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Transport theory of mesoscopic systems with 
applications to disordered and chaotic systems
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What is a mesoscopic system?
A system where certain size-dependent 
energy scales are greater than thermal 
energy scales, which are still much 
larger than 1-particle level spacings

Not an absolute size, T-dependent size scale (1 µm typical)

Not related to discreteness of energy levels (micro-system)
Quantum dot can be exception

Second meaning: engineered micro and nanostructures
New regimes available



L
Thermal energy/time scales?

kBT, h/τφ∝(kBT)α

Ballistic limit: 
Transport energy/time scales:

• τerg = L/vf (Eerg = hvf/L = 1d level spacing >> ∆ε)

• τesc = L/(vf p1)   (p1 = escape prob/bounce)
open system: p1 > 1/(kfL)d-1 ≈ Nc => Eesc ≥ ∆ε

Diffusive limit: l < L

• τerg = L2/D  => ETh = hD/L2 (Thouless energy)

• τesc = L2/Dp1 => Eesc = p1ETh
(often assume p1 ≈ 1, Eesc ≈ Eth) 

g = Eerg/ ∆ε = dimensionless “conductance” - only the 
true conductance when Eesc ≈ Eerg



Interaction energy/time scale

L
Charging energy, Ec= e2/C, τc = RQC

C ∝ 1/L2

When Eerg, Ec > kT, h/τφ => characteristic mesoscopic phenomena:

Will focus on coherence and fluctuations



The Mesoscopic Fermi Gas
If all µi are not equal current 
flows between N reservoirsLandauer-Buttiker “Octopus”
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Mesoscopic system connected by perfect leads to phase-randomizing, 
thermal equilibrium non-interacting fermion reservoirs at µ1, T1, µ2, T2…
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Landauer counting argument (1d):
(two reservoirs)

µ1 ,T1=0
µ2 ,T2=0

µ1 - µ2 = eV

Generalizations: G = (e2/h) T per 
incident degree of freedom, i.e. 
transverse channels, spin …
cancellation of velocity and DOS 
relies only on trans. invar.  in leads

Two-probe Landauer Formula

(Two-probe, T=0)



Two-probe, Temperature Θ ≠0

S

µ1 , Θ1
µ2 ,Θ2

Assume Θ1=Θ2=Θ

Many-channel case:
r11 -> r11,ab , t21 -> t21,ab

a,b = 1,2…N If Θ1 ≠ Θ2 can calculate thermoelectric 
coefficients in terms of S-matrix



Final Generalization: NL leads
Im

Vn

• Gmn are conductance coefficients, necessary to describe 4-probe 
measurements, Hall resistance measurements

• Unitarity of S-matrix implies Kirchoff’s Laws in general

• Gmn = Gnm only if B=0 or if only two probes, general TR 
symmetry of S-matrix implies Gmn(B) = Gnm(-B) only.

• leads to van der Pauw reciprocity relations

•Properties of mesoscopic conductance: violates macrosymmetries, 
depends on measurement geometry, non-local (see Les Houches)

• If Tmn are integers then resistance is quantized to h/qe2, q=integer
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• Universal conductance fluctuations, sample-specific reproducible 
“noise” as fcn of B

• Looks like a longitudinal resistance measurement but G(B) ≠ G(-B)



Making a quantum model for the LB counting argument

Non - interacting fermions at T=0, state is a Slater det or Fock
state of single-particle fermion states - what are the sp states?

x
n

y
n φa (y) = channel wavefunction, normalized to unit 

flux => unitary S-matrix, ψ = orthonormal basis

• Linear response: fill up these states to common εf and calculate current response 
to linear order in potential {Vn} imposed on leads - see Les Houches Notes

• Mesoscopic fermi gas: fill each scattering state to appropriate µn and calculate 
the currents Im which flow in this states - see Buttiker, PRB, 46, 12485 (1992)

Drop channel indices, treat as 1D



Expectation Value 
at T=0 and T≠ 0

Expectation values < c†c c†c>, < c†c c†c c†c >, given by Wick’s 
Thm, can calculate correlations and fluctuations in term of S-matrix; 
note presence of µn, this is not an equilibrium state.

Imn

LB equations!



Current noise in mesoscopic fermi gas

Noise power spectrum

Need OD 
current 
matrix 
element



Simplify: 2-probe

“direct” contraction cancels with <Im>, leaving “exchange”

t,r1 2 m =1

=> r* t t*r = RT=T(1-T)T=0, µ1= µ2 + eV, A12 A21 only

P1(ω→0) = (2e2/h) T(1-T)eV ∆ν Mesoscopic shot noise



Many-channel:

Weak transmission:

Tunneling shot noise

Temp  Θ ≠ 0, V=0 => fn(1-fn) ≠ 0 , 

Johnson Noise

Cross-over function


