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Chapter 2

Topological Insulators: A Primer

This chapter will serve as an informal tutorial on our research on the general response

theory of topological insulators. The material here is based on a set of informal lec-

tures I gave at the Perimeter Institute in May 2009. The arguments here may not

be as precise as those in later chapters, but in exchange I will present material that

guided our research as well as a broader picture of the general structure of topo-

logical insulators in a more conversational tone without focussing on subtle details.

The outline of this chapter is as follows: I will first discuss the physics of (2 + 1)-d

time-reversal breaking (TRB) topological insulators and the subsequent dimensional

reduction to the (1 + 1)-d topological insulators. Then I will draw an analogy be-

tween this family of insulators and their higher dimensional TRI relatives. Finally, I

will give some intuition about the general structure of all of the topological insulator

families in any spacetime dimension. The majority of the detailed arguments that I

will present can be found in Chapter 6.
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8 CHAPTER 2. TOPOLOGICAL INSULATORS: A PRIMER

2.1 Dirac Fermions in (2 + 1)-d and the Half Hall

Conductance

We begin by discussing Dirac fermions in (2+1)-d. In this dimension a Dirac fermion

has 2 components with a Hamiltonian

HD = pxσ
x + pyσ

y + mσz (2.1)

which can be derived from a field theory Lagrangian density

L = ψ̄ (iγµ∂µ −m) ψ (2.2)

ψ̄ = ψ†σz (2.3)

γ0 = σz, γ1 = iσy, γ2 = −iσx. (2.4)

In matrix form we have

HD =

(
m p−

p+ −m

)

p± = px ± ipy.

The energy spectrum is

E± = ±
√

p2
x + p2

y + m2 (2.5)

with eigenstates

ψ = eip·x
(

u(p)

v(p)

)
(2.6)

with a momentum dependent spinor (u(p) v(p))T .

The parity operation in 2d is

P : (x, y) → (x,−y). (2.7)
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Figure 2.1: Diagram for a current-current correlation function. The vertex operators
ji are carrying a finite momentum q.

The parity operation only flips one coordinate so that the determinant of the trans-

formation will be −1. If we flipped both coordinates the determinant would be +1

and therefore a rotation. This is a common subtlety seen in even spatial dimensions.

We want the Hamiltonian to be parity invariant i.e. PHDP−1 = HD and so we want

to pick P = σx. Under parity we have

PHD(px, py,m)P−1 = σxHD(px,−py,m)σx = pxσ
xσxσx − pyσ

xσyσx + mσxσzσx

= pxσ
x + pyσ

y −mσz

which implies that the mass term breaks parity explicitly. We can ask the question:

is there a physical consequence of the parity breaking?

To examine this we need to couple the system to an electromagnetic field via

HD → (px + eAx)σ
x + (py + eAy)σ

y + mσz.

Since the fermions are massive we can integrate them out to get the effective action

Z[A] =

∫
Dψ̄DψeiS[ψ,ψ̄,A]

Seff [A] = −i log Z[A]. (2.8)
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The effective action will let us calculate the response properties of the system to see if

the parity breaking influences the electromagnetic behavior. To calculate the physical

linear response of the fermions to Aµ we calculate the current-current correlation

function (see Fig. 2.1). We can calculate the polarization tensor to lowest order by

calculating this diagram. We are interested only in the parity violating pieces and so

I will only keep terms which are odd in powers of m. We have

Πµν =
1

2

∫
d3p

(2π)3
Tr [G(p + q)jµ(p + q, p)G(p)jν(p, p + q)]

=
1

2

∫
d3p

(2π)3
Tr

[
i

(pσ + qσ)γσ −m
(iγµ)

i

pαγα −m
iγν

]

=
1

2

∫
d3p

(2π)3
Tr

[
(pσ + qσ)γσ + m

(p + q)2 −m2
γµ

pαγα + m

p2 −m2
γν

]

=
1

2

∫
d3p

(2π)3

1

(p + q)2 −m2

1

p2 −m2
Tr [m(pσ + qσ)γσγµγν + mpσγµγ

σγν

+ parity invariant terms]

=
1

2

∫
d3p

(2π)3

−2imεµνσ

[(p + q)2 −m2] [p2 −m2]
[(pσ + qσ)− pσ] . (2.9)

Now we take the long-wavelength limit, i.e. q → 0, to get

Πµν = −imqσ

∫
d3p

(2π)3

εµνσ

[p2 −m2]2

= −imqσ

∫
dωd2p

(2π)3

εµνσ[
ω2 − p2

x − p2
y −m2

]2

= −mqσ

∫
dωEd2p

(2π)3

εµνσ[
ω2

E + p2
x + p2

y + m2
]2

= − mπ

2(2π)3
qσεµνσ

∫ |p|dθd|p|
(|p|2 + m2)2

= −m

8π
qσεµνσ

∫ |p|d|p|
(|p|2 + m2)2

= − m

8π|m|q
σεµνσ = −sgn(m)

8π
qσεµνσ. (2.10)

Having this term in the polarization kernel implies that there is a term in the effective
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action of the form

Seff [A] = − 1

8π
sgn(m)

∫
d3xεµσνAµ∂σAν + parity invariant terms (2.11)

To find the current we simply need to take a functional derivative of the effective

action

jµ =
δSeff [A]

δAµ

=
1

4π
sgn(m)εµσν∂σAν (2.12)

=⇒ jx =
1

4π
sgn(m)(∂0Ay − ∂yA0)

= − 1

4π
sgn(m)Ey. (2.13)

This means that the system has a non-zero Hall conductance

σxy = −sgn(m)

4π
= −sgn(m)e2

4π~

= −1

2

e2

h
sgn(m) (2.14)

where we have restored the physical units. We see that the Hall conductance of the

(2 + 1)-d Dirac fermions is equal to half of the conductance quantum. Not only

this, but even in the parity invariant limit m → 0 the current does not vanish. This

implies that the parity symmetry is broken on the quantum level i.e. there is a parity

anomaly.

A non-zero quantized Hall conductance is usually a result of a non-trivial topo-

logical structure in the energy spectrum. Here, with px, py as good quantum numbers

we can look at the energy spectrum as a function of momenta. The easiest way to

see the non-trivial topological configuration is to rewrite the Hamiltonian as

HD = da(p)σa (2.15)

da(p) = (px, py,m) . (2.16)
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Then we can plot the unit vector field

d̂a(p) =
1√

p2
x + p2

y + m2
(px, py,m) (2.17)

in the (px, py) plane. Near the origin, for m > 0 the vector points upward. At infinity

the vector field points in the plane and points in the p̂ direction winding around the

circle at infinity. This configuration is a meron, similar to what is seen in Fig. 3.2.

It has half the topological charge of a skyrmion and this is connected to the half

quantized Hall conductance which effectively counts the amount of skyrmion charge.

Before we move on to the lattice Dirac model it is useful to note the Hall con-

ductance of multiple Dirac fermions. If we have N flavors of Dirac fermions then we

get

σxy = −
N∑

i=1

e2

2h
sgn(mi). (2.18)

2.1.1 Lattice Dirac Model in (2 + 1)-d

We will now consider a square lattice with two fermion degrees of freedom on each

lattice site. The lattice Dirac Hamiltonian is

HLD =
∑
m,n

{[
ic†m+1,nσxcm,n − ic†m,nσ

xcm+1,n

]
+

[
ic†m,n+1σ

ycm,n − ic†m,nσ
ycm,n+1

]

−
[
c†m+1,nσzcm,n + c†m,nσzcm+1,n + c†m,n+1σ

zcm,n + c†m,nσ
zcm,n+1

]

+ (2−m)c†m,nσ
zcm,n

}
(2.19)

where cm,n = (cu,m,n cv,m,n) for the two degrees of freedom u, v. Now if we assume

we have periodic boundary conditions along x and y we can Fourier transform the

fermion operators using

cm,n =
1√

LxLy

∑
px,py

ei(pxm+pyn)cpx,py . (2.20)
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The transformed Hamiltonian becomes

HLD =
∑
px,py

c†px,py
[sin pxσ

x + sin pyσ
y + (2−m− cos px − cos py)σ

z] cpx,py . (2.21)

Note that as we take the limit px, py → 0 we recover the continuum Dirac Hamiltonian

from the previous section.

Now we want to couple the system to an electro-magnetic field. On a lattice we

do this by adding U(1) phases on each of the lattice links i.e. a Peierls substitution.

Again for a non-zero mass term, that is, when m(p) ≡ 2−m− cos px− cos py 6= 0 the

system has a broken parity symmetry. Here the symmetry is broken explicitly for all

values of m since m(p) never vanishes for all (px, py). Again we can rewrite the lattice

Dirac Hamiltonian in the generic form

HLD =
∑
px,py

c†px,py
da(p)σacpx,py (2.22)

da(p) = (sin px, sin py, m(p)) (2.23)

which will be useful later. Now we integrate out the fermions, as we did for the

continuum model, to get an effective action depending on the electro-magnetic field.

If we calculate the parity violating terms in the polarization kernel, as we did earlier,

we find a Hall conductance

σxy =
1

4π2

∫

BZ

d2pεabcd̂a
∂d̂b

∂px

∂d̂c

∂py

(2.24)

=
1

4π2
(2πn) =

n

2π
=

ne2

2π~
= n

e2

h
(2.25)

where we have used the fact that the integrand is of a special winding number form

and equal to an integer multiple of 2π when integrated over a compact manifold.

The Brillouin zone (BZ) is a torus, which is compact, and thus the integral gives us

2πn. This calculation is valid for any lattice models with Hamiltonians of the form

Eq. 2.22. Generally, the integer value n is the first Chern-number of a fiber bundle

defined over the BZ torus. For more complicated models the integral form Eq. 2.24 is
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Critical points

m

m<0 0<m<2
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py py
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Figure 2.2: (upper)A plot of the quantized Hall conductance in units of e2/h of the
lattice Dirac model as a function of the mass parameter m. (lower)Two schematic
plots of the d̂(p) unit vector field for the lattice Dirac model. The left configuration
has Hall conductance zero and no skyrmion charge. The right configuration has Hall
conductance −e2/h and a skyrmion charge of −1. The schematic indicates the z-
component at special momentum points as well as the in-plane components if the
z-component is vanishing.

no longer valid, but the integer is still the first Chern number of a more complicated

bundle structure over the BZ.

Something interesting happens in the lattice Dirac model as we vary the mass

parameter m. As seen in Fig. 2.2 the quantized Hall conductance depends on m.

When σxy(m) changes values there is a topological phase transition between insulating

phases. If σxy(m) = 0 we say the system is a trivial insulator and if it is non-zero the

system is in a topological insulator state. For the lattice Dirac model it is easy to

understand the phase diagram by considering the low-energy physics. As a function

of m the only low-energy parts of the spectrum are around the four momentum points
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m < 0 0 < m < 2 2 < m < 4 m > 4
(0, 0) 1/2 -1/2 -1/2 -1/2
(π, 0) -1/2 -1/2 1/2 1/2
(0, π) -1/2 -1/2 1/2 1/2
(π, π) 1/2 1/2 1/2 -1/2
σxy 0 -1 1 0

Table 2.1: Hall conductances (in units of e2/h) for each of the fermion flavors and
the total Hall conductance for various ranges of m

(0, 0), (π, 0), (0, π), and (π, π). We can reduce our study of the entire BZ to just low-

energy expansions about these four points. This effectively gives us four flavors of

Dirac fermions. The low-energy Hamiltonians are

(0, 0) : H1(p) = pxσ
x + pyσ

y −mσz (2.26)

(π, 0) : H2(p) = −pxσ
x + pyσ

y + (2−m)σz (2.27)

(0, π) : H3(p) = pxσ
x − pyσ

y + (2−m)σz (2.28)

(π, π) : H4(p) = −pxσ
x − pyσ

y + (4−m)σz. (2.29)

Due to the simple form of the lattice Dirac model these four flavors of fermions are

the only low-energy degrees of freedom which participate in the topological phase

transitions. Using our sum rule for Hall conductances of multiple fermion flavors we

can construct a table of total Hall conductance (see Table 2.1). We can also look at

the momentum space topological configuration for different values of m. We see two

examples of these configurations in Fig. 2.2. For the trivial insulator case we see there

is no skyrmion, the configuration is simply ferromagnetic-like. In the non-trivial case

there is a full skyrmion in the BZ which has a charge of −1 in this case giving a Hall

conductance of −e2/h for 0 < m < 2.
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m<0 0<m<2

x

m

Figure 2.3: This figure shows the lateral interface geometry from which we calculate
the low-energy interface states. The red line indicates the position and dispersion of
the chiral interface states. The left insulator is trivial, the right one is non-trivial.
The plot of m vs. x indicates a mass domain-wall at the interface.

2.1.2 Edge States and Domain Wall Fermions of the Dirac

Model

In this section we will analyze the edge state structure of the non-trivial phase of

the Dirac insulator. To begin we will study a lateral interface between two Dirac

insulators, one with m < 0 and one with 0 < m < 2. As seen in Fig. 2.3 one

of the insulators has a Hall conductance 0 and the other has −e2/h. The integer

characterizing the Hall conductance is a topological invariant and cannot change

continuously. Thus as we move from left to right, interpolating between the trivial
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and non-trivial insulator, we must intersect some gapless region. If we did not hit

such a singularity then the two insulators could be adiabatically connected which

leads to a contradiction.

The region of gapless excitations is localized around the interface and we will study

the nature of the low-energy excitations. We assume that our system is translationally

invariant along y so that py is a good quantum number. For an interface between

m < 0 and 0 < m < 2 we know from the previous section that the only significant

bandstructure changes are occurring near (px, py) = (0, 0) so we will expand the

Hamiltonian around this point. The other parts of the bandstructure are gapped and

at higher energies. The effective Hamiltonian is

H(py) = −i
∂

∂x
σx + pyσ

y + m(x)σz. (2.30)

This Hamiltonian is parameterized by py so we will first look for an interface bound-

state at py = 0. The bound-state ansatz we choose is

ψ = e−
∫ x
0 m(x

′
)dx

′
φ0 (2.31)

for a constant two-component spinor φ0. Since m ∼ 0 at the interface we will look for

a state with an energy E = 0. The eigenvalue equation becomes

Hψ = Eψ = 0 (2.32)(
m(x) im(x)

im(x) −m(x)

)
φ0 = 0 (2.33)

=⇒ φ0 =
1√
2

(
1 i

)T

. (2.34)

Now we can use a trick to solve for the energies for all py. Since σyφ0 = +φ0 we

can simply let E = py and the Schrodinger equation is automatically satisfied! This

means that there are low-energy fermion bound-states, exponentially localized on the

interface, with an energy dispersion

E = +py. (2.35)
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This dispersion is simply a line with positive slope and represents a (1 + 1)-d chiral

fermion propagating on the interface. If we exchanged the two insulators so that we

had a non-trivial insulator on the left and a trivial one on the right then the dispersion

would change to E = −py which is a chiral fermion travelling in the opposite direction.

Now instead of an interface we will put the lattice Dirac model on a cylinder of

circumference L, which has two boundaries. We will orient the cylinder so that the

y-direction is periodic and the x-direction is bounded. We can think of the vacuum

outside the cylinder as being adiabatically connected to a trivial Dirac insulator with

a mass m < 0, since the vacuum has σxy ≡ 0. Thus, the boundaries of the cylinder

each contain a chiral fermion. We can physically probe these edge states by threading

flux into the hole of the cylinder. If we begin to thread flux over a period of time from

t = 0 to t = T then we must generate a circulating electric field due to Faraday’s law

∮
E · d` = −∂Φ

∂t
(2.36)

=⇒ −
∫ T

0

∮
dA

dt
· d` = −

∫ T

0

dt
dΦ

dt

=⇒
∮

∆A · d` = ∆Φ =
h

e

=⇒ ∆Ay =
h

eL
(2.37)

where we have threaded a single flux quantum Φ0 = h/e and chosen a gauge where

A(x, y, t) = (0, Ay(t)). We know our system has a Hall conductance of −e2/h so there

is a response during the flux threading due to the circulating E field

jx = σxyEy = −σxy
dAy

dt
(2.38)

=⇒ ∆Q =

∫ T

0

dt

∫
dyjx = −L

∫ T

0

σxy
dAy

dt

= L
e2

h
∆Ay =

e2

h

Lh

eL
= e = −(−e). (2.39)

This argument clearly shows that upon inserting one flux quantum a single electron

is transferred from the right edge of the cylinder to the left edge. This is a signature
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Conduction Band

Valence Band

Figure 2.4: (upper)Schematic illustration of the cylinder with open boundaries along
x and periodic boundary conditions along y. Red and blue lines indicate edge states
on the left and right edges respectively. Purple lines indicate flux threading through
the cylinder hole. (lower) Edge state dispersions and state occupations. The red line
is the edge state on the left of the cylinder, the blue line is the edge state on the right
of the cylinder. Empty/filled circles represent un-occupied/occupied states. During
flux threading of one flux quantum the states on the red (blue) curve will shift to the
right one unit causing one more state to be occupied (unoccupied).

of the IQHE.

There are two other nice ways to understand this phenomenon. First we can look

at the edge state energy spectrum in Fig. 2.4. One of the dispersion lines is on one

edge, while the other dispersing line is on the opposite edge. When we adiabatically

thread flux the momentum of the states is shifted as

py → py + e∆Ay

= ~
2πq

L
+ e

h

eL
= ~

2π(q + 1)

L
. (2.40)
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From this we see that for every flux quantum inserted the momentum each state is

shifted by one unit to the right. From the energy spectrum diagram, if we shift a

right moving chiral fermion then one more state is occupied, while a left moving chiral

fermion has one less state occupied. Since the right mover is on the left edge, and

vice-versa, we see that one electron has travelled from the right edge to the left edge.

Physically the right edge is pumping an electron to the bulk, and the left edge is

withdrawing one electron from the bulk.

The other way to consider this effect is by looking at the chiral fermion intrinsically

as a (1 + 1)-d system. Chiral fermions in (1 + 1)-d have a classical chiral symmetry

which is broken at the quantum level. Thus, it suffers from a chiral anomaly. Mathe-

matically this means that there is a chiral (also called axial) current j5
µ with ∂µj5

µ = 0

classically but

∂µj5
µ =

e

4π~
εµνFµν =

e

2π~
(∂0A1 − ∂1A0) (2.41)

= − e

2π~
E1. (2.42)

Now we will apply an electric field along the length of the 1d system by letting A1

vary with time. As in the previous cases we will suppose that over a period of time

from t = 0 to t = T we have ∆A1 = h/(eL). Now we can calculate the anomalous

charge

NR −NL =

∫ T

0

dt

∫
dx1∂

µj5
µ (2.43)

=

∫
dx1∆A1

e

2π~
=

Lh

eL

e

2π~
= 1. (2.44)

This means, that since we only have one species of chiral fermion on a single edge,

that ,for example, an extra right-mover appears out of nowhere. The proper way to

look at this is as the edge of a 2d system where we know that the charge is really

coming from the opposite edge.
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p

E

Figure 2.5: Figure illustrating a periodic dispersion relation plotted on a 1d Brillouin
zone. The sloped arrows represent the low-energy right and left moving chiral fermions
based around the Fermi level (dotted line). No matter where you draw the Fermi level
there are always an even number (possibly zero) of chiral fermions.

2.1.3 Holographic Liquids

We have been studying the phases of the lattice Dirac model and found that when the

Hall conductance is non-vanishing the system has chiral edge states. However, there

is a theorem, the Nielsen-Ninomiya theorem[17, 18], which states that we cannot get

chiral fermions by themselves in a lattice model. We can imagine a simple heuristic

proof aided by Fig. 2.5. The simplest example is a lattice model in (1+1)-d with a BZ

which is a circle. The energy spectrum must be periodic on the circle and so if we have

a right moving fermion with a positive slope, we must eventually have a left moving

one with negative slope so that the spectrum is periodic. The simple statement is

that, for periodic functions, what goes up must come down. The minimum amount

of chiral fermions we can have is two: a chiral fermion and its anti-chiral partner.

This has the implication that we cannot simulate chiral fermions by themselves in a

lattice model.

However, topological insulators provide the one exception to this. If one wants to
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simulate chiral fermions on a lattice in (2n)-d (even spacetime dimensions are required

to define chirality) then simply write down a lattice Dirac model in (2n + 1)-d with

a boundary and tune the mass parameter such that the system is in a topological

phase. The boundaries can now contain single chiral fermions. These chiral fermions

are “holographic” in the sense that they cannot exist on their own, but must appear

as the boundary of some higher dimensional bulk model. Such holographic liquids

are a generic property of topological insulators but the fermions do not always have

to be chiral. There are other examples of holographic liquids that we will see later

which cannot exist on a lattice without doubling unless they are on the boundary of

a topological insulator, but which are not chiral.

2.2 Dimensional Reduction to (1 + 1)-d

In this section well will discuss how to go from the IQHE in (2 + 1)-d to a (1 + 1)-d

topological insulator. Suppose we again start with a cylinder with periodic boundary

conditions along y and open boundary conditions along x. We imagine having the

lattice Dirac model defined on a square lattice on the cylinder, and since we have

periodic boundary conditions in y we can partially Fourier transform the fields from

ψ(x, y) → ψpy(x). These fields are effectively one-dimensional fields which depend

on a parameter py as does the Hamiltonian Hpy(x). If we couple the system to an

electro-magnetic field and choose a gauge such that A also does not depend on y, then

the Hamiltonian depends on H(x, py + eAy(x, t), A0(x, t), Ax(x, t)).Then we simply

imagine replacing L(py + eAy(x, t)) by an inhomogeneous parameter θ(x, t) where L

is the system size in the y-direction. This will leave us with a Hamiltonian describing

an inhomogeneous 1d system which depends on an adiabatically varying parameter

θ(x, t).

There is a nice heuristic picture of this formal construction in terms of compact-

ification, or dimensional reduction. On our cylinder the fermionic fields are of the
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form

ψ(x, y) =
∑
py

eipyyψpy(x) =
∞∑

n=−∞
e(2πin/L)yψn(x). (2.45)

To make the system quasi-1d we want to make sure nothing depends on the y-

direction. In order to do this for the fields we must only choose the zero-mode

e.g. ψ0(x) which does not depend on y. Note that the energy of the fermion fields

contains gradient terms which are proportional to 1/L. Thus, to project onto the

zero-mode we simply need to shrink the circumference of the cylinder to zero. All of

the fermion modes which depend on y will be gapped and pushed to higher-energy.

To handle the external electromagnetic fields we make a judicious choice of gauge so

that A does not depend on y. Thus in the limit L → 0 the only low-energy degrees

of freedom left are ψ0(x) and A0(x, t), Ax(x, t), Ay(x, t). As we did earlier we rename

Ay(x, t) ∼ θ(x, t)/L. In our dimensional reduction picture θ is effectively the amount

of flux threading through the hole of the cylinder as we shrink it. We have

∫
A · d` =

∫ L

0

Ay(x, t)dy = Φ(t) (2.46)

which implies if Ay(x, t) = Ay(t) then Φ(t) = Ay(t)L = θ(t). So in this picture to go

from the QAHE/IQHE to the (1 + 1)-d topological insulator we simply construct the

system on a cylindrical geometry and shrink the cylinder into a wire. The θ adiabatic

parameter is related to the “flux” threaded through the cylinder hole.

In (2 + 1)-d we had a topological term in the effective action, the Chern-Simons

term

Seff [A] ∼
∫

d3xεµσνAµ∂σAν . (2.47)

However our dimensional reduction algorithm removes any dependence on y which
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means that ∂y ≡ 0 and the thin cylinder has a response

Seff [A] ∼
∫

dtdxdyAyε
ab∂aAb a, b = 0, x (2.48)

=

∫
dxdtθ(x, t)εab∂aAb. (2.49)

This is an example of a so-called topological θ-term which has analogs in higher

dimensions. Next, we can work out the electro-magnetic response by taking the

functional derivative to get

ja = εab∂bθ(x, t) (2.50)

j0 = −∂θ

∂x
(2.51)

j1 =
∂θ

∂t
(2.52)

which is just the Goldstone-Wilczek formula[19]. We can also connect these formulae

to 1d electro-dynamics by identifying θ with the physical charge polarization. In

conventional electromagnetism we have

j0 = −∇ · P = −∂P

∂x
(2.53)

j1 =
∂P

∂t
(2.54)

which has the same form as the Goldstone-Wilczek equations for θ. From the construc-

tion so far we see that the (2+1)-d topological insulator is connected, via dimensional

reduction, to a 1d system parameterized by θ(x, t) which can have a non-trivial elec-

tromagnetic response if θ is not constant. This is not enough to establish the existence

of a stable topological insulator phase in 1d but it is at least a hint that something

interesting is happening.
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2.2.1 Topological Phase in (1 + 1)-d

One question we have not addressed is the fate of the edge states when we perform the

dimensional reduction. If we generically perform the dimensional reduction for any

flux threaded through the cylinder then the edge states will have no remnants in the

1d insulator. In the energy spectrum, the dimensional reduction effectively projects

onto a single py value so that only one state on the right edge and one state on the

left edge remain per chiral edge state. Since these states are now disconnected from

the bulk bands we can add perturbations to the ends of the 1d system in a way such

that the states move around in energy. By doing this we can adiabatically connect

to a trivial insulator without any remaining evidence of the chiral states. This is

discouraging, but there is an easy way to fix the problem. The solution is to require

that our 1d system satisfy an additional symmetry, in this case, a particle/hole or

charge conjugation symmetry. This symmetry requires that every state at energy E

must have a partner at −E unless the state is at exactly E = 0.

If we begin with a (2 + 1)-d topological insulator with one chiral branch on each

edge then in the 1d system each end will have a single state. Each end of the 1d

system is separated by some distance and we must consider them separately as long

as the Hamiltonian is local. Because of the particle/hole symmetry we are enforcing,

the single end states must be at exactly E = 0. Thus, since the bulk insulating gap

must open symmetrically around E = 0 for a particle/hole symmetric insulator, the

end states are mid-gap states. Now if instead our (2+1)-d insulator had two branches

of chiral fermions on each edge then we would get two mid-gap zero energy states on

each end of the wire. However, this is qualitatively different than the previous case

because we can add a perturbation that couples the pair of states on a single end. The

perturbation can open a gap on each end in a particle/hole symmetric way such that

we can remove any mid-gap states by pushing them high in energy. Once this has

been done we can adiabatically connect the resulting state to a trivial band insulator.

We cannot do this if there are mid-gap states locked at zero energy. There is clearly

an even-odd effect occurring here and it turns out that the 1d topological insulators

with particle/hole symmetry are classified by an even/odd or Z2 topological invariant.

We have seen that if our 1d insulator descends from a 2d IQHE with an even or odd
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number of chiral edge modes then we get different classes of 1d insulators. In the end,

the dimensional reduction is an artificial device and we would like an intrinsically 1d

way to distinguish the phases. It turns out that the value of θ exhibited by a material

gives us a way to do this. We identified θ with the physical charge polarization earlier.

On a lattice the charge polarization is only well defined up to an integer multiple of

the lattice constant so θ is only well defined up to an integer,i.e. θ ≡ θ+n. Now, under

the particle/hole symmetry θ → −θ since it is the charge polarization. If we want

our system to be particle/hole symmetric we must have θ = −θ but this only has to

hold up to an integer so we get two allowed values θ = 0, 1/2. We want to identify the

trivial particle/hole symmetric insulator with θ = 0, and the non-trivial topological

insulator with θ = 1/2. We can test the consistency of these identifications by looking

at a 1d wire with open boundaries. The vacuum would be a trivial insulator and so at

the interface between a trivial insulator wire and the vacuum there would be charge

Q =

∫
dx∇θ(x) = 0 mod Z. (2.55)

This means that the charge residing on the end of a trivial insulator is an integer

multiple of the electron charge. For the topological insulator we have

Q =

∫
dx∇θ(x) = 1/2 mod Z. (2.56)

which implies that e/2 charge plus an integer charge reside on the boundary. This

is physically correct because the topological insulator will have an odd number of

mid-gap zero modes. These zero modes contribute ±e/2 charge as seen in [20, 21].

Thus, by calculating the charge polarization of a 1d particle/hole symmetric insulator

we can identify the proper insulating phase.

We mentioned earlier that the Hall conductance was given by the first Chern

number which is generically defined as

C1 =
1

2π

∫
d2pTr [∇× a] (2.57)

(a)ij = −i〈ui(p)|∂k|uj(p)〉 (2.58)
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where (a)ij is the non-Abelian adiabatic connection and ui(p) are the Bloch functions

of the occupied bands. The Chern number is nothing but the flux of this non-Abelian

vector potential passing through the BZ. In 1d the topological invariant is the zeroth

Chern-Simons form

θ =
1

2π

∫
dpTr [ap] (2.59)

where ap is the only component of the adiabatic connection in 1d. The Chern-Simons

form is not gauge invariant if we change the phases of the Bloch functions in its

definition. This is the reason why θ is only defined modulo an integer whereas C1 is

always precisely defined.

2.2.2 Generic Pattern for Topological Insulators

Now that we have seen a clear example of a topological insulator and a lower dimen-

sional descendant I will outline the generic structure of the insulator families.

1. Start in (2n+1)-d spacetime dimensions to get a real-space Chern-Simons term

in the effective action by integrating out massive Dirac fermions coupled to an

electro-magnetic field:

Seff [A] =

∫
d2n+1xεa1a2...a2n+1Aa1∂a2 . . . ∂a2nAa2n+1 . (2.60)

These insulators are classified by an integer and do not require any symmetry

to be stable. This integer is the n-th Chern number and is given by an integral

over (2n)-d momentum space e.g.

C1 ∼
∫

d2pεijTr[Fij(p)] (2.61)

C2 ∼
∫

d4pεijk`Tr[Fij(p)Fk`(p)] (2.62)

. . .

These insulators will have chiral boundary states and a topological response

which can be recast into a field theory anomaly picture by focussing on the

chiral fermions on a single boundary.
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2. Next we perform a dimensional reduction to (2n)-d by getting rid of all of the

functional dependence of x2n+1 and by replacing A2n+1 with a parameter field

θ(x1, . . . , xn, t). The topological effective action will be

Seff [θ, A] ∼
∫

d2nxθ(x, t)εa1...a2nFa1a2 . . . Fa2n−1a2n . (2.63)

These states will be classified by a Z2 topological invariant instead of an integer

and will require an additional symmetry restriction to maintain a stable topo-

logical phase. Our first example required a particle/hole symmetry C. Another

example is a the requirement of a time-reversal symmetry T. The Z2 invariant

can be calculated by calculating a momentum space Chern-Simons form e.g.

θ1 ∼
∫

dpTr [ap] (2.64)

θ3 ∼
∫

d3pεijkTr

[
ai∂pj

ak +
2

3
aiajak

]
(2.65)

. . .

The (possibly non-linear) topological electromagnetic response here is a gener-

alized Goldstone-Wilczek formula which requires a non-constant θ (and possibly

a non-zero electro-magnetic field too). These insulators will have gapless, but

non-chiral, states on the boundary. The stability of the gapless states depends

crucially on the symmetry requirement.

3. We can repeat the dimensional reduction process exactly one more time by

adding a second inhomogeneous parameter field φ. This second descendant is

also classified by a Z2 invariant and has the same symmetry requirement as the

first descendant. If we reduce again we will run into a problem which will be

covered later.
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4dQHE

3d Insulator

2d Insulator

2d IQHE

1d Insulator

‘0d Insulator’

C T

Figure 2.6: A schematic diagram showing the similarities between two different topo-
logical insulator families. The lower dimensional group requires an additional charge-
conjugation symmetry C while the higher dimensional group requires time-reversal
symmetry T. The two descendants in each group are classified by Z2 invariants,
whereas the initial insulator in each group is classified by an integer.

2.3 Topological Insulator Families

After covering an explicit example of a topological insulator family we will now move

on to the family in which we are most interested: the (3 + 1)-d and (2 + 1)-d TRI

topological insulators. These two important systems are descendants of a (4 + 1)-d

topological insulator, in the same way that the (1 + 1)-d and (although it was not

discussed) the (0 + 1)-d particle/hole symmetric insulators are descendants of the

IQHE. The analogy is shown in Fig. 2.6. For this family of topological insulators

the required symmetry is time-reversal symmetry T with T 2 = −1. The properties

of time-reversal symmetry, and Hamiltonians which preserve time-reversal symmetry,

are covered in Appendix A.1. The exciting thing about this family of topological

insulators, is that the strict requirement of time-reversal symmetry is not a fine-

tuning problem like particle/hole symmetry would be. Time-reversal symmetry (or

approximate symmetry) is a relatively robust symmetry and we could hope to find

such states realized in nature without fine-tuning. We will see in later chapters that

this is indeed the case, and I will not focus on that aspect here.
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2.3.1 A (4 + 1)-d Topological insulator

According to the general strategy listed above I will start in 5 = 2×2+1 spacetime di-

mensions with Dirac fermions on a hypercubic lattice. The lattice Dirac Hamiltonian

with periodic boundary conditions, after being Fourier transformed, is

H4
LD =

∑
p

c†p [sin pxΓ
x + sin pyΓ

y + sin pzΓ
z + sin pwΓw

+

(
4−m−

4∑
i=1

cos pi

)
Γ0

]
cp (2.66)

where cp is a four-component spinor and the Γa are 4 × 4 Dirac matrices forming a

set of Clifford algebra generators. Near the point px = py = pz = pw = 0 the lattice

model reduces to the continuum model.

The next step is to couple the system to an electro-magnetic field and then in-

tegrate out the massive fermions. The topological term in which we are interested

comes from the diagram in Fig. 6.7. The interesting term this diagram contributes

to the effective action is

Seff [A] =
C2

24π2

∫
d5xεabcdeAa∂bAc∂dAe (2.67)

where the coefficient C2 is an integer topological invariant, called the second Chern

number, which characterizes the topological insulator phase. Again we can calculate

the topological current response by taking a functional derivative to get

ja =
C2

32π2
εabcdeFbcFde. (2.68)

To understand what this means physically we choose a geometry with open boundary

conditions along x and periodic boundary conditions along y, z, w. This is a gener-

alization of the cylinder geometry we looked at in (2 + 1)-d. The current in the

x-direction (assuming only F0y and Fzw are non-zero) is

jx =
C2

4π2
F0yFzw =

C2

4π2
EyBzw. (2.69)
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We can compare this to the IQHE which is jx = σxyEy which is effectively the same

except for the extra factor of Bzw in (4 + 1)-d which indicates a non-linear response.

This basically means that in (4 + 1)-d if we have a non-zero magnetic field Bzw we

get a Hall effect.

We would also like to understand this current from an anomaly picture. The

surface states of this topological insulator are chiral (Weyl) fermions restricted to the

(y, z, w) 3d space at x = 0, Lx. When restricted to the boundary space a non-zero

Ey ·Bzw is equivalent to Ey ·By since in a 3d space we can associate a unique vector

component By perpendicular to the zw-plane. The chiral current is anomalous in the

presence of chiral fermions and we have

∂µj5
µ = − e2

16π2
εµνρσFµνFρσ =

e2

2π2
E ·B. (2.70)

So when there is a non-zero E ·B applied on the surface the chiral charge is not con-

served. From above we see that when restricted to the boundary, the electro-magnetic

fields that give a non-zero topological response reduce to jx ∼ EyBy = E · B which

is exactly what we need for a non-zero anomaly. As in the lower dimensional case,

the chiral anomaly on one boundary is compensated by the other boundary. These

two boundaries are separated by a bulk insulator which has a non-zero topological

current. A single chiral fermion in (3+1)-d on a lattice must be a holographic fermion

as it was this form of chiral fermions that originally motivated Nielsen and Ninomiya.

2.3.2 Dimensional Reduction to (3 + 1)-d

We can carry on with our algorithm to get the first descendant via dimensional

reduction. We replace the effective action in (4 + 1)-d by

S3D
eff [θ, A] =

1

4π

∫
d3xdtθ(x, t)εµνρσ∂µAν∂ρAσ. (2.71)

The adiabatic parameter θ(x, t) can still be associated to flux threaded through a

hole in a higher dimensional cylinder. Also, as in the (1 + 1)-d case it has a physical
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interpretation as a magneto-electric polarizability. It represents the amount of electric

charge polarization that will result if a magnetic field is applied to the system.

We can continue with the analogy from the lower dimensional case and consider

the fate of chiral edge states inherited from the (4 + 1)-d topological insulator. The

Hamiltonian for the chiral edge states on the boundary of the 4d system with open

boundaries along the x-direction is simply

H = pyσ
x + pzσ

y + pwσz (2.72)

for one species of chiral fermion per boundary. This is a gapless two-band model with

σa representing spin. This edge state Hamiltonian is time-reversal invariant since

both momentum and spin change sign under T. The dimensional reduction process

effectively picks pw = 0 and leaves us with the Hamiltonian for the surface states of

a (3 + 1)-d topological insulator

H = pyσ
x + pzσy. (2.73)

This is also a time-reversal invariant, gapless, two-band model for the topological

surface states. In fact, this Hamiltonian is that of (2 + 1)-d Dirac fermions. Thus,

when reducing we have gone from chiral fermions to Dirac fermions. If the gapless,

mid-gap Dirac fermion states are stable to perturbations then we cannot adiabatically

connect the resulting insulator to a trivial band insulator. However, there is a simple

perturbation we can add to Eq. 2.73, that is, mσz. This term will open a small gap in

the edge state spectrum. Once this small gap exists we can add surface potentials to

deform the surface states into the bulk band regions in order to adiabatically connect

this system with a trivial insulator.

Thus, the (3 + 1)-d topological insulator descendant is not generically stable.

However, just like we saw in (1+1)-d we can fix this problem by requiring a symmetry

that forbids the mσz perturbation term. This symmetry is simply time-reversal since

σz changes sign, but m is unchanging. So if we require a strict time-reversal symmetry

we can define a (3+1)-d topological insulator phase. Now suppose that our (4+1)-d

insulator has an even number of chiral boundary fermions. This reduces down to
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multiple Dirac fermion flavors in (3 + 1)-d and results in a Hamiltonian like

H = py(1⊗ σx) + pz(1⊗ σy) (2.74)

for two copies, where 1 is the 2 × 2 identity matrix. Here we can add the explicit

perturbation m(τ y ⊗ σz) which will open a gap in the edge states (since it anti-

commutes with the Hamiltonian) yet preserves time-reversal symmetry (since τ y gets

complex conjugated and σz flips sign). Thus for two copies the system is no longer

stable and can be connected to a trivial insulator. We once again see the signature

of a Z2 classification with an even-odd type effect. We can intrinsically calculate

this Z2 invariant from purely (3 + 1)-d quantities by calculating a momentum-space

Chern-Simons form

θ =
1

16π2

∫
d3kεθijkTr

[(
fij − 1

3
[ai, aj]

)
· ak

]
(2.75)

where ai is the momentum-space adiabatic vector potential, and fij is its (non-

Abelian) field strength. This expression is not gauge invariant, and in fact, θ is

only well defined modulo an integer. In addition, under time-reversal θ → −θ so like

before there are only two allowed, time-reversal invariant values θ = 0, 1/2. A time-

reversal invariant insulator with θ = 0 is trivial, and with θ = 1/2 is a non-trivial

topological insulator.

We would like to show that this definition is physically consistent. The easiest

way to do this is to imagine an surface between a topological insulator filling the

space z < 0 and the trivial vacuum filling z > 0. Thus, θ = 1/2 for z < 0 and θ = 0

for z > 0 leaving a θ domain wall at z = 0 (see Fig. 2.7). The topological response

current is

jµ =
1

2π
εµνρτ∂νθ∂ρAτ (2.76)

which is a higher-dimensional generalization of the Goldstone-Wilczek current jµ =



34 CHAPTER 2. TOPOLOGICAL INSULATORS: A PRIMER

Vacuum

Topological Insulator

q = 0 mod Z

q =1/2 mod Z

z

Figure 2.7: Schematic illustration of a topological insulator surface, i.e. an interface
between the insulator and vacuum. The half Hall conductance on the surface indicates
the presence of an odd number of Dirac cones localized on the surface.

1
2π

εµν∂νθ. Assuming θ = θ(z) this reduces to

jµ =
∂zθ

2π
εµνρ∂νAρ µ, ν, ρ = t, x, y (2.77)

=⇒ jy =
∂zθ

2π
Ex (2.78)

=⇒ Jy
2D =

∫
dzjy =

Ex

2π

∫
dθ

dz
dz

=
Ex

2π

1

2
=

e2

4π~
Ex =

e2

2h
Ex. (2.79)

Remarkably the topological response indicates that the surface of a topological insu-

lator will carry a half-Hall conductance. This signals the presence of (2 + 1)-d Dirac

fermions on the surface, which is exactly what we expect from our dimensional re-

duction analysis. Generically a non-vanishing θ-term in the effective action modifies

Maxwell’s equations into so-called axion electrodynamics[22]. There are many strik-

ing physical consequences of this modification which are detailed in Chapter 6 and I



2.3. TOPOLOGICAL INSULATOR FAMILIES 35

will defer the discussion until then.

2.3.3 Dimensional Reduction to (2 + 1)-d

We can perform dimensional reduction one more time to get a (2+1)-d TRI topological

insulator. Before, we understood the stability of the state by examining the boundary

theory. Here the edge Hamiltonian reduces to

Hedge = pyσ
x (2.80)

to which we could add two mass terms myσ
y + mzσ

z. However, simply requiring

time-reversal symmetry forbids both terms and we a left with a Z2 stable phase.

To properly perform the dimensional reduction we have to add another adiabatic

parameter φ(x, t). The bulk 2d Hamiltonian now depends on the two parameters θ, φ.

The topological response current of this system is non-trivial to derive (see Chapter

6), but simple to state:

jµ =
1

2π
εµνρ∂νΩρ (2.81)

where Ωρ is an effective Berry’s phase gauge potential which depends on the inhomo-

geneous parameters θ, φ. This equation is identical to a quantum Hall response, but

with real magnetic flux replaced by the Berry’s phase flux. The response means that

wherever we have a Berry’s phase flux we have a charge. Ways to setup non-zero

Berry’s phase flux are given in Chapters 5 and 6. For example, if we take the edge

of our system, which represents a domain-wall in θ, and then add a magnetic domain

wall on the edge, which indicates a domain-wall of φ this will induce a charge at the

intersection of the θ and φ domain walls. If we calculated the flux of Ωµ we would

find a non-zero flux located at the domain-wall intersection. This turns out to be

one of the defining physical characteristics of the QSHE or (2 + 1)-d TRI topological

insulator mentioned earlier.
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2.3.4 Dimensional Reduction to (1 + 1)-d

If we try to reduce the dimension again to get a TRI (1 + 1)-d topological insulator

we run into a problem. It turns out that there are no stable TRI topological insulator

phases in (1 + 1)-d, but at first it was unclear where the problem arises. There is a

topological reason for this which is discussed in Chapter 6, but there is also a physical

argument dealing with the edge states which clearly illustrates the issue.

The easiest family in which to see this problem is the insulator family starting in

(6 + 1)-d. The boundary theory of this topological insulator is a chiral fermion in

(5 + 1)-d with Hamiltonian

H =
5∑

a=1

paΓ
a (2.82)

where the Γa are 4 × 4 matrices satisfying the Clifford algebra anti-commutation

relation. Unlike the lower dimensional case there are other non-trivial perturbations

we could add to the Hamiltonian. The space of 4×4 Hermitian matrices has 16 basis

elements: the identity 1, the 5 Γa matrices, and the 10 Γab = iΓaΓb matrices with

a < b. To destabilize a topological phase we must be able to open a gap in the edge

state spectrum. The degenerate crossing point for the chiral fermion spectrum is at

p = 0 so only the perturbations that lift the degeneracy here can cause problems. The

identity matrix will not lift the degeneracy and neither will adding a constant mass

term multiplying one of the Γa. It turns out that adding Γab mass terms also does not

lift the degeneracy, so the chiral fermion is stable. As an example we pick m12Γ
12.

The Γ12 term commutes with Γ3, Γ4, and Γ5. Near the origin in momentum space the

effect of m12Γ
12 is simply to shift the degenerate crossing point in momentum space,

leaving the spectrum gapless. This is due to the commutation property mentioned

above. Any Γab we pick commutes with part of the Hamiltonian, and thus, only shifts

the degenerate point.

Now we can consider the boundary fermion theories of the dimensionally reduced

insulators. We begin with the boundary of a (5 + 1)-d descendant which will have a
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Hamiltonian

H =
4∑

a=1

paΓ
a. (2.83)

The identity and Γab have the same affect as the higher dimensional case since for

each Γab there is a term in the Hamiltonian with which it commutes. However, now

we are free to add a term m5Γ
5 which anticommutes with H and will open a mass gap.

We know how to fix this problem: we require a discrete symmetry that forbids this

mass term. For this family the symmetry is a pseudo-charge conjugation symmetry

C̃ with the property that C̃2 = −1 which is different from the conventional form

C2 = +1. This symmetry is explicitly constructed to forbid mΓ5. If we go down

one more dimension everything stays the same, and due to our construction, C̃ also

forbids the m4Γ
4 term.

As discussed earlier, this should be the limit and we should run into a problem

if we reduce once more. Here we would get a (3 + 1)-d insulator with a (2 + 1)-d

boundary Hamiltonian

H =
2∑

a=1

paΓ
a = p1Γ

1 + p2Γ
2. (2.84)

We can immediately see the origin of the problem from the boundary state picture.

Namely, we can now pick a special Γab i.e. Γ12 which anti-commutes with all of H.

Thus this mass term can open a gap in the boundary states. It also does so without

breaking the C̃ symmetry and we can connect this state to a trivial insulator state.

2.3.5 Summary

We have seen several examples of topological insulator families and the progression

from an integer invariant to Z2 invariants. Each insulator class has its own unique

topological response and holographic liquid on its boundary. The chain of stable topo-

logical insulators ends, however, after the second dimensional reduction. The different

families are characterized by their spacetime dimension and the discrete symmetry
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which protects the boundary states from perturbations opening a gap. The type of

required symmetry repeats every 8 dimensions and hints at the deep mathematical

structure underlying the classification of the topological insulator phases.




