Introduction to the physics of organic conductors and superconductors Part II

Claude Bourbonnais

Summer school Boulder July 2008

Outline

II-Quasi-1D materials: electronic confinement, ordered phase, superconductivity and antiferromagnetism

(TMTSF)₂ X-(TMTSF)₂ X

Confinement ... Renormalization (downward) of t_{\perp} : $t_{\perp} \rightarrow z(T)t_{\perp}$ $T_x \sim z(T_x)t_{\perp} \rightarrow T_x \sim t_{\perp} \left(\frac{t_{\perp}}{E_F}\right)^{\frac{\theta}{1-\theta}} \quad \theta = O(g^2)$ Reduction of the scale for the electronic deconfinement

$$\mathcal{R}_{\ell}\mu_{S} = \left(z(\ell)G_{p}^{0}, z(\ell)t_{\perp}, g_{1}(\ell), g_{2}(\ell), g_{3}(\ell), J_{\perp}(\ell), \dots \right) \quad \textcircled{0} \quad E_{0} e^{-\ell}$$

Distinct RG flow for J_{\perp} : a relevant coupling

$$\frac{dJ_{\perp}}{d\ell} = f(\ell) + J_{\perp} \frac{d\ln \bar{\chi}_{AF}}{d\ell} + \frac{1}{2}J_{\perp}^2$$

Solution for $E_0 e^{-\ell} \sim T$ in the presence of Δ_{ρ}

$$J_{\perp}(q_0, T) \sim \frac{J_{\perp}^0(\Delta_{\rho})}{1 - J_{\perp}^0(\Delta_{\rho})\chi_{AF}^*(T)} ; J_{\perp}^0(\Delta_{\rho}) \approx \pi v_F \frac{t_{\perp}^{*2}}{\Delta_{\rho}^2} \qquad \qquad \chi_{AF}^*(T) \approx (\pi v_F)^{-1} \frac{\Delta_{\rho}}{T}$$

$$T_N \sim \frac{t_\perp^{*2}}{\Delta_{\rho}}$$
 Temp. scale for AF long-range order

$$T_N \uparrow$$
 when $\Delta_{
ho} \downarrow$

In the absence of Mott gap (weak coupling) RG: $T_c \approx (g_2^* + g_3^*)t_{\perp}^* \quad \downarrow$ as interactions decrease Strong to weak coupling : a maximum of T_c

 $SDW \longrightarrow SC$

Electronic deconfinement : (TMTTF)₂ PF₆

Transverse resistivity as a probe of single particle coherence in the *ab* plane

Coherence peak at T^*

Electronically deconfined region : from SDW state to superconductivity

In the deconfined FL region, the warping of the Fermi surface is coherent : sensitivity to nesting deviations

- Interference is incomplete
- Not uniform in momentum space (k_{\perp} -dependent)
- Scattering events not uniform

$$g_{1,2,3} \rightarrow g_{1,2,3}(k_{\perp_1},k_{\perp_2};k'_{\perp_1},k'_{\perp_2})$$

 $egin{aligned} \partial_\ell g_{1,2}ig(\{k_ot,k_ot,k_ot\}ig) &= \sum_{ar{k}_ot} g_{1,2}ig(\{k_ot,ar{k}_ot\}ig) \ \mathcal{L}_P \ g_{1,2}ig(\{ar{k}_ot,k_ot^\prime\}ig) \ &+ \ g_{1,2}ig(\{k_ot,ar{k}_ot\}ig) \ \mathcal{L}_C \ g_{1,2}ig(\{ar{k}_ot,k_ot^\prime\}ig) \ &+ \ g_{3}ig(\{k_ot,ar{k}_ot\}ig) \ \mathcal{L}_P \ g_{3}ig(\{ar{k}_ot,k_ot^\prime\}ig) \ &+ \ g_{3}ig(\{ar{k}_ot,ar{k}_ot\}ig) \ \mathcal{L}_P \ g_{3}ig(\{ar{k}_ot,k_ot^\prime\}ig) \ &+ \ g_{3}ig(\{ar{k}_ot,ar{k}_ot\}ig) \ &+ \ g_{3}ig(\{ar{k}_ot,ar{k}_ot^\prime\}ig) \ &+ \ g_{3}ig(\{ar{k}_ot^\prime,ar{k}_ot^\prime\}ig) \ &+ \ g_{3}ig(ar{k}_ot^\prime,ar{k}_ot^\prime}ig) \ &+ \ g_{3}ig(ar{k}_ot^\prime,bar{k}_ot^\prime}ig) \ &+ \ g_{3}ig(ar{k}_ot^\prime,bar{k}_ot^\prime}ig) \ &+ \ g_{3}ig(ar{k}_ot^\prime,bar{k}_ot^\prime}ig) \ &+ \ g_{3}ig(ar{k}_ot^\prime,bar{k}_ot^\prime}ig) \ &+ \ g_{3}ig(ar{k}_ot^\prime,bar{k}_ot^\prime,bar{k}_ot^\prime,bar{k}_ot^\prime}ig) \ &+ \ g_{3}ig(ar{k}_ot^\prime,bar{k}_ot^\prime,bar{k}_ot^\prime,bar{k}_ot^\prime,bar{k}_ot^\prime,bar{k}_ot^\prime,bar{k}_bar{k}_bar{k}_bar{k}_bar{k}_bar{k}_bar{k}_bar{k}_ba$

THE EUROPEAN PHYSICAL JOURNAL B

EDP Sciences © Società Italiana di Fisica Springer-Verlag 2001

Interplay between spin-density-wave and superconducting states in quasi-one-dimensional conductors

R. Duprat and C. Bourbonnais^a

On the origin of pairing : an historical disgression

╋

VOLUME 15, NUMBER 12

PHYSICAL REVIEW LETTERS

20 September 1965

NEW MECHANISM FOR SUPERCONDUCTIVITY*

W. Kohn

University of California, San Diego, La Jolla, California

and

J. M. Luttinger

Columbia University, New York, New York (Received 16 August 1965)

It is the purpose of th new mechanism which 1, against Cooper-pair for a weakly interacting sy not remain normal dow of temperature, no mat the interaction. This n to do with the convention attractive interaction in

To understand what is an over-simplified view long been known¹ that if

a metal, the screening is such that there remains a long-range oscillatory potential of the form $\cos(2k_Fr + \lambda_\ell)/m$ $(k_{0F}/iS_c the FeOmi mc$ mentum). This leads to a long-range interaction between charges Formally, the source of this long-range force is the singularity of

when $q = 2k_{\mathbf{F}}^{\mathbf{1}}$. This sin-Friedel (charge) oscillations at $2k_{\rm F}$ r transform of the interlong-ranged oscillatory ce. All that is necessary Minimumasi source of attraction (exchange of the hange all uctuations) impurities will give rise h drops off exponentialnces. ppose that, similarly, on between the fermions a long-range oscillatory of the attractive $(kT_c/\epsilon_0) \sim \exp[-(2l)^4]$. For the attractive form thus giving ~ 10^{-7} (*l*=1, p-wave)

the distantia constant as a function of the mo-

Pairing mechanism for `d-wave' like superconductivity

AF fluctuations as an oscillating potential

Superconductivity: Experimental status for the Bechgaard salts

 T_c is max. when $T_{SDW} \rightarrow 0$ Rapid suppression under pressure Metallic state dominated by spin fluctuations

The critical temperature and non magnetic defects

Joo et al., EPL 72, 645 (05); EPJB (2004).

 T_c quickly decreases with % of non magnetic defects Gap changes sign on the Fermi surface SC triplet (p, f, ...) or singulet (d, g ...) $\langle \Delta(\mathbf{k}) \rangle_{\text{Imp.}} = 0$

Critical fields

-Violation of Pauli 2 dir.

$$H_{\text{Pauli}} = 1.84 T_c$$

- Triplet superconductivity ? (p, f ...)

