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1. Introducing the physics of quasi-one-dimensional organic conductors 15
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FIGURE 17. Generic phase diagram of the (TMTTF)2X and (TMTSF)2X as a function of pressure and anion X substitu-
tion. MI stands for Mott insulating, CO for charge ordered state, SP stands for spin-Peierls, AF for antiferromagnetism,
SC for superconductivity.

the fact that pressure is likely to reduce stack dimerization and improve interchain S-S contacts of (TMTTF)2PF6

close to the values found for the Bromine salt.
The Mott scale Tρ for (TMTTF)2Br is progressively suppressed while its TN increases under pressure. The

latter reaches a maximum value of 23 K or so near 5 kbar [26], where Tρ merges with the critical domain
associated to the transition and becomes an irrelevant scale beyond the maximum. The high temperature phase
is then completely metallic down to the transition which is still antiferromagnetic but rather refers to an itinerant
antiferromagnet or a SDW state. A similar Néel - SDW passage is found for (TMTTF)2PF6 but around 15
kbar with a maximum of TN ≈ 20K. At that point the physics of members of the Fabre series becomes in
many respects similar to the one the Bechgaard salts. At sufficiently high pressure the SDW state can indeed be
completely suppressed and superconductivity stabilized above a critical pressure Pc, which is compound dependent
! Until now, superconductivity has been found in (TMTTF)2Br (Pc = 26kbar) [27], (TMTTF)2PF6 (Pc = 45
kbar) [28, 29], (TMTTF)2AsF6 (Pc = 45 kbar) [30], (TMTTF)2SbF6 (Pc = 54 kbar) [31], and (TMTTF)2BF4

(Pc = 33.5 kbar)[32, 33]. The generic phase diagram of both series, termed (TM)2X, is shown in Fig. 17.

5 The quasi-one-dimensional electron gas model

In this section we shall introduce some results of the scaling theory of the so-called electron gas model, whose
properties are rather generic of what may happen in the phase diagram of (TM)2X.

5.1 One dimensional results and connections with the normal phase of (TMTTF)2X

Given the pronounced one-dimensional anisotropy of the compounds, it is natural to first consider the 1D limit
of this model. To this end, we have seen above that the study of susceptibilities of non interacting electrons is
particularly revealing of the natural infrared singular singularities for Peierls and Cooper pairing responses in one
dimension.

As mentioned above what thus really makes one dimension electron systems so peculiar resides in the fact that
both singularities refer to the same set of electronic states and will then interfere one another [34]. In the presence
of non retarded weak interactions like the Coulomb term, the Cooper-Peierls interference is found to all order
of perturbation theory for the scattering amplitudes of electrons with opposite Fermi velocities. The interference
modifies the nature of the electron system in a essential way. In the framework of the 1D electron gas model,
these infrared singularities put a selected emphasis on electronic states close to the Fermi level, which allows
us to define various possible interactions with respect to the Fermi points ±kF [35, 36]. Thus for a rotationally

Why higher dimensional physics does not                               

4

The RG transformation becomes

Rd! µS(!) =
(
G0

p, g1(! + d!), g2(! + d!), g3(! + d!)
)

g1,2(! + d!) = g1,2(!) +

g3(! + d!)) = g3(!) +

g′1 = −g2
1 ,

(2g2 − g1)′ = g2
3 ,

g′3 = g3(2g2 − g1),

Tρ > t⊥

g1(! + d!) =g1(!)− g2
1d!

g2(! + d!) =g2(!)−
1
2
g2

1d!− 1
2
g2

3d!

g3(! + d!) =g3(!) + (2g2 − g1)d!

Tρ ↓ (< t⊥ ∼ 100K)show up as 

... as if 

4

The RG transformation becomes

Rd! µS(!) =
(
G0

p, g1(! + d!), g2(! + d!), g3(! + d!)
)

g1,2(! + d!) = g1,2(!) +

g3(! + d!)) = g3(!) +

g′1 = −g2
1 ,

(2g2 − g1)′ = g2
3 ,

g′3 = g3(2g2 − g1),

Tρ > t⊥

g1(! + d!) =g1(!)− g2
1d!

g2(! + d!) =g2(!)−
1
2
g2

1d!− 1
2
g2

3d!

g3(! + d!) =g3(!) + (2g2 − g1)d!

Tρ ↓ (< t⊥ ∼ 100K)was effectively smaller  (! ?)

confinement of electronic motion  
by correlations

4

The RG transformation becomes

Rd! µS(!) =
(
G0

p, g1(! + d!), g2(! + d!), g3(! + d!)
)

g1,2(! + d!) = g1,2(!) +

g3(! + d!)) = g3(!) +

g′1 = −g2
1 ,

(2g2 − g1)′ = g2
3 ,

g′3 = g3(2g2 − g1),

Tρ > t⊥

g1(! + d!) =g1(!)− g2
1d!

g2(! + d!) =g2(!)−
1
2
g2

1d!− 1
2
g2

3d!

g3(! + d!) =g3(!) + (2g2 − g1)d!

Tρ ↓ (< t⊥ ∼ 100K)



Electronic confinement ... 

Density of  quasi-particle states N(E) on each chain  ?
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Figure 1.14: .

Let us single out the important features of this unity. First consider the non ordered phase of the two members
(TMTTF)2PF6 and

1.4 The quasi-one-dimensional electron gas model

1.4.1 One dimensional limit and the normal phase of (TMTTF)2X

In this section we shall give an introduction some of the main results of the scaling theory of low energy properties
of interacting electron gas in quasi-one-dimensional metals. Given the pronounced one-dimensional anisotropy of
the compounds, it is natural to first consider the 1D limit. To this end, we have seen above that the study of
susceptibilities of non interacting electrons is particularly revealing of the natural infrared singular singularities
that can take place for Peierls and Cooper pairings in one dimension.

What thus really makes one dimension so peculiar resides in the fact that both singularities refer to the same
set of electronic states and will then interfere one another [21]. In the presence of non retarded interactions like
the Coulomb term, the interference is found to all order of perturbation theory for the scattering amplitudes of
electrons with opposite Fermi velocities and it modifies the nature of the electron system in a essential way. In the
framework of the 1D electron gas model, the selected emphasis put by these infrared singularities on electronic
states close to the Fermi level allows us to define various possible interactions with respect to the Fermi points
±kF [22, 23]. Thus for a rotationally invariant system of length L, the Hamiltonian of the electron gas model can
be written in the form

H =
∑

k,p,σ

εp(k)c†p,k,σcp,k,σ

+
1
L

∑

{k,q,σ}

g1 c†+,k1+2kF +q,σc†−,k2−2kF−q,σ′c+,k2,σ′c−,k1,σ

+
1
L

∑

{k,q,σ}

g2 c†+,k1+q,σc†−,k2−q,σ′c−,k2,σ′c+,k1,σ

+
1

2L

∑

{p,k,q,σ}

g3 c†p,k1+p2kF +q,σc†p,k2−p2kF−q+pG,σ′c−p,k2,σ′c−p,k1,σ (1.16)

where εp(k) ! vF (pk − kF ) is the electron spectrum energy after a linearization close to right (pkF = +kF )
and left (pkF = −kF ) Fermi points; g1 and g2 are the back and forward scattering amplitudes, respectively,
whereas g3 corresponds to the Umklapp scattering, a process made possible at half-filling, where the reciprocal
lattice vector G = 4kF = 2π/a enters in the momentum conservation law. However, owing to the existence of a

• ‘Normal’ phase of (TMTTF)2X at low pressure : confined (1D) 
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Boies et al.,  PRL 74, 968 (1995)
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Figure 1.14: .

Let us single out the important features of this unity. First consider the non ordered phase of the two members
(TMTTF)2PF6 and

1.4 The quasi-one-dimensional electron gas model

1.4.1 One dimensional limit and the normal phase of (TMTTF)2X

In this section we shall give an introduction some of the main results of the scaling theory of low energy properties
of interacting electron gas in quasi-one-dimensional metals. Given the pronounced one-dimensional anisotropy of
the compounds, it is natural to first consider the 1D limit. To this end, we have seen above that the study of
susceptibilities of non interacting electrons is particularly revealing of the natural infrared singular singularities
that can take place for Peierls and Cooper pairings in one dimension.

What thus really makes one dimension so peculiar resides in the fact that both singularities refer to the same
set of electronic states and will then interfere one another [21]. In the presence of non retarded interactions like
the Coulomb term, the interference is found to all order of perturbation theory for the scattering amplitudes of
electrons with opposite Fermi velocities and it modifies the nature of the electron system in a essential way. In the
framework of the 1D electron gas model, the selected emphasis put by these infrared singularities on electronic
states close to the Fermi level allows us to define various possible interactions with respect to the Fermi points
±kF [22, 23]. Thus for a rotationally invariant system of length L, the Hamiltonian of the electron gas model can
be written in the form
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where εp(k) ! vF (pk − kF ) is the electron spectrum energy after a linearization close to right (pkF = +kF )
and left (pkF = −kF ) Fermi points; g1 and g2 are the back and forward scattering amplitudes, respectively,
whereas g3 corresponds to the Umklapp scattering, a process made possible at half-filling, where the reciprocal
lattice vector G = 4kF = 2π/a enters in the momentum conservation law. However, owing to the existence of a
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What can be learnt from RG ?

(effect. one-ptle propagator at step     )    
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(
z(')G0

p, z(')t⊥, g1('), g2('), g3('), J⊥('), . . .
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J⊥ ∝ t2⊥
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∆ρ

 Temp. scale for AF long-range order
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θ ≥ 1 :
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∫
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σ(T ) + C1 TKρ ,
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χ(2kF , T ) ∼ T−γ

γ = 1 or Kρ = 0

Kρ = 0.3

µS = (G0
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z(')G0
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)
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Imχ(q,ω)
ω

D

︷ ︸︸ ︷
q ∼ 0 + q ∼ 2kF
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1 = C0 T χ2
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)

E0 e−'

J⊥ ∝ t2⊥
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In the absence of Mott gap (weak coupling )

4

The RG transformation becomes

Rd! µS(!) =
(
G0

p, g1(! + d!), g2(! + d!), g3(! + d!)
)

g1,2(! + d!) = g1,2(!) +

g3(! + d!)) = g3(!) +

g′1 = −g2
1 ,

(2g2 − g1)′ = g2
3 ,

g′3 = g3(2g2 − g1),

Tρ > t⊥

g1(! + d!) =g1(!)− g2
1d!

g2(! + d!) =g2(!)−
1
2
g2

1d!− 1
2
g2

3d!

g3(! + d!) =g3(!) + (2g2 − g1)d!

Tρ ↓ (< t⊥ ∼ 100K)

µS(!) = (z(!)G0
p, g1(!), g2(!), g3(!))

∣∣∣
2 loops

z(T ) ∼
( T

EF

)θ
t⊥ → z(T )t⊥

θ = O(g2)

Gp(k, k⊥,ω) → z(!)
iωn − εp(k) + 2z(!)t⊥ cos k⊥

G+ G−

!

Tx

 Strong to weak coupling : a maximum of  Tc

4

The RG transformation becomes

Rd! µS(!) =
(
G0

p, g1(! + d!), g2(! + d!), g3(! + d!)
)

g1,2(! + d!) = g1,2(!) +

g3(! + d!)) = g3(!) +

g′1 = −g2
1 ,

(2g2 − g1)′ = g2
3 ,

g′3 = g3(2g2 − g1),

Tρ > t⊥

g1(! + d!) =g1(!)− g2
1d!

g2(! + d!) =g2(!)−
1
2
g2

1d!− 1
2
g2

3d!

g3(! + d!) =g3(!) + (2g2 − g1)d!

Tρ ↓ (< t⊥ ∼ 100K)

µS(!) = (z(!)G0
p, g1(!), g2(!), g3(!))

∣∣∣
2 loops

z(T ) ∼
( T

EF

)θ
t⊥ → z(T )t⊥

θ = O(g2)

Gp(k, k⊥,ω) → z(!)
iωn − εp(k) + 2z(!)t⊥ cos k⊥

G+ G−

!

Tx

Tc ≈ (g∗2 + g∗3)t
∗
⊥ ↓ as interactions  decreaseRG:



Strong to weak coupling :   the AF dome  

x

Tx ∼ z(Tx)t⊥ → Tx ∼ t⊥
( t⊥
EF

) θ
1−θ

θ < 1 :

θ ≥ 1 :

∆ρ &= 0

T−1
1 = |A|2 T

∫
dDq

Imχ(q,ω)
ω

D

︷ ︸︸ ︷
q ∼ 0 + q ∼ 2kF

T−1
1 = C0 T χ2

σ(T ) + C1 TKρ ,

( D = 1 )

Kρ = 0 (γ = 1−Kρ)

0 < Kρ < 1

χ(2kF , T ) ∼ T−γ

γ = 1 or Kρ = 0

Kρ = 0.3

µS = (G0
p, t⊥, g1, g2, g3) ' = 0

R'µS =
(
z(')G0

p, z(')t⊥, g1('), g2('), g3('), J⊥('), . . .
)

E0 e−'

J⊥ ∝ t2⊥

E0 e−' ∼ T

TN ∼ t∗2⊥
∆ρ

TN ↑ ∆ρ ↓

(TMTTF)2Br

Klemme et al., PRL75, 2408 (95)

AF            SDW                            

?

Tx

Signs of deconfinement ? 
SDW          SC



Electronic deconfinement : (TMTTF)2 PF6 ....

Transverse resistivity as a probe of single 
particle coherence in the ab plane

ρc

Moser et al.,  Eur. Phys. J. B 1, 39 (1998)
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Figure 1.14: .

Let us single out the important features of this unity. First consider the non ordered phase of the two members
(TMTTF)2PF6 and

1.4 The quasi-one-dimensional electron gas model

1.4.1 One dimensional limit and the normal phase of (TMTTF)2X

In this section we shall give an introduction some of the main results of the scaling theory of low energy properties
of interacting electron gas in quasi-one-dimensional metals. Given the pronounced one-dimensional anisotropy of
the compounds, it is natural to first consider the 1D limit. To this end, we have seen above that the study of
susceptibilities of non interacting electrons is particularly revealing of the natural infrared singular singularities
that can take place for Peierls and Cooper pairings in one dimension.

What thus really makes one dimension so peculiar resides in the fact that both singularities refer to the same
set of electronic states and will then interfere one another [21]. In the presence of non retarded interactions like
the Coulomb term, the interference is found to all order of perturbation theory for the scattering amplitudes of
electrons with opposite Fermi velocities and it modifies the nature of the electron system in a essential way. In the
framework of the 1D electron gas model, the selected emphasis put by these infrared singularities on electronic
states close to the Fermi level allows us to define various possible interactions with respect to the Fermi points
±kF [22, 23]. Thus for a rotationally invariant system of length L, the Hamiltonian of the electron gas model can
be written in the form

H =
∑

k,p,σ

εp(k)c†p,k,σcp,k,σ

+
1
L

∑

{k,q,σ}

g1 c†+,k1+2kF +q,σc†−,k2−2kF−q,σ′c+,k2,σ′c−,k1,σ

+
1
L

∑

{k,q,σ}

g2 c†+,k1+q,σc†−,k2−q,σ′c−,k2,σ′c+,k1,σ

+
1

2L

∑

{p,k,q,σ}

g3 c†p,k1+p2kF +q,σc†p,k2−p2kF−q+pG,σ′c−p,k2,σ′c−p,k1,σ (1.16)

where εp(k) ! vF (pk − kF ) is the electron spectrum energy after a linearization close to right (pkF = +kF )
and left (pkF = −kF ) Fermi points; g1 and g2 are the back and forward scattering amplitudes, respectively,
whereas g3 corresponds to the Umklapp scattering, a process made possible at half-filling, where the reciprocal
lattice vector G = 4kF = 2π/a enters in the momentum conservation law. However, owing to the existence of a

T *

Coherence peak at T * T *

LL

FL



Electronically deconfined region :  from SDW state to 
superconductivity
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Let us single out the important features of this unity. First consider the non ordered phase of the two members
(TMTTF)2PF6 and

1.4 The quasi-one-dimensional electron gas model

1.4.1 One dimensional limit and the normal phase of (TMTTF)2X

In this section we shall give an introduction some of the main results of the scaling theory of low energy properties
of interacting electron gas in quasi-one-dimensional metals. Given the pronounced one-dimensional anisotropy of
the compounds, it is natural to first consider the 1D limit. To this end, we have seen above that the study of
susceptibilities of non interacting electrons is particularly revealing of the natural infrared singular singularities
that can take place for Peierls and Cooper pairings in one dimension.

What thus really makes one dimension so peculiar resides in the fact that both singularities refer to the same
set of electronic states and will then interfere one another [21]. In the presence of non retarded interactions like
the Coulomb term, the interference is found to all order of perturbation theory for the scattering amplitudes of
electrons with opposite Fermi velocities and it modifies the nature of the electron system in a essential way. In the
framework of the 1D electron gas model, the selected emphasis put by these infrared singularities on electronic
states close to the Fermi level allows us to define various possible interactions with respect to the Fermi points
±kF [22, 23]. Thus for a rotationally invariant system of length L, the Hamiltonian of the electron gas model can
be written in the form

H =
∑

k,p,σ

εp(k)c†p,k,σcp,k,σ

+
1
L

∑

{k,q,σ}

g1 c†+,k1+2kF +q,σc†−,k2−2kF−q,σ′c+,k2,σ′c−,k1,σ

+
1
L

∑

{k,q,σ}

g2 c†+,k1+q,σc†−,k2−q,σ′c−,k2,σ′c+,k1,σ

+
1

2L

∑

{p,k,q,σ}

g3 c†p,k1+p2kF +q,σc†p,k2−p2kF−q+pG,σ′c−p,k2,σ′c−p,k1,σ (1.16)

where εp(k) ! vF (pk − kF ) is the electron spectrum energy after a linearization close to right (pkF = +kF )
and left (pkF = −kF ) Fermi points; g1 and g2 are the back and forward scattering amplitudes, respectively,
whereas g3 corresponds to the Umklapp scattering, a process made possible at half-filling, where the reciprocal
lattice vector G = 4kF = 2π/a enters in the momentum conservation law. However, owing to the existence of a

T *

LL

FL

2

TN ↑ ∆ρ ↓

(TMTTF)2Br

︸︷︷︸

g1,2,3 → g1,2,3(k⊥1 , k⊥2; k′⊥1, k
′
⊥2)

k⊥1 k⊥2 k′⊥1 k′⊥2

∂#g1,2
(
{k⊥, k′⊥}) =

∑

k̄⊥

g1,2
(
{k⊥, k̄⊥}

)
LP g1,2

(
{k̄⊥, k′⊥}

)
+ g1,2

(
{k⊥, k̄⊥}

)
LC g1,2

(
{k̄⊥, k′⊥}

)

+ g3
(
{k⊥, k̄⊥}

)
LP g3

(
{k̄⊥, k′⊥}

)

∂#g3
(
{k⊥, k′⊥}) =

∑

k̄⊥

g1,2
(
{k⊥, k̄⊥}

)
LP g3

(
{k̄⊥, k′⊥}

)

1− |λ#| ln ε0/Tc = 0

χ0
P (2kF , T ) ∼ lnEF /T

→ 1
πvF

ln 1.13EF /T

q = 0

g2 D(q, ωm) ∼ g2

ω2
m + ω2

D

T 0
P

ωD ∼ 5meV EF ∼ 0.5eV

εk = ε−k

q0

2

TN ↑ ∆ρ ↓

(TMTTF)2Br
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g1,2,3 → g1,2,3(k⊥1 , k⊥2; k′⊥1, k
′
⊥2)

k⊥1 k⊥2 k′⊥1 k′⊥2
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(
{k⊥, k′⊥}) =

∑

k̄⊥

g1,2
(
{k⊥, k̄⊥}

)
LP g1,2

(
{k̄⊥, k′⊥}

)
+ g1,2

(
{k⊥, k̄⊥}

)
LC g1,2

(
{k̄⊥, k′⊥}

)

+ g3
(
{k⊥, k̄⊥}

)
LP g3

(
{k̄⊥, k′⊥}

)

∂#g3
(
{k⊥, k′⊥}) =

∑

k̄⊥

g1,2
(
{k⊥, k̄⊥}

)
LP g3

(
{k̄⊥, k′⊥}

)

1− |λ#| ln ε0/Tc = 0

χ0
P (2kF , T ) ∼ lnEF /T

→ 1
πvF

ln 1.13EF /T

q = 0

g2 D(q, ωm) ∼ g2

ω2
m + ω2

D

T 0
P

ωD ∼ 5meV EF ∼ 0.5eV

εk = ε−k

q0

k⊥

2

TN ↑ ∆ρ ↓

(TMTTF)2Br
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g1,2,3 → g1,2,3(k⊥1 , k⊥2; k′⊥1, k
′
⊥2)

k⊥1 k⊥2 k′⊥1 k′⊥2
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(
{k⊥, k′⊥}) =

∑

k̄⊥

g1,2
(
{k⊥, k̄⊥}

)
LP g1,2

(
{k̄⊥, k′⊥}

)
+ g1,2

(
{k⊥, k̄⊥}

)
LC g1,2

(
{k̄⊥, k′⊥}

)

+ g3
(
{k⊥, k̄⊥}

)
LP g3

(
{k̄⊥, k′⊥}

)

∂#g3
(
{k⊥, k′⊥}) =

∑

k̄⊥

g1,2
(
{k⊥, k̄⊥}

)
LP g3

(
{k̄⊥, k′⊥}

)

1− |λ#| ln ε0/Tc = 0

χ0
P (2kF , T ) ∼ lnEF /T

→ 1
πvF

ln 1.13EF /T

q = 0

g2 D(q, ωm) ∼ g2

ω2
m + ω2

D

T 0
P

ωD ∼ 5meV EF ∼ 0.5eV

εk = ε−k

q0

k k⊥

In the deconfined FL region, the warping of the Fermi 
surface is coherent : sensitivity to nesting deviations 



  kF -kF

E(k -2kF) = - E Nesting → χOD(2kF,T) ~  ln(EF/T)

CDW, SDW

E(k) = E(-k)                inversion → χSC(T) ~  ln(EF/T)

                                       SS ST

         

Interference   
kF-kF

x x

x x



⊥⊥

Q0

t⊥

2

TN ↑ ∆ρ ↓

(TMTTF)2Br

︸︷︷︸

Cooper-Peierls interference near a quasi-1D Fermi surface 

t⊥

2

TN ↑ ∆ρ ↓

(TMTTF)2Br

︸︷︷︸

• Not uniform in momentum space (k  -dependent )⊥

•  Interference is incomplete  

2

TN ↑ ∆ρ ↓

(TMTTF)2Br

︸︷︷︸

g1,2,3 → g1,2,3(k⊥1 , k⊥2; k′⊥1, k
′
⊥2)

• Scattering events not uniform 
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∂l = + + +∂l{ }

∂l = + +∂l{ }

....

....

Figure 18: .

Here the Peierls outer shell contribution will be evaluated at ‘zero’ external variables, that is for q̃P = (2kF , 0) inthe Peierls channel. After the fermion frequency summation, we get

IP (d!) = −1
4

{∫ − 1
2 E0(!+d!)

− 1
2 E0(!)

+
∫ 1

2 E0(!)

1
2 E0(!+d!)

}
tanh 1

2βx

x
dx.

" −1
2
d! (38)

Similarly for the Cooper channel, we have

1
2
〈(SC

I,2)
2〉0̄,c = T 2

L2
(πvF )2

∑
−

{k̃,q̃,α}

∑
−

{k̃′,q̃′,α′}

g̃{α}g̃{α′} 〈ψ̄∗
+ψ̄∗

−ψ−ψ+ψ′∗
+ψ′∗

−ψ̄′
−ψ̄′

+〉0̄,c

= T 2

L2
(πvF )2

∑
−

{k̃,q̃,α}

∑
−

{k̃′,q̃′,α′}

g̃{α}g̃{α′} 〈ψ̄∗
+ψ̄∗

−ψ̄′
−ψ̄′

+〉0̄,cψ−ψ+ψ′∗
+ψ′∗

−

=
∣∣∣
Wick

T 2

L2
(πvF )2

∑
−

{k̃,q̃,α}

∑
−

{k̃′,q̃′,α′}

g̃{α}g̃{α′} 〈ψ̄∗
+ψ̄′

+〉0̄,c〈ψ̄∗
−ψ̄′

−〉0̄,cψ
′∗
+ψ′∗

−ψ−ψ+

= T

L
(πvF )

∑

{k̃1,2,q̃}

∑

{α,α′}

g̃{α}g̃{α′}δα1,α′
4
δα2,α′

3
IC(q̃C ; d!)

×ψ′∗
+,α′

2
(k̃1 + q̃)ψ′∗

−,α′
1
(k̃2 − q̃)ψ−,α3(k̃2)ψ+,α4(k̃1) (39)

where

IC(q̃C ; d!) = πvF
T

L

∑
−
k

∑

ωn

G0
+(k + qc,ωn + ωmC)G0
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The evaluation at zero external Cooper variable q̃C = 0 and the properties ε+(k) = ε−(−k) allows us to showthat it reduces to the one in (38) for the Peierls channel

IC(q̃C = 0; d!) = −IP (d!)

=
1
2
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The procedure can be carried on for the Umklapp terms with the results
1
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where the first term contributes to g̃2 while the second for g̃3. Collecting all the terms yields after all cancellationsthe recursion relations (Fig. 18)
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Abstract. The interference between spin-density-wave and superconducting instabilities in quasi-one-
dimensional correlated metals is analyzed using the renormalization group method. At the one-loop level,
we show how the interference leads to a continuous crossover from a spin-density-wave state to unconven-
tional superconductivity when deviations from perfect nesting of the Fermi surface exceed a critical value.
Singlet pairing between electrons on neighboring stacks is found to be the most favorable symmetry for
superconductivity. The consequences of non uniform spin-density-wave pairing on the structure of phase
diagram within the crossover region is also discussed.

PACS. 71.10.Li Excited states and pairing interactions in model systems – 74.20.Mn Nonconventional
mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism,
marginal Fermi liquid, Luttinger liquid, etc.) – 74.70.Kn Organic superconductors

1 Introduction

The problem raised by the interdependence of antiferro-
magnetism and superconductivity in low dimensional elec-
tronic materials stands among the most important chal-
lenges facing condensed matter physics in the last two
decades or so. Although this issue takes on considerable
importance in the description of high-temperature cuprate
superconductors [1–3], it likely acquired its first focus of
interest in the context of quasi-one-dimensional organic
superconductors, the Bechgaard salts [(TMTSF)2X] and
their sulfur analogs, the Fabre salts [(TMTTF)2X]. The
close proximity of antiferromagnetic correlations with the
onset of organic superconductivity in the temperature and
pressure phase diagram of these compounds soon indi-
cated that the apparent difficulty of describing both phe-
nomena could originate in their mutual interaction [4–6].

Given the dominant part played by Coulomb repul-
sion on the scene of interactions in these materials [7],
early attempts to consider the nature of superconducting
pairing suggested that in order to avoid local repulsion −
so resistant to conventional pairing [5] − electrons may
pair on different stacks [8]. The driving force for such a
pairing would derive from antiferromagnetic spin fluctua-
tions [4,5], a mechanism that can be seen as the spin coun-
terpart of what Kohn and Luttinger have proposed long
ago for pairing induced by charge (Friedel) oscillations in

a e-mail: cbourbon@physique.usherb.ca

the context of isotropic metals [9]. Its influence in quasi-
one-dimensional metals, however, turns out to be more
important than in isotropic materials extending over a
larger domain of temperature in the normal phase [10,11],
and becoming further enhanced by singular spin-density-
wave (SDW) correlations near the critical pressure Pc

above which superconductivity (SC) is singled out as the
only stable state. An intrinsic difficulty of this problem
is that both SDW and SC instabilities refer to the same
electron degrees of freedom. Put at the level of elemen-
tary scattering events close to the Fermi surface, electron-
hole pairs leading to density-wave correlations interfere
with the electron-electron (hole-hole) pairs connected with
superconductivity. In previous ladder diagrammatic sum-
mation [5,7,10,12], mean-field [13,14] and RPA [15,16]
approaches to ordered phases at low temperature, inter-
ference is neglected; an assumption actually grounded on
the existence of a coherent warped Fermi surface which is
considered as sufficient to entirely decouple both types of
pairing so that each can be treated separately in pertur-
bation theory [17]. However, as the electron system decon-
fines at low temperature, namely when a Fermi liquid com-
ponent can be defined in at least two spatial directions,
interference − of maximum strength in the 1D non-Fermi
(Luttinger) liquid domain − is still present for quasi-
particles but becomes non uniform along the open Fermi
surface. It turns out that it is precisely from this un-
even pairing that the interplay between SDW and SC
states is found to take place. In practice, the treatment of
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On the origin of pairing : an historical disgression 
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AF fluctuations as an oscillating potential 

Pairing mechanism for `d-wave’ like superconductivity
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Superconductivity: Experimental status for the 
Bechgaard salts
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Figure 1.10: Resistivity vs temperature of selected members of the Bechgaard and Fabre salts series at ambient
pressure (left), after [13]; Resistivity and spin susceptibility vs temperature for members of the Fabre series,
showing the decoupling of charge and spin degrees of freedom at the temperaure scale Tρ for the Mott localization
(right), taken from [14]
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Figure 1.11: The first organic superconductor (TMTSF)2PF6: original resistivity data (on two different samples)
under 12 kbar of pressure, after Jerome et al., [15].
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Figure 1.12: Critical temperature vs pressure phase diagram of (TMTSF)2PF6. The arrow corresponds to the
effective location of the ambient pressure superconductor (TMTSF)2ClO4 on the pressure axis. Courtesy of P.
Auban-Senzier (2008).
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Antiferromagnetic fluctuations in the normal state  seen by NMR

  -  Strong  AF fluctuations 
        in the metallic state
                 (T ~ 25 TC) 
-  Pressure dependence 
  

  

F. Creuzet et al., Synthetic Metals 1987 
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The critical temperature and non magnetic defects 

Joo et al., EPL 72, 645 (05); EPJB (2004). 

 Gap  changes  sign on the Fermi surface  ta ≈ 10 t⊥b ≈ 300 t⊥c

〈∆(k) 〉Imp. = 0SC triplet (p, f,  ... ) or singulet (d, g ...)

  Tc  quickly decreases with % of non magnetic defects   



Lee et al., PRL 78, 3555, (1997).

Critical fields 

- Violation of  Pauli 2 dir.

- Triplet superconductivity ? 
( p, f ... )

ta ≈ 10 t⊥b ≈ 300 t⊥c

〈∆(k) 〉Imp. = 0

∆(k⊥) = (Sgn k) |∆| cos k⊥

HPauli = 1.84 Tc



Takigawa et al., JPSJn 56, 873 (1987).

Nature of SC:  Nuclear relaxation rate  vs T

- Absence of  Hebel-Slichter anomaly

- Power law  1/T1 ~ T 3 

- Gap with   nodes 


