disks that are
neighbors. This average separation is the basis of the calcu-
lation of a packing fraction and of an average number of
contacting disks in the RCP assembly.
The geometrical construction producing the simplicial net

and the Voronoi polygons is shown in Fig. 1. An origin disk
O is shown with three of its neighbors. The simplicial net for
this cluster has the form of two triangles shown in Fig. 1.
The relevant part of the Voronoi net is drawn as well in Fig.
1. The angular separation of the two disks contacting O

!each labeled C" is 2% and the sides of the rhomb formed by
the two triangles are all of the same length 2r , i.e., one disk
diameter. The angle subtended by one of the contacting
neighbors C at the center of the origin disk O is 60°. In other
words, when 2%"60° the two disks C are in contact with
each other as well as with O . If 2% is more than 120° the
unlabeled disk, not in contact with O in Fig. 1, will contact
O for the densest packing, i.e., the three neighbor disks will
all be in contact with O . At the opposite extreme the unla-
beled disk will not be a neighbor to O when it no longer
contributes a side to the Voronoi polygon surrounding O .
It’s obvious from Fig. 1 that this happens when 2%"90°. As
2% is reduced from 120° the shorter diagonal of the simpli-
cial rhomb becomes longer. Correspondingly, the edge of the
Voronoi polygon of the origin disk facing its noncontacting
neighbor becomes smaller until 2%"90°, when it disap-
pears. 2%"90° is thus the lowest limit of 2% for which the
noncontacting disk can be taken to be a neighbor of O .
If we assume that all values of 2% from 90° to 120° are a

priori equally probable, then we can say that the average
value of the angles 2% for which a noncontacting disk is a
neighbor of the origin disk O is 105°. This means that in a

large assembly of disks, on average, the number nc of disks
contacting the average origin disk will be

nc"2&/2%"360/105"3.42.

If the Voronoi net has a connectivity of 3, the average
Voronoi polygon must be hexagonal so that the average
number nn of noncontacting disks is

nn"6!3.42"2.58.

The average value of the angle 2% can be used to calculate
the packing fraction of the assembly by considering one of
the simplicial triangles shown in Fig. 1. The area of the disks
enclosed by the triangle is simply A(d)"&r2/2 since the
total angle of the triangle must be 180°. The area of the
triangle is A(t)"#2r2sin(105°)$ and the packing fraction '
is given by the ratio of these areas as

'"&/#4 sin!105° "$"0.813,

which is very close to the measured #1$ values of 0.84
#0.02, an approximately calculated value #2$ of 0.82, and
Berryman’s #3$ computer modeled value of 0.817.
A calculation of the number ns of contacting disks re-

quired to provide stability in two-dimensional random close

FIG. 1. Assembly of four equal disks of diameter 2r packing on

a plane. Lines making up the simplicial net ! " and the Voronoi
polygons ( ) are shown.
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Figure 4: from Williams, PRE 57, 7344 (1998)

To do a Voronoi tesselation about a particular disk, one draws lines from the center of that
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disk to the centers of all other disks. Then one draws the perpendicular bisectors of all these
lines. The inner envelop of all these bisecting lines encloses the area that is closer to the
center of the disk of interest than to that of any other disk. The lines bisected by this inner
envelop define the nearest neighbors of the disk of interest. One can do the same for all disks
to get a unique, non-overlapping, tiling of the total area.

Consider the four close packed (i.e. touching) nearest neighbor disks above. The four sides
of the rhombus are all of equal length 2r, the diameter of a disk. The largest the angle θ
can be is θ = 60◦. In this case, the disk opposite disk “O” is actually touching “O” and the
disks are as in an ordered hexagonal structure. The smallest value is θ = 45◦. In this case,
the disk opposite “O” is no longer a nearest neighbor (the bond connecting its center to the
center of “O” is no longer bisected in the tesselation of “O”).

!

!
!

!

2r

! = 60
°

O O

C

C C

C

!
!

!
!

2r

! = 45
°

Williams then argues that in a random close packing, all possible angles 45◦ ≤ θ ≤ 60◦ are
equally likely. The average angle is thus θ̄ = 52.5◦.

Now the packing fraction associated with a particular angle θ is just the ratio of the area
of the disks contained within a given triangle (the shaded area below) to the area of the
triangle.

!

!

!

!

2r

Since the angles of the triangle sum to 180◦, the area of the disks contained in the tri-
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angle is just half the area of one disk, 1
2
πr2. The area of the isosceles triangle is just

(2r cos θ)(2r sin θ) = 4r2 cos θ sin θ = 2r2 sin 2θ. So the packing fraction associated with a
particular angle θ is

φ(θ) =
1
2
πr2

2r2 sin 2θ
=

π

4 sin 2θ
(2)

If we set θ = θ̄ = 52.5◦, the average value, we then get Williams’ value φRCP ' 0.813. We
can do a little better by averaging φ(θ) rather than evaluating φ(θ̄), i.e.

φRCP '
3

π

∫ π/3

π/4

dθ
π

4 sin 2θ
= 0.824 (3)

Despite the extreme simplicity of the calculation, the result is not too far from what is
observed in simulations.

The extension of the above calculation to 3D was done by Jalali and Li, J. Chem. Phys.
120, 1138 (2004) [note the very recent date!]. They estimate in 3D φRCP ' 0.6394, which
agrees very well with simulations.

Because the RCP state is only metastable, there always exist mechanically stable states of
higher density (up to the ordered close packed density). One can always trade off density vs
order: include a little ordering, to get to a higher density. In an experiment or simulation it
is therefore possible that the exact value of φRCP that one finds may depend somewhat on
the protocol one is using to create the jammed state.

Torquato et al. (Torquato, Truskett, and Debenedetti, PRL 84, 2064 (2000)) have questioned
whether the RCP is indeed a mathematically well defined concept. They propose instead a
“MRJ”, the maximally random jammed state. One defines some ordering measure ψ that
measures how ordered the packing is (ψ = 1 is ordered close packed). One can then draw the
region in the ψ−φ plane where stable jammed packing can occur. The MRJ is defined as the
jammed state with the smallest possible value of ψ. Torquato et al.’s numerical simulations
find φMRJ ' 0.64, in agreement with accepted values for φRCP.
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limit. We recognize that jammed structures created via

computer algorithms [9] or actual experiments will contain

a very small concentration of such rattler particles, the

precise concentration of which is protocol dependent.

Thus, in practice, one may wish to accommodate this type

of a jammed structure, although the ideal limit described

above is the precise mathematical definition of a jammed

state that we have in mind. Nevertheless, it should

be emphasized that it is the overwhelming majority of

spheres that compose the underlying “jammed” network

that confers rigidity to the particle packing.

Our definition of the maximally random jammed (MRJ)

state is based on the minimization of an order parame-

ter described below. The most challenging problem is

quantifying randomness or its antithesis: order. A many-

particle system is completely characterized statistically by

the N-body probability density function P!rN " associated
with finding the system with configuration rN . Such com-

plete information is never available and, in practice, one

must settle for reduced information. From this reduced in-

formation, one can extract a set of scalar order parameters

c1, c2, . . . , cn, such that 0 # ci # 1, ; i, where 0 cor-
responds to the absence of order (maximum disorder) and

1 corresponds to maximum order (absence of disorder).

The set of order parameters that one selects is unavoidably

subjective, given that there is no single and complete scalar

measure of order in the system.

However, within these necessary limitations, there is

a systematic way to choose the best order parameters to

be used in the objective function (the quantity to be mini-

mized). The most general objective function consists

of weighted combinations of order parameters. The set

of all jammed states will define a certain region in the

n-dimensional space of order parameters. In this region of
jammed structures, the order parameters can be divided up

into two categories: those that share a common minimum

and those that do not. The strategy is clear: retain

those order parameters that share a common minimum

and discard those that do not since they are conflicting

measures of order. Moreover, since all of the parameters

sharing a common minimum are essentially equivalent

measures of order (there exists a jammed state in which

all order parameters are minimized), choose from among

these the one that is the most sensitive measure, which we

will simply denote by c . From a practical point of view,

two order parameters that are positively correlated will

share a common minimum.

Consider all possible configurations of a d-dimensional
system of identical spheres, with specified interactions, at a

sphere volume fraction f in the infinite-volume limit. For

every f, there will be a minimum and maximum value of
the order parameter c . By varying f between zero and

its maximum value (triangular lattice for d ! 2 and fcc
lattice for d ! 3), the locus of such extrema define upper
and lower bounds within which all structures of identical

spheres must lie. Figure 1 shows a schematic (not quanti-

tative) plot of the order parameter versus volume fraction.

Note that at f ! 0 the most disordered (c ! 0) configu-
rations of sphere centers can be realized. As the packing

fraction is increased, the hard-core interaction prevents ac-

cess to the most random configurations of sphere centers

(gray region). Thus the lower boundary of c , representing
the most disordered configurations, increases monotoni-

cally with f. The upper boundary of c corresponds to the

most ordered structures at each f, e.g., perfect open lat-
tice structures (c ! 1). Of course, the details of the lower
boundary will depend on the particular choice of c . Nev-
ertheless, the salient features of this plot are as follows:

(i) all sphere structures must lie within the bounds and

(ii) the jammed structures are a special subset of the al-

lowable structures [10]. We define the MRJ state to be the

one that minimizes c among all statistically homogeneous

and isotropic jammed structures.

To support the aforementioned arguments, we have car-

ried out molecular dynamics simulations using systems of

500 identical hard spheres with periodic boundary con-

ditions. Starting from an equilibrium liquid configura-

tion at a volume fraction of f ! 0.3, we compressed the
system to a jammed state by the well-known method of

Lubachevsky and Stillinger [9] which allows the diame-

ter of the particles to grow linearly in time with a dimen-

sionless rate G. Figure 2a shows that the volume fraction
of the final jammed states is inversely proportional to the

compression rate G. A linear extrapolation of the data to
the infinite compression rate limit yields f # 0.64, which

FIG. 1. A schematic plot of the order parameter c versus
volume fraction f for a system of identical spheres with pre-
scribed interactions. All structures at a given value of f must
lie between the upper and lower bounds (white region); gray
region is inaccessible. The boundary containing the subset of
jammed structures is shown. The jammed structures are shown
to be one connected set, although, in general, they may exist
as multiply disconnected. Point A represents the jammed struc-
ture with the lowest density and point B represents the densest
ordered jammed structure (e.g., close-packed fcc or hexagonal
lattice for d ! 3, depending on the choice for c). The jammed
structure which minimizes the order parameter c is the maxi-
mally random jammed state.

2065Figure 5: taken from Torquato et al. PRL 84, 2064 (2000)

Isostatic Packings

We return now to the more general case where the particles may be frictional and may have
arbitrary shape. We now consider some aspects of the geometry of the jammed configuration,
in particular the average contact number 〈z〉, where z is number of contacts that a particular
grain has with other grains.

In a jammed state, each particle is in a state of stable mechanical equilibrium. Therefore
the total force and the total torque of each particle i should vanish.

force balance on particle i :
∑
j

′
Fij = 0 (4)

torque balance on particle i :
∑
j

′
[Fijdij − dijFij] = 0 (5)

Here the sum is over all particles j in contact with i, Fij is the force on particle i due to
particle j, and dij is the displacement from the center of particle i to the point of contact

7



with particle j. In expressing the condition of torque balance, we have made use of the
force moment tensor Fd− dF which is the generalization to any dimension of the three
dimensional cross product d× F.

For a given particle geometry (i.e. fixed particle positions and orientations) we can view
the above force and torque balance equations as a set of linear equations for the unknown
contact forces Fij. The number of such equations is determined as follows. Since force is
a vector with d components in dimension d, the force balance gives d equations for each
particle i, for a total of Nd equations. The force moment tensor is antisymmetric, hence in d
dimensions it has d(d−1)/2 independent components. Thus torque balance gives d(d−1)/2
equations for each particle i, for a total of Nd(d− 1)/2 equations. The total is therefore

Nd+Nd(d− 1)/2 = Nd(d+ 1)/2 (6)

linear equations to express the requirement of mechanical stability.

The number of contact forces Fij is just given by the average number of contacts in the
packing. If 〈z〉 is the average number of contacts per particle, the number of contact forces
is then N〈z〉/2.

If the number of linear equations is greater than the number of unknowns, the system is
overconstrained, and in general there is no solution for the Fij, hence no jammed state. If
the number of linear equations is less than the number of unknowns, there are many possible
solutions for the forces (this fact gives rise to the idea of the force ensemble for φ > φJ).

When the number of linear equations equals the number of unknowns, there is a unique
solution for the forces. This is termed the marginally stable state, and is generally assumed
to be the case exactly at the jamming transition φJ . Removing one bond from the marginally
stable state is generally believed to make the structure go floppy. The value of 〈z〉 that gives
the marginally stable state is called the isostatic value ziso.

Consider particles with a simple Coulomb frictional law at their surface. At a contact point
between two particles, the tangential frictional force is related to the repulsive normal force
by |Ft| ≤ µ|Fn| where µ is the coefficient of friction. Consider the extreme limits of perfectly
rough particles with µ =∞, and frictionless particles with µ = 0.

• µ =∞, perfect frictional
The tangential force Ft can be as large as one wishes, with no constraint on it. There-
fore, in d dimensions, each contact force Fij has d independent components. Since the
number of contact forces is 〈z〉N/2, the number of “unknowns” in the linear equations
for mechanical stability is thus 〈z〉Nd/2. Equating the number of equations with the
number of unknowns give the isostatic value of z in this perfect frictional case.

Nd(d+ 1)

2
=
〈z〉Nd

2
⇒ ziso = d+ 1 (perfect frictional)
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• µ = 0, frictionless
Now the tangential force Ft vanishes, and Fij always points in the direction normal
to the surface at the point of contact. Each Fij thus has only one independent com-
ponent. The number of force unknowns is thus 〈z〉N/2. If we limit consideration to
spherical particles, then Fij is always radially outward and so can give no torque. We
can therefore ignore the torque balance equations. Equating the number of force bal-
ance equations to the number of force unknowns, then determines ziso for frictionless
spherical particles.

Nd =
〈z〉N

2
⇒ ziso = 2d (frictionless spheres)

For non-sperical particles we can write instead,

Ndf =
〈z〉N

2
⇒ ziso = 2df (frictionless)

where here df is the number of degrees of freedom as determined by the symmetry of
the particles. For a generally shaped particle df = d(d+ 1)/2, but for more symmetric
cases we have: in 2D, circular disks (df = 2, ziso = 4), ellipses (df = 3, ziso = 6); in
3D, spheres (df = 3, ziso = 6), spheroids (df = 5, ziso = 10), general ellipsoid (df = 6,
ziso = 12).

But there is a problem with this analysis for frictionless non-spherical particles. If 〈z〉 = aiso
at jamming, there would seem to be discontinuous behavior. If one just slightly distorted
a spherical particle to make it only slightly ellipsoidal, df jumps discontinuously from 3
to 6 and so ziso jumps discontinuously from 6 to 12. This seems unphysical. Numerical
work (Donev, Connelly, Stillenger and Torquato, PRE 75, 051304 (2007)) shows that as one
smoothly increases the aspect ratio to turn a sphere increasingly ellipsoidal, 〈z〉 at jamming
smoothly increases (with no jumps or discontinuities) from its isostatic value of 6 for spheres
to the isostatic value of 12 for ellipses, as the aspect ratio gets large. Thus in general,
ellipsoidal particles are hypostatic (i.e. 〈z〉 < ziso) at jamming. See figure below from Donev
et al.
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identify the exact contact network in the jamming limit re-
quires even higher pressures for larger packings due to exis-
tence of a multitude !more specifically, a power-law diver-
gence" of near contacts in disordered packings #2$. However,
with reasonable effort the average coordination number Z̄
can be identified within 1% even for systems of N=105 el-
lipsoids. Those packings for which we perform an exact
analysis of the contact network !such as, for example, rigor-
ously testing for jamming" have been prepared carefully and
are sufficiently close to the jamming point to exactly identify
all of the true contacts.

In Fig. 1 we show newer results than those in Ref. #4$ for
the jamming density !J and contact number Z̄ of jammed
monodispersed packings of hard ellipsoids in three dimen-
sions. The ellipsoid semiaxes have ratios a :b :c=1:"# :"
where "$1 is the aspect ratio !for general particle shapes, "
is the ratio of the radius of the smallest circumscribed to the
largest inscribed sphere", and 0%#%1 is the “oblateness” or
skewness !#=0 corresponds to prolate and #=1 to an oblate
spheroid". It is seen that the density rises as a linear function
of "−1 from its sphere value !J%0.64, reaching densities as
high as !J%0.74 for the self-dual ellipsoids with #=1/2.
The jamming density eventually decreases again for higher
aspect ratios, however, we do not investigate that region in
this work. The contact number also shows a rapid rise with
"−1, and then plateaus at values somewhat below isocon-
strained, Z̄%10 for spheroids, and Z̄%12 for nonspheroids.
In Sec. IX we will need to revert to two dimensions !ellipses"
in order to make some analytical calculations possible. We
therefore also generated jammed packings of ellipses, and
show the results in Fig. 2. Since monodispersed packings of
disks always crystallize and do not form disordered jammed
packings, we used a binary packing of particles with one
third of the particles being 1.4 times larger than the remain-
ing two thirds. The ellipse packings show exactly the same
qualitative behavior as ellipsoids.

B. Nontechnical summary of results

In this section, we provide a nontechnical summary our
theoretical results and observations discussed in the main
body of the paper. This summary is intended to give readers
an intuitive feeling for the mathematical formalism devel-
oped in this work and demonstrate the physical meaning and
relevance of our results. We will refer the interested reader to
appropriate sections to find additional details.

One aim of this paper is to explain the numerical results
presented in Sec. I A. In particular, we will explain why
jammed disordered packings of ellipsoids are strongly hypo-
constrained near the sphere point, and also why, even far
from the sphere point, ellipsoid packings are hypocon-
strained rather than isoconstrained as are sphere packings.
By a “jammed packing” we mean a packing in which any
motion of the particles, including collective combined trans-
lational and rotational displacements, introduces overlap be-
tween some particles. Under appropriate qualifications, a
jammed packing can also be defined as a rigid packing, that
is, a packing that can resolve any externally applied forces
through interparticle ones.

Readers should observe that the terms “stable,” “rigid,”
and “jammed” are defined differently by different authors.
These different definitions are, however, mathematically
closely related. For example, Ref. #8$ defines a rigid packing
as a packing which has no floppy modes, thus relying on
linearization of the impenetrability constraints. We prefer to
use the term “jammed” for kinematic considerations, and not
involve linear approximations so that all definitions apply to
systems of nonspherical particles. Reference #8$ defines a
stable packing as one which is a strict local potential energy
minimum !where the potential energy is, for example, grav-
ity". A precise definition of jamming based on stability is
developed mathematically in Ref. #20$. Since a packing can
be at a stable energy minimum without being jammed !see,
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FIG. 1. !Color online" Jamming density and average contact
number !inset" for packings of N=10 000 ellipsoids with ratios be-
tween the semi-axes of 1 :"# :" !see Fig. 2 in Ref. #4$". The isocon-
strained contact numbers of 10 and 12 are shown as a reference.
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FIG. 2. !Color online" Average contact number and jamming
density !inset" for bi-dispersed packings of N=1000 ellipses with
ratios between the semi-axes of 1 :", as produced by the MD algo-
rithm using two different expansion rates & !affecting the results
only slightly". The isoconstrained contact number is 6. The results
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for comparison.
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Note, all the above counting arguments for ziso only hold for random packings. One is assum-
ing that if the particle positions are random, then the force and torque balance equations
for each particle are linear independent of those of the other particles. This is not so if
particle positions are correlated in some way to make some subset of the equations linearly
dependent; this is the case with ordered packings.

Finally, we return to spherical particles. We had the two limits for jamming,

〈z〉 = d+ 1 µ =∞ (perfect frictional) (7)

〈z〉 = 2d µ = 0 (frictionless) (8)

For finite friction 0 < µ <∞, as µ decrease from∞ to zero it is believed that 〈z〉 at jamming
goes from one limit above to the other, d + 1 < 〈z〉 < 2d. For frictional particles, where
generally φJ < φRCP, one sometimes refers to φJ as random loose packing RLP.

Song, Wang and Makse in Nature 453, 629 (2008), consider frictional spheres in 3D and using
approximate analytic arguments and simulations map out the region in the 〈z〉 − φ plane
where one can have jamming occur, as µ varies. The parameter X in their phase diagram
below is the compactivity, which we will discuss in the next lecture.

mwithZ(m) smoothly varying between Z(m5 0)5 6 andZ(mR‘)5
4 (ref. 23). This is an important assumption that we test by numerical
simulation (see Supplementary Information section II), where we
find a common Z(m) curve (Supplementary Fig. 10) for different
packing preparation protocols. The mechanical coordination num-
ber ranges from four to six as a function of m, and provides a lower
bound on the geometrical coordination number: Z# z# 6. These
bounds are tested in computer simulations in Supplementary
Information section IIIA.

By changing variables, we can write equation (2) as (see
Supplementary Information section IV):

Qiso(X,Z)~

ð6

Z

e{W (z)=Xg(z)dz ð3Þ

Owing to the implicit volume coarse-graining in equation (1), each
volume state W(z) represents a mesoscopic state containing many
microstates with a common value of z and density of states g(z). The
latter can be calculated as follows (see Supplementary Information
section IV). We assume that the hard spheres are packed in a collec-
tively jammed configuration in which no motion of any subset of
particles can lead to unjamming24. Thus, the configuration space of
jammed matter is discrete, as we cannot continuously change one
configuration to another. We denote the dimension per particle of
the configuration space by D and assume that the distance between
two configurations is not broadly distributed, with a mean distance
hz. Therefore, the number of configurations is proportional to

1
"
(hz)

D, analogous with that in quantum mechanics, h2d, where h
is Planck’s constant and d is the dimension. The fact that the particles
are jammed by z contacting particles reduces the number of degrees
of freedom to D2 z, and the number of configurations is then

1
"
(hz)

D{z . Because the term 1
"
(hz)

D is a constant, it will not
influence the average in the partition function. Therefore, we have
g(z)5 (hz)

z.
From equation (3) we obtain the equations of state that define the

phase diagram of jamming. We start by investigating two limiting
cases (see Supplementary Information sectionV). First, in the limit of
vanishing compactivity (XR 0), we obtain the ground state of
jammed matter with a density

wRCP~
6

6z2
ffiffiffi
3

p <0:634 ð4Þ

for Z(m)g [4, 6]. Second, in the limit of infinite compactivity
(XR‘), we obtain

wRLP(Z)~
1

Qiso(?,Z)

ð6

Z

z

zz2
ffiffiffi
3

p (hz)
zdz

<
Z

Zz2
ffiffiffi
3

p
ð5Þ

for Z(m)g [4, 6].
The average in equation (5) is taken over all states with equal

probability, because e2W(z)/XR 1 as XR‘, and the approximation
applies because hz is very small and the most populated state, z5Z,
thus makes the dominant contribution to the average volume. The
meaning of the subscripts ‘RCP’ (random close packing) and ‘RLP’
(random loose packing) in equations (4) and (5) will become clear
below.

The equations of state (4) and (5) are plotted in the w–Z plane in
Fig. 1, illustrating the phase diagram of jammed matter. The phase
space is limited to lie above the line of minimum coordination num-
ber, Z5 4 (for infinitely rough grains), labelled ‘granular line’ in
Fig. 1. Allmechanically stable, disordered jammed packings lie within
the confining limits of the phase diagram (Fig. 1, yellow zone), and
are forbidden in the grey area. For example, a packing of frictional
hard spheres with Z5 5 (corresponding to a granular material with
interparticle friction coefficient m< 0.2, according to Supplementary
Fig. 10) cannot be equilibrated at volume fractions below

w,wRLP(Z5 5)5 5/(512!3)5 0.591 or above w.wRCP5 0.634.
Thus, these results provide a statistical interpretation of the RLP
and RCP limits, as follows.

First, originating in the statistical mechanics approach, the RCP
limit arises as the result of equation (4), which gives the maximum
volume fraction of disordered packings. The RCP density for mono-
disperse hard spheres2,4,6 is commonly quoted to be 63–64%; here we
physically interpret a state with this value as the ground state of
frictional hard spheres characterized by a given interparticle friction
coefficient. In this representation, asm varies from zero to infinity, the
RCP state changes accordingly. This approach leads to an unexpected
number of states lying in an ‘RCP line’ from the frictionless point at
Z5 6 to the point at Z5 4, as depicted in Fig. 1, demonstrating that
RCP is not a unique point in the phase diagram.

Second, equation of state (5) provides the lowest volume fraction
for a given Z and represents a statistical interpretation of the RLP
limit depicted by the ‘RLP line’ in Fig. 1. We predict that to the left of
this line packings either are not mechanically stable or are experi-
mentally irreversible as discussed in refs 8, 11, 25. There is no general
consensus on the value of the RLP density: different estimates
have been reported, ranging from 0.55 to 0.60 (refs 4–6). The phase
diagram offers a solution to this problem. Along the infinite-
compactivity RLP line, the volume fraction of the RLP decreases
with increasing friction from the frictionless point (w,Z)5
(0.634, 6) (ref. 21), called the ‘J-point’ in ref. 22, towards the limit
of infinitely rough hard spheres. Indeed, experiments4 indicate that
lower volume fractions are associated with larger coefficients of
friction. We predict the lowest volume fraction to be wmin

RLP 5
4/(41 2!3)< 0.536, in the limit as mR‘, XR‘ and ZR 4
(hz= 1). Although this is a theoretical limit, our results indicate that
for m. 1 this limit can be approximately achieved. The existence of
an RLP bound is an interesting prediction of the present theory. The
RLP limit has been little investigated experimentally, and currently it
is not known whether this limit can be reached in real systems. Our
prediction is close to the lowest stable volume fraction ever reported
for monodisperse spheres5, namely 0.5506 0.006.

Third, between the two RLP and RCP limits, there are packings
inside the yellow zone in Fig. 1 with finite compactivity, 0,X,‘.
In such cases we solve the partition function numerically to obtain
w(X, Z) along an isocompactivity line, as shown in the colour lines in
Fig. 1. The compactivity X controls the probability of each state,
through a Boltzmann-like factor in equation (3) (as in condensed
matter physics), and characterizes the number of possible ways of
rearranging a packing having a given volume and entropy, S. Thus,
the limits of themost compact and least compact stable arrangements
correspond to XR 0 and XR‘, respectively. Between these limits,
the compactivity determines the volume fraction from RCP to RLP.
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Figure 1 | Phase diagram of jamming: theory. Theoretical prediction of the
statistical theory. All disordered packings lie within the yellow triangle
demarcated by the RCP line, RLP line and granular line. Lines of uniform
finite compactivity are in colour. Packings are forbidden in the grey area.
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