Surfaces & Interfaces (II) [Millis]

- We shall consider explicitly superlattice of perovskite \(\text{ABO}_3 \)
 \- perovskite: \(A \) sits on corner of cubic lattice
 \- \(B \) sits on center of cubic lattice
 \- \(O \) sits on the faces of cubic lattice
- We shall assume \(B \) transition metal, \& \(A = \text{La, Sr, ...} \)
- The general superlattice is \(\text{001} \) (along cubic axes)
 - Homometallic: "\(A \)" changes, "\(B \)" stays the same
 - e.g. \(\text{LaTiO}_3 / \text{SrTiO}_3 \)
 - Heterometallic: "\(B \)" changes ("\(A \)" may or may not change)
 - case A: hard wall, e.g.
 - case B: different correlated material, e.g. \(\text{LaMnO}_3 / \text{YBa}_2\text{Cu}_2\text{O}_7 \)

- Fabrication methods (all variation on film)
 \- Oxide epitaxy
 \- MBE
 \- Pulsed Laser Deposition

- Image can be obtain because different atoms have different cross sections.
 \- But reality is often less "clean & clean" than the image suggests.

- Consider
 \[2^+ \ 3^+ \ 3^+ \ 3^+ \ 2^+ \ 2^+ \ 2^+ \]
 \[\text{Sr} \ \text{La} \ \text{La} \ \text{Sr} \ \text{Sr} \ \text{Sr} \ \text{...} \]
 \[\text{Ti} \ \text{...} \]
 \[\text{naive:} \ 0.5 \ 1 \ 1 \ 0.5 \ 0 \ 0 \ 0 \]

- \(\text{LaTiO}_3 \) is Mott insulator, \(\text{SrTiO}_3 \) is band insulator
The charge distribution can be measured by TEM/EELS. Look for inelastic processes, in particular.

\[\text{Ti: } 2p \rightarrow 3d \]

The Ti state with (say) +0.5 charge can be decomposed into superposition of +0 & +1 charge (not clear why it is just superposition).

Result: LA

One can also measure longitudinal Hall resistance to find carrier density.

Get \(\frac{2}{3} \) carrier per LA naively. Still close to \(\sim 1 \) as expected.

Now it is also possible to do optical measurement (drude peak).

In above TEM can truly resolve individual layers, while Hall probe/optical measure involve averaging between layers.

Magnetization can be seen at interface.

Consider LaMnO\(_3\)/YBa\(_2\)Cu\(_3\)O\(_7\).

Orbital occupation can be measured using polarized light.

| Bulk: holes found in \(|x^2-y^2| \) state |
| Interface: holes found ALSO in \(13z^2-r^2 \) state |
Consider electrostatics of these superlattices.

Most ABO$_3$ perovskites are polar \Rightarrow charges build up at termination of interface.

\[\text{e.g. } \text{LaAlO}_3 \quad \text{Al} - O - \text{Al} + 1 \]

\[\text{La} - O - \text{Al} + 1 \]

Intuitively, this is why, from a material science perspective, for thicker polar layer in superlattice, quality of interface reduces.

To cure, introduce dipole layer at the end: \(C: \frac{1}{2} -1 +1 \ldots -1 +1 -\frac{1}{2} \)

This is why electron microscopy is hard to do in these materials, since the interface adjusts itself to produce the desired polar charge.

Sawatzky's insight is that in superlattice, the $\pm \frac{1}{2}$ charge layer can be obtained by having an 2D e^- gas in the interface (hence interface \Rightarrow more metallic)

Question: Do we have ion transfer or e^- transfer?

For $\text{SrTiO}_3/\text{LaAlO}_3$, we have p-type $\&$ n-type

\[\begin{array}{c}
\text{p-type:} & \text{Ti} & \text{Sr} & \text{Al} & \text{La} \\
\text{n-type:} & \text{Sr} & \text{Ti} & \text{La} & \text{Al}
\end{array} \]

For n-type find $-0.6 \, e^-$ & ~ 0.15 O vacancy

For p-type find $0 \, e^-$ & ~ 0.3 O vacancy

\Rightarrow for some reason the material does not want to dope interface with holes.

Hetrometaltlic interface is less sharp than homometaltlic.

For $\text{LaAlO}_3/\text{SrTiO}_3$, the interface goes superconducting, but mobile carriers ~ 0.1 per cell.

Similarly, Hall measurement shows fewer mobile carriers.
SrTiO₃ is a bulk SC, but can only support few carriers.

Matching \(\Rightarrow \) can get interface SC up to 16 layers.

Consider \(LaAlO_3/SrTiO_3 \)

\[
E_p = n\Delta + \frac{1}{2} E_{comp} n^2 \sim e^2/\epsilon
\]

At the other surface, we need surface charge \(n_{surf} \) to make surface dipole cancel \(\Delta n \)

Combining,

\[
E = n\Delta + \frac{1}{2} E_{comp} n^2 - N E_p (1-2n)n + \frac{1}{2} E_p \left[N(1-2n)^2 \right] \]

\[
\Rightarrow \quad n_{cell} = \left(\frac{N E_p + 2 N^2 E_{D} - \Delta}{E_{comp} + 4 N E_p + 4 N^2 E_{D}} \right)
\]

In experiment,

Classically,

\[
E = \Delta \sum_j n_j + \frac{1}{2} E_p \sum_j n_j^2 + \frac{2\pi e^2}{\epsilon c} \sum_{j \neq k} n_j n_k |j-k|
\]

Putting all \(n \) in \(0^{th} \) layer, \(E = n\Delta + \frac{1}{2} E_p n^2 \)

If we have \(n=5 \) in layer 0, \& \(\delta \) in layer 1

\[
\Delta E = \delta (E_p - E_0) n + O(\delta^2)
\]

Thus only delocalized charge \(\delta \) \(E_0 \) \(E_p \) [hard!]

We've neglected e-hopping which will produce the desired charge spreading.