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The cortex is a noisy system. Spikes emitted in response to repeated 
stimuli are often stochastic, with a Fano factor close to 1 (ref. 1), and 
synaptic activation is probabilistic2. Noise may be advantageous in 
certain learning contexts3–5. However, if the aim is to perform accurate 
representation and computation, noise can be a serious impediment, 
an especially severe one if the computation to be performed is recur-
sive (Supplementary Fig. 1). In such cases, noise in every time step 
can accrue and propagate. If the variable being computed is bounded, 
the noise will swamp the computation, rendering it useless. Integration 
is one common example of a recursive computation; the state of the 
integrated variable must be held faithfully in time and incremented in 
response to inputs. If the duration of integration is long, accumulating 
errors can easily exceed the integrated size of the variable.

Population codes, many neurons collectively encoding a given 
variable, permit a more faithful representation than a single neuron 
can. However, the population codes commonly found in sensory, 
motor and some cognitive areas6–10 enable only weak improvement 
in coding an analog variable as a function of neuron number (N): 
the squared error declines at best as 1/N (or as 1/N2, if the tuning 
curve widths shrink as 1/N, which is optimal)11–16. We refer to all 
population codes with such a polynomial scaling of inverse squared 
error with N as classical population codes (CPCs). CPCs are a broad 
category: populations in which the tuning curves for all neurons are 
smooth and identical up to translation, including unimodal tuning 
curves, monotonic tuning curves or even periodic tuning curves with 
a single period17, are all CPCs. CPCs also include some populations 
with unimodal tuning curves that differ by both translations and scal-
ings (see Supplementary Results, section 4).

Furthermore, the weak accuracy gains with neuron number in 
CPCs are obtained through the inefficient use of neural redundancy. 
To quantify the efficiency of a redundant code, we define the infor-
mation rate ρ ∈[0,1] as the ratio of the number of information bits 
divided by the total number of conveyed bits18. In CPCs, the mutual 

information between the code and signal scales as ~logN. (In such 
codes, the mutual information for large N scales as the log of the Fisher 
information J (ref. 15), which itself scales as ~N (ref. 11)). However, 
the total number of conveyed bits per time step scales as ~N. Thus, 
the information rate ρ of CPCs scales as ~ logN / N, which approaches 
zero for large N. In summary, CPCs can attain asymptotically zero 
error, but at the cost of an asymptotically zero information rate.

In this sense, CPCs are similar to the naive repetition code (for 
discrete variables). Consider the problem of representing a single bit, 
if each encoding bit has a probability p < 0.5 of flipping. If the same bit 
is encoded N times, for example, and decoding is by majority vote, the 
repetition code produces errors with a probability of ~pN. But ρ = 1/N 
tends to zero asymptotically with N. For both the CPC and repetition 
code, declining error (magnitude or probability, respectively) comes 
at the price of asymptotically zero information rate.

Is it possible to do qualitatively better? Until 1948, this was believed 
to be impossible. Then Shannon’s Fundamental Theorem revealed 
that, astonishingly, there exist codes that, for discrete variables, allow 
asymptotically zero error probability at asymptotically nonzero infor-
mation rates19. For analog variables, a ‘good’ code in this Shannon 
sense can produce exponentially small error at asymptotically finite 
information rates18,20.

But does the brain contain good codes (Fig. 1a)? We analyzed the 
peculiar encoding of location in grid cells and found that estimation 
error divided by the coding range goes to zero at an asymptotically 
finite information rate, unlike in CPCs. Moreover, the error divided by 
range decreases exponentially with neuron number, rather than poly-
nomially, as is seen with CPCs. The leap in performance of the grid 
code over CPCs parallels, for analog variables, the leap in perform-
ance from repetition-type codes to modern codes following Shannon’s 
Fundamental Theorem. Thus, the grid code helps to define a class 
of neural population codes that we refer to as exponentially strong 
population codes (EPCs).
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Grid cells generate an analog error-correcting code for 
singularly precise neural computation
Sameet Sreenivasan1,2 & Ila Fiete1

Entorhinal grid cells in mammals fire as a function of animal location, with spatially periodic response patterns. This nonlocal 
periodic representation of location, a local variable, is unlike other neural codes. There is no theoretical explanation for why 
such a code should exist. We examined how accurately the grid code with noisy neurons allows an ideal observer to estimate 
location and found this code to be a previously unknown type of population code with unprecedented robustness to noise. In 
particular, the representational accuracy attained by grid cells over the coding range was in a qualitatively different class from 
what is possible with observed sensory and motor population codes. We found that a simple neural network can effectively correct 
the grid code. To the best of our knowledge, these results are the first demonstration that the brain contains, and may exploit, 
powerful error-correcting codes for analog variables.
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RESULTS
The observed grid code for animal location: formalization
Grid cells are thought to be the neural substrates for path integra-
tion, or estimating changing location on the basis of self-motion 
cues21–24. Each cell fires as a function of the animal’s location in 
two-dimensional space, with a firing peak arranged on every ver-
tex of a regular triangular lattice that tiles the explored space (one-
dimensional schematic in Fig. 1b). Cells with a common spatial 
period also share a common grid orientation; their responses differ 
only by spatial translations, or different preferred firing phases, with 
respect to their common response period (Fig. 1b). We refer to these  
cells as belonging to one grid network. The entire activity pattern 
in one grid network specifies (two-dimensional) location only as 
a (two-dimensional) spatial phase. The network response cannot 
distinguish locations separated by integer multiples of the spatial  
period along the primary grid axes25 (Fig. 1b). We limit what fol-
lows to one dimension; animal location x varies along a line in space  
and each cell’s tuning curve is a periodic one-dimensional spatial 
pattern (the results generalize to two dimensions; Supplementary 
Results, section 13).

If network activity were a perfect reflection of location x, rendered 
as a spatial phase with respect to period λα, it would provide the fol-
lowing information about location25:

f
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where fa ∈[ , )0 1  is the true phase associated with location x and 
period λα. In actuality, there is error in what the grid network  
conveys about x. The readout error (xa

R t( ), a zero-mean Gaussian 
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noise) reflects the uncertainty inherent in deducing network phase 
from a finite number of neural spikes11–16,26. The integration error  
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I t( )′  is zero-mean Gaussian, t is 
the instantaneous time, and t = 0 marks the beginning of velocity 
integration starting at a known location) reflects the mismatch between 
true animal location x(t) and the phase-encoded location estimate in the 
grid network. The mismatch arises if the network’s estimate derives from 
noisy neural integration of animal velocity. As in any neural integra-
tor24,27–29, the integration error is cumulative over time even if the velo
city signal is error-free. Thus, the spatial data in each grid network is
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In what follows, the theoretical analysis is, for convenience, based 
on this network phase, whereas numerical results are based on the 
multi-peaked spatial firing rate vectors of all cells (Online Methods). 
Both quantities convey the same information about x.

The entorhinal cortex contains multiple grid networks, with  
different response periods21,30. Assuming N networks with periods 
λ1, …, λN, the grid population code (GPC) is defined as the vector 
of N spatial phases25 

f f f


( , ) ( ( , ), , ( , ))x t x t x tN= …1

Although the different periods are distinct, they span only a decade  
in scale (ranging from ~0.3–3 m)21,30 and are very small com-
pared with the typical distances (100–1,000 m) a rat covers while  
foraging over a day. In this sense, the periods share roughly the same 
size magnitude, which we refer to as λ.
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Figure 1  Coding for location: GPC and CPCs. 
(a) The general problem of (noisy channel) 
coding. A variable x is represented in some 
way, as 


f( )x , but the representation is subject 

to noise with a given distribution. The problem 
is to find efficient representations that allow 
an ideal observer to most accurately estimate x.  
(b) Top, schematic spatial tuning curves of 
three grid cells (light gray, gray and black)  
with identical response periods (λα) and 
different preferred phases (fi

*). Bottom, 
current animal location. Right, the 
instantaneous error-free firing rates of all  
grid cells in one network, arranged by  
preferred phase, encode current animal 
location as an instantaneous network phase; 
the error-free instantaneous network phase  
is fa ( ( )) /x t = 3 4. (c) Top, N independent  
M-neuron networks, encoding N instantaneous 
phases. Each phase has ~M coding states. 
Together, the networks provide ~MN coding 
states. Bottom, one CPC network of NM 
neurons, with unimodal tuning curves, encodes 
location as a single phase with a resolution of 
~NM states. (d) Firing rates of three random 
cells, from the CPC network (bottom) or from 
three different grid networks (top),  
as x is varied. (e) Sample of (ideally)  
decoded locations obtained from the slightly 
perturbed phases 

  
f f x= +( )x0  for the GPC 

(black) and CPC (green), for true location x0. 
Noise 


x (inset) is Gaussian. RCPC = R = 90,090 cm, N = 5, σα = 0.04, l


 = {10, 14, 18, 22, 26} cm. Parameters are common to e and f. (f) Data are  

generated as in c, but encoding and decoding are restricted to an interval of size Rl <<R around x0.  RCPC = Rl = 500 cm.
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The GPC for animal locations in a large foraging range, as defined 
by the phases of equations (2) and (3), is analogous to encoding the 
time of day with a set of several short-period clocks (for example, 
with 2–20 min periods), instead of with a single clock. For com-
parison, a place cell–like CPC with unimodal tuning curves over  
the foraging range is similar to one 24-h clock (Online Methods and 
Table 1). Frequently, over the course of the day, the hand of every 
clock is jittered around its present value, with standard deviation a 
fixed fraction of that clock’s period. Is there any possible advantage to  
representing time with multiple clocks?

Range grows exponentially with neuron number
A CPC, and, in particular, each grid network individually, can uniquely 
represent linearly larger ranges at the same absolute resolution, with 
linearly more neurons (Fig. 1c). However, the combined GPC with all 
phases can uniquely represent exponentially larger ranges with linearly 
more neurons at constant absolute resolution (fixed tuning curve width 
and density of tuning curve centers)25. Intuitively, as x is varied, the 
phases in different networks vary at different rates (~x/λα; Fig. 1c). If 
the ratios of the periods are not small rational numbers, the total phase 
vector of equation (3) will run through a vast combination of phase 
components over a large range of x before getting close to overlapping a 
previously visited state, resulting in dense coverage of the volume of the 
space of possible neural firing rates (Fig. 1d). In contrast, a CPC defines 
a single phase that traces a very sparse loop through the space of neural 
rates as x is varied. This space-filling intuition for the GPC versus 
the CPC is the same whether we plot the neural firing rates (Fig. 1d)  
or the more abstract location phases (data not shown).

Formally, the range R of locations possessing a unique GPC repre-
sentation at fixed absolute resolution is exponentially large25:

R e
N

N∼ l f
f

l l
g

b∆
∆
1





= >>

∆φ is the finest discriminable phase difference in each network (this 
is the inverse resolution), and γ  1 depends on the specific choice 
and spacing of the periods λα

25. N is the number of networks and is 
linearly proportional to the total neuron number (Table 1). For N >> 1  
and 1/∆φ > e, it follows that β > γ. For conservative choices of N and 
∆φ, the range of locations represented by the GPC exceeds 105 km25.

Extreme noise sensitivity
However, this high-range GPC is pathologically sensitive to noise. 
Consider 


f  (equation (2)) instead of 


f  (equation (1)), with a total 

phase noise variance of sa
2  per GPC network (and sa

2 / N  in the 
CPC; see Online Methods and Table 1). Very small phase noise in the 
GPC results in massive, nonlocal errors in (ideally) decoded location 

(4)(4)

(Fig. 1e). In this typical sample of the posterior location distribution 
given the noisy phases, errors are vast, of size ~R. In contrast, small 
noise in CPC phase produces local and relatively small location errors 
(Fig. 1e). When comparing the GPC and the CPC, we always used 
the same coding range for location x, encoded using the same total  
neuron number and the same single-neuron noise (Online Methods 
and Table 1). The CPC allows superior position estimation compared 
with the massive errors obtained using the GPC (Fig. 1e). Thus, the 
GPC’s noise sensitivity appears to be an intolerable fault. In what  
follows, we show that the GPC’s exponentially large represent-
able range and, counterintuitively, extreme noise sensitivity enables 
extraordinarily precise location estimation.

Extraordinary noise robustness over reduced coding range
Suppose that, over its lifetime, an animal only covers a subrange [0, Rl]  
of the representable range. Rl is assumed to satisfy R Rl <<  and Rl >> l,  
and can be very large given the vastness of R. Let the ideal decoder of 
the noisy GPC be similarly constrained; given the phase, it picks the 
most likely location interpretation from [0, Rl] instead of from [0, R)  
as described above. The absolute error in both the GPC and CPC 
improved when the coding range was reduced, as we observed in the 
posterior sampling of estimated locations (Fig. 1f). The CPC peak 
shrank in width by the large factor (Rl/R)2. 

However, the GPC then grossly outperformed the CPC. The noisy 
GPC phases that formerly mapped to scattered peaks (Fig. 1f) mapped 
onto a single peak when decoded. This peak was centered at the true 
location and was much narrower than the CPC peak (Fig. 1f).

Abstract structure of the GPC: how it suppresses noise
Noise sensitivity over the representable range and robustness over 
reduced ranges result from two complementary features of the map-
ping between location and GPC phase. Suppose that locations are dis-
crete (for example, separated by ∆x = λ/6). Extreme noise sensitivity  
(Fig. 1c) results from the fact that neighboring points in the space 
of GPC phases correspond to very separated locations (Fig. 2a); if a 
phase is perturbed to a neighboring point in phase space by noise, 
the distance between true location and the location represented by 
the perturbed phase is large.

A complementary feature of the GPC location-phase mapping is that 
nearby locations map to very separated phases (Fig. 2b). For example, 
translating location x by the modest displacement l / ,2 << R Rl corres
ponds to a phase change of ( / , / ,..., / )l l l l l l2 2 21 2 N . Because each 
l la ≈  in size, this is a change of ~1/2 in each phase component. The 
slightly translated location thus maps to a point maximally far in phase 
space from the point to which x mapped. Indeed, all locations in any 
subinterval of length R Rl << , as a result of their relative proximity to  
each other, map to mutually well-separated points in phase space (Fig. 2c).  
We refer to Rl as the legitimate range for location and the corresponding 
noise-free GPC phases as the codewords.

This dual near-to-far mapping from locations to phases and phases 
to locations creates the code’s interleaving structure: each codeword 
is surrounded by, and separated from, all of the other codewords by a 
cushion of phase space corresponding to illegitimate locations (Fig. 2c).  
For any R Rl << , the separation between codewords is finite, with a 
minimum pair-wise distance of d R Rlmin( , ) > 0 between codewords 
(Fig. 2c). It follows that any noise of amplitude smaller than dmin/2 is 
exactly correctable simply by mapping the perturbed representation 
to the nearest codeword. Thus, finite minimum distance is an impor-
tant characteristic of certain strong error-correcting codes.

This code’s information rate is r = log( / )/ log( / )R x R xl ∆ ∆ . 
Equivalently, any choice of information rate dictates the legitimate  

Table 1  Comparable setups for encoding by the GPC and CPC
GPC CPC

Number of networks N 1
Neurons per network M NM
Total neuron number NM NM
Coding range R or Rl  RCPC = R or Rl
Spatial response period  
per network

λα (<<Rl ,R) RCPC

Noiseless (true) phase  
per network

f la a= ( / )mod1x  f
CPC CPC= ( / )mod1x R

Number of response peaks  
over range Rl ,RCPC = Rl

Rl /λα in αth network 1

Total phase noise variance  
per network

sa
2 s saCPC

2 = 2 /N
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location range, ( / ) ( / )R x R xl ∆ ∆= r. The minimum distance, and thus the 
maximal correctible error, both increase with decreasing information 
rate. This discrete GPC location code operating at information rate < 1  
enables exact correction of any noise smaller than the corresponding 
minimum distance.

However, location and the spatial phases represented by the GPC 
are continuous variables. The basic principles underlying error control  
remain similar to those from the discrete case (see below), and,  
although error correction cannot be exact for analog variables, it is 
exponentially strong.

As x increases continuously from a starting value, the GPC phase 
vector (equation (1)) traces a continuous line that wraps around phase 
space. A component of the phase vector wraps once, whenever x has 
moved by the corresponding network period, causing the phase vector 
to exit one side of the phase cube and re-enter at the opposite side. Thus, 
the continuous phase vector line rendered in the phase cube looks like 
a set of parallel line segments (Fig. 2d), each representing an interval of 
locations of length ~λ. After x has traversed a distance R, the phase space 
volume is fully covered, once over, by the phase coding line, assuming 
the coding line has thickness ∆φ (equation (4); this defines R)25.

As in the discrete case, the continuous GPC possesses an interleaving 
phase-space structure. Initially, as x moves from a starting value, the 
coding phase vector warps, re-emerging maximally far from existing 
segments. All coding segments for any small subinterval of length L,  
λ << L << R are very well-separated and coarsely, but evenly, encircle 
phase space. As x increases further, the additional phase line segments 
fall in between the existing ones. As x increases further still, the new 
phase line segments again fall in between the preceding sets, inter-
leaved with them, and so on. As a result, neighboring phase segments 
correspond to remote locations (noise sensitivity). Relatively nearby 
locations (separated by >λ) are represented by phase line segments 
that are disperse. For any legitimate range Rl << R, the codewords are 
now the corresponding continuous phase line segments. Again, there 
is a notion of minimum distance dmin(R, Rl) > 0: the smallest perpen-
dicular distance between all pairs of coding line segments (Fig. 2d). 
This code’s information rate is ρ = log(Rl / λ∆φ)/log(R / λ∆φ).

If any codeword is perturbed by noise < dmin/2, then assigning the 
perturbed phase to its nearest codeword is guaranteed to place it some-
where on the true coding line segment (Fig. 2d). This corrected phase 
may not be exactly the true phase (Fig. 2d), but, given that each phase 
segment represents a distance of ~λ (because of phase wrapping),  

the absolute error in location estimation is smaller than ~λ. This 
remains true for any Rl (for phase noise < dmin (R, Rl)/2). Thus, for 
any Rl >> λ, it follows that the fractional error, that is, the ratio of the 
absolute error divided by the coding range Rl, is small and becomes 
smaller as Rl becomes larger.

More precisely, we computed the fractional error as follows. A  
random phase noise vector of length a (assume a < dmin/2), projected 
onto one dimension (here, onto the correct one-dimensional coding 
phase segment), typically has length a N/  (Fig. 2d). Any two phases 
on a single phase segment, separated by b in phase, represent real-
space locations separated by ~λb (on a single segment, phase distance 
is real-space distance divided by period). Thus, the fractional error in 
location estimation from the largest correctible noise is 

errorGPC( )
~ ~

x
R

a
N R

a
N

e
l l

Nl rb−

where errorGPC(x) is the root mean square error in estimating loca-
tion. To obtain the last scaling, we combined equation (4) and the 

(5)(5)
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Figure 2  Error correction and the structure of the GPC location-phase map. 
Left, real space. Right, phase space. Phase space is an N-dimensional cube 
of with sides of length 1 and periodic boundary conditions. (a) Near-to-far 
mapping from phase to locations. A location (blue) maps to a point (blue) 
in phase space, but neighboring phases (gray) map to locations very distant 
from the original location. (b) Near-to-far mapping from locations to phase. 
Two nearby locations (light blue, blue) separated by about λ/2 map to distant 
phases (halfway across the cube is maximally distant because of the cube’s 
periodic boundaries). (c) Minimum distance property. Discrete locations in a  
small interval Rl  << R all map to well-separated points in phase (codewords),  
with minimum distance dmin between them. (d) Continuous locations x are 
represented by a continuous coding line wrapping around phase space. With 
phase space rendered as an N-dimensional cube with periodic boundaries, 
the line looks like separate segments. The segments for any location in  
Rl << R are well-spaced, with a finite minimum perpendicular distance 
dmin. Inset, true phase (white dot), the perturbing noise vector (red) and the 
corrected phase (tip of black arrow) are shown. After correction, the residual 
phase error (black double-headed arrow) is along the true coding line. GPC 
location error is approximately this residual error times λ. (e) The CPC. 
The phase error was smaller by a factor of 1/N than the length of the GPC 
perturbing vector. Total CPC location error is this phase error times Rl.
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information rate definition. For any coding range choice Rl >> λ, the 
fractional error of the grid code is very small, suppressed by the factor 
λ/Rl. The bigger the Rl, or equivalently, the smaller the scale λ of the 
grid periods relative to Rl, the smaller the fractional error of the GPC. 
At a fixed information rate, the fractional error vanishes exponentially 
strongly (equivalently, the inverse fractional error or dynamic range 
of the code, grows exponentially) as N is increased.

We then fairly compared a phase noise vector of length a in the 
GPC with a smaller noise of amplitude a/N in the CPC phase (Online 
Methods and Table 1). However, this phase error in the CPC pro-
duces a large absolute location error (root mean square error), given 
by errorCPC( ) /x R a Nl∼  (the scaling with Rl arises because CPC phase 
is simply x divided by the coding range; Fig. 2e). Compare an absolute 
location error of ~ la N/  for the GPC (above). The fractional location 
error of the CPC is 

errorCPC( )
~

x
R

a
Nl

The ratio of (both fractional and absolute) GPC to CPC location 
errors over a range R1 with identical encoding constraints is given by 
equations (5) and (6): 

error
error

GPC
CPC

( )
( )
x
x

N
R

Ne
l

N∼ ∼
l rb−

In other words, over any fixed coding range Rl >> λ, the GPC greatly out
performs the CPC (first scaling relationship of equation (7)). Furthermore, 
over equal coding ranges, the GPC outperforms the CPC exponen-
tially strongly with N as N is increased at a fixed GPC information rate  
(second scaling relationship of equation (7)). The square of the error ratio 
of equation (7) gives the ratio of rates at which the squared integration 
error grows during a trajectory for the GPC versus the CPC. 

In the clocks analogy, multiple short-period noisy clocks, properly 
decoded, can be used to tell time over a day with far greater precision 
than a corresponding 24-h noisy clock.

Maximal correctible error and numerical validation
Characteristic of strong error-correcting codes, and in contrast with 
CPCs, errors in the GPC below a threshold (dmin/2) can be strongly 
suppressed, but above the threshold, practically no information can 
be recovered (Fig. 3a). What sets this threshold? If Rl = R, then the 

(6)(6)

(7)(7)

information rate is 1 (no redundancy) and no error correction is pos-
sible, suggesting that dmin (R, Rl) = 0. As ρ → 0 (for example, Rl → 0 
for fixed R, or R →  for fixed Rl), coding redundancy increases 
and the threshold increases (larger errors are correctible) (Fig. 3b).  
We then derived analytically (Supplementary Results, section 7) and 
verified numerically (Fig. 3c) that, if Rl is held fixed as N (and thus R)  
increases, then dmin increases as N . Thus, for any given noise ampli-
tude and fixed Rl, it is possible to essentially avoid coding failure with 
sufficiently large N (enough distinct grid periods).

Alternatively, if ρ is held fixed as N increases, then dmin remains 
constant while R and Rl increase exponentially with N (data not 
shown). The same noise can then be corrected to obtain the same 
absolute location error over exponentially larger coding ranges Rl. 
Thus, the fractional error of the GPC decreases exponentially with N 
for fixed maximal noise amplitude. 

Finally, we verified numerically that, with phase noise < dmin / 2, 
the ratio of location error from the GPC and CPC over equal  
coding ranges decreased exponentially with N (Fig. 3d), as predicted  
in equation (7).

Fisher information
Fisher information, a local measure of inverse least mean squared 
error, is commonly used to study population codes11–16,31. Thus, it is 
useful to also understand using Fisher information why the GPC out
performs the CPC (derivation in Supplementary Results, section 4),  
even if, in contrast with the geometric derivation already given, it 
cannot explain global features of the code, including the identifiability 
of coded location over exponentially large ranges, or when the code 
breaks down, or why. Fisher information grows with the steepness of 
neural tuning curves. In a unimodal CPC with fixed neuron number, 
inverse Fisher information increases as the coding range squared, as 
the tuning curves must become broader to cover the range. In each grid 
network, however, the number of response peaks grows with the cod-
ing range, but not their widths; thus, inverse Fisher information and 
absolute least squared error are unchanged. The Fisher information 
result also shows explicitly that the GPC advantage is not attributable 
to sparseness; the GPC outperforms the CPC by similar margins when 
both codes have the same lifetime sparseness (the fraction of the  
coding range over which each neuron is active). Varying the relative 
sparseness modulates the error ratio of the two codes (equation (7)) 
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Figure 3  Scaling of dmin and error correction. (a) Error versus noise amplitude (schematic, finite N). GPC (black) enables excellent error control for 
noise below a threshold (dmin/2) and provides almost no information above that threshold. CPC performance (green) degrades linearly with noise.  
(b) The distance between vectors 


r ( )0  and 


r x( ), as x increases from 0 to R (x in cm, plotted on a log10 scale). At a short displacement, x = λ/2, 


r x( ) is 

far from 

r ( )0 ; for larger displacements, it is closer, then further, and so on (interleaving property). As x grows, the approaches to 


r ( )0  get closer still, 

giving the distance curve a monotonically decreasing lower envelope (red). The red line represents the minimum distance dmin of the code if Rl = x. As 
Rl = x increases toward R, the minimum distance of the code decreases toward 0. (c) The squared minimum distance dmin

2  grows with N, if Rl is held 
fixed. Circles indicate numerical results and the black line is the linear fit, consistent with linear prediction by theory (Supplementary Results, section 7).  
(d) Mean squared location error ratio for the GPC and CPC (obtained by sampling noisy phases and maximum likelihood decoding over Rl) decreased 
exponentially with N (circles), consistent with calculations. The gray line is the fit, qualitatively predicted by equation (7). (e) Probability of error in 
decoded location as a function of the signal-to-noise ratio (SNR) per information bit (Eb/N0) for the GPC (solid black line, for λ∆φ ≈ 0.1 cm, resulting 
in ρ ≈ 0.56; dotted black line, for λ∆φ ≈ 1 cm, resulting in ρ ≈ 0.5), CPC (green), and a rate ρ = 0.935 Reed-Solomon code (gray). At low Eb/N0, GPC 
outperforms the Reed-Solomon code. (CPC error declines weakly with increasing Eb/N0.)
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by a polynomial factor that does not qualitatively affect the exponen-
tial advantage of the GPC (Supplementary Results, section 4).

To summarize, the GPC enables estimation with asymptoically zero 
fractional error at a finite (nonzero) information rate, which CPCs 
cannot achieve. Furthermore, the decline in fractional error with  
neuron number is exponential for the GPC (inverse fractional squared 
error ~aN for some constant a > 1) compared with the polynomial 
improvement (inverse fractional squared error ~N or ~N2) achieved 
by CPCs over identical coding ranges (Fig. 3e).

GPC decoding can be performed by a simple neural network
We have demonstrated, from an ideal observer perspective, the error-
control properties inherent to the observed responses of grid cells. 
However, our analysis has been agnostic on whether the brain could 
or does exploit these properties. Indeed it cannot, unless it contains 
an appropriate decoder to infer the correct phases. We found that a 
relatively simple neural network architecture, consisting of grid cells 
projecting forward to a readout stage, recurrent global inhibition in the 
readout stage and symmetric back-projections from the readout stage 
to grid cells, can perform the appropriate decoding and correction, and 
thus enable accurate velocity-to-location integration in the brain.

The spatially patterned firing rates of all grid cells across networks are 
the inputs to the network model (Online Methods). Suppose the grid 
cell–to-readout weights are set by Hebbian learning on the activations 
of grid cells and readout cells as the animal runs through a space in the 
presence of spatially informative external cues. During this run, we 
assume that grid cell activation is without path integration errors because 
of the external cues, and that readout cells are separately driven to be 
sparsely active at one (or a few, see Supplementary Results, section 10)  
preferred location(s) (Fig. 4a). This sparse drive may be generated 
inside the readout network or by a separate pathway based on external 
spatial cues (for example, hippocampal place cells are driven by land-
mark cues32,33 in addition to path-integrated input). After learning, each 
readout cell is wired to grid cells of all of the periods that are active at its 
preferred location(s) (Fig. 4a). These weights constitute templates of the 
correct GPC firing patterns for each readout cell’s preferred location(s). 
The visited locations in the learning run determine Rl.

After learning, and when reliable external cues are absent, grid 
cells with erroneous activation resulting from noisy path integration 

drive the readout cells (equation (2); see Fig. 4b and Online Methods). 
The drive to a readout cell is proportional to the match between its 
preferred location-specific weight templates and the present grid cell 
activity patterns. The maximally driven readout cell, assumed to be 
identified through winner-take-all or similar attractor dynamics using 
global inhibition26,34,35, has a weight template best-matched to the 
current grid cell activity, and its preferred location is the decoded 
or inferred location for the noisy grid cell input (Fig. 4b; this is 
approximately equivalent to maximum likelihood estimation of the 
nearest codeword; see Supplementary Results, section 5 and 6 and 
ref. 26). Similar results occur when readout cells have more than one 
preferred location, if the readout ensemble is sufficiently distinct for 
each location (Supplementary Results, section 10).

The readout-grid cell return weights enable ongoing error correc-
tion: the winning readout cell activates the grid cells connected to 
it, resetting the grid cells to the state consistent with the inferred 
location (Fig. 4c, Online Methods and Supplementary Results,  
section 5 and 6). Ongoing error correction, when engaged as the  
animal is continually estimating its location over time in the absence 
of external spatial cues and with added phase noise per time step, 
sharply curtails the size of accumulating integration error in the 
grid networks. This process enables more accurate location estima-
tion that is far more consistent with behavior than is possible with 
CPCs (containing as many neurons as grid cells), whose perform-
ance is too poor to guide homing behavior over long times and  
paths (Fig. 4d).

Thus far, error correction has not relied on prior information about 
how animal location evolves in the legitimate range. If the readout 
is allowed to exploit the continuity of animal trajectories in space 
and time, then the GPC’s interleaving property can enable correc-
tion of noise much larger than dmin/2, with the same final accuracy 
as when noise is smaller than dmin/2 (Fig. 4e, Online Methods and 
Supplementary Results, section 9). Such a prior can be implemented 
by the same readout network, minimally modified; winner-take all 
competition in the readout is simply biased by an excitatory drive 
from the last winner cell to others with nearby preferred locations. 
With this prior, GPC location estimation remained accurate over long 
trajectories, even when every network phase was perturbed by ~20% 
of its total range per 200-ms simulation time step (Fig. 4e).
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Indeed, the same readout network with unchanged weights can 
be used for correcting the GPC state on the basis of external sensory 
cues, if the cues drive the CA1 readout cells (data not shown). More 
generally, the same readout network architecture may be used to  
perform probabilistic inference36, to combine variably reliable exter-
nal cues with internal estimates.

DISCUSSION
Sensing and common-mode errors
Errors in velocity estimation, if common to all grid networks, or other 
correlated phase changes across networks cannot be corrected in the 
GPC. Such ‘common-mode’ errors are indistinguishable downstream 
from true animal velocity, and cannot be reduced by the GPC (or by 
any CPC). Thus error-correction in the GPC enables accurate estima-
tion of the animal’s trajectory, limited primarily by shared (velocity 
or landmark sensing) errors, rather than by neural integration noise 
as in conventional (CPC) neural integrators.

The GPC, if restricted to coding discrete variables (integer-valued x),  
can be mapped to a well-characterized error-correcting code: the non-
systematic redundant residue number system25,37,38. The actual GPC 
is a generalization of this code to the analog coding domain, and as 
such may be of interest for analog-communications applications.

Mapping the network model to the hippocampus
The model readout maps neatly onto CA1 of the hippocampus 
(Supplementary Results, supporting figure 4), as CA1 receives direct 
convergent input from many dorsoventral levels of the entorhinal 
cortex where grid cells vary in spatial period39,40; it is involved in 
sparse location representation through place cells41, it contains wide-
spread inhibitory circuitry that can mediate global inhibition and, 
consequently, winner-take-all dynamics, and it sends its outputs back 
to the entorhinal cortex39,40. Furthermore, entorhinal-CA1 synapses 
display a form of Hebbian long-term potentiation similar to that 
assumed for setting up grid cell–readout weights42, at least in the 
presence of simultaneous CA3 input to the target CA1 cells43.

Recurrent excitatory connectivity and plasticity in CA3 make it the 
natural candidate for learning and representing priors. Previously active 
place cells can drive others cells with similar place preferences to imple-
ment the continuity prior, whereas chain-like excitatory connectivity 
strengthened from repeated route following can implement route-based 
priors (with sequence replay in CA3 being a natural consequence44).

Predictions
Our results can be divided into two parts, an ideal-observer analysis 
of the observed grid response and a network model of how it might be 
used. The ideal-observer results are a series of deductions about what 
the grid response necessarily implies about location estimation. They 
are analytical and, unlike numerical results, can be directly read off to 
generate predictions for any parameter or variable value. The model 
readout network is a specific, but not necessarily optimal or unique, 
hypothesis about how the intrinsic GPC properties may be exploited 
by the brain. The architecture and activity under normal and simulated 
lesion conditions in the model readout comprise the set of all of its 
predictions about connectivity and dynamics in the brain’s entorninal-
hippocampal network. A partial sampling of predictions follows.

First, the GPC, with hippocampus as the decoder, should perform 
orders-of-magnitude better idiothetic location estimation than is 
predicted from the dynamics of the individual GPC networks alone24 
or from the results on CPC integrators. Second, the hippocampus is 
essential for correcting GPC estimates based not just on external cues, 
as has been suggested45, but in an ongoing manner in the absence of 

external cues. With CA1-entorhinal projections disabled (but CA1 pos-
sibly intact46), location estimation should deteriorate in the presence 
and absence of landmarks; errors should greatly exceed those predicted 
for CPC integrators, as a result of the exquisite GPC noise sensitivity 
(Fig. 1e). Third, homing and discrimination between similar-looking 
locations based on idiothetic integration should be possible over dis-
tances greatly exceeding all of the grid periods, as the GPC enables 
accurate estimation of location over such distances. Fourth, CA1 should 
exhibit winner-take-all dynamics, including a race to threshold and 
strong subthreshold inhibition for all neurons47. Fifth, CA3 should drive 
multiple CA1 place cells with preferred locations that are nearby or  
parts of commonly taken paths, whereas entorhinal input should drive 
multiple CA1 place cells with diverse preferred locations (similar to the 
multi-peaked distribution of Fig. 1c). Entorhinal drive to CA1 should be 
increasingly multi-peaked, with increasing uncertainty about location. 
Sixth, if CA3 provides the prior (defining the candidate pool of winners 
in location estimation), then entorhinal input alone should not be capa-
ble of driving CA1 cells to be winners. Winner CA1 cells must be among 
those receiving concurrent CA3 and entorhinal input, consistent with 
reports on the efficacy of the two pathways to CA1 (refs. 48,49).

Readout network complexity
The readout network costs time (settling time of winner-take-all 
dynamics) and space (array of readout cells), both of which are 
measures of complexity. If the readout is unary, as in our network 
model, and its complexity is included in evaluating the efficiency of 
the GPC, but CPCs are assumed to have no readout, then the relative 
advantage of the GPC declines substantially (Supplementary Results, 
section 9). Indeed, readout complexity may be why the brain employs 
CPCs over EPCs: if fast readout is critical and representational noise 
is not the bottleneck (for example, when errors do not accrue), the 
brain may use weaker codes.

However, the generation of useful location estimates over trajec-
tories is a difficult problem that critically depends on inference that 
combines noisy displacement estimates with prior expectations about 
location and with external landmark cues50, regardless of how the 
integrator is encoded. Thus, a CPC integrator would also require a 
readout network similar to the GPC decoder network, capable of cod-
ing priors and doing inference. If CPCs are read out by such networks, 
or if the GPC readout network possesses a combinatorial location 
representation, then the exponential advantage of the GPC is recov-
ered (Supplementary Results, section 9).

Signatures of EPCs
On the most concrete level, the GPC is an EPC because of its multi-
periodic tuning curves. However, the abstract structure of the GPC cod-
ing space provides a more general view of the properties that make it 
an EPC: the GPC coding space is exponentially large, with codewords 
embedded in an interleaving arrangement. Other codes lacking multi-
periodic representations may possess similar abstract properties.

Another perspective on the GPC yields a different insight: each net-
work (unimodally) encodes a different spatial phase. Each network’s 
phase, even if error free, is only a partial representation of location: it 
cannot specify location uniquely. The set of partial representations of a 
continuous variable is a generalization of the concept of parts-based rep-
resentations for discrete variables. The different partial representations  
are generated from a single variable through heterogeneous tuning. 
Our analysis formalizes the advantages of such heterogeneity and may 
help to answer questions such as why the retina has multiple cells with 
different response properties overlapping a single retinal location, 
rather than multiple copies of the same cell-type.
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We conclude with our aims, which were to explicate the properties 
of the observed grid cell location code, to determine whether the 
brain contains a class of EPCs capable of unprecedented error control, 
and to motivate further exploration of analog neural codes from the 
perspective of strong error-correction.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Network phase as a function of time and animal location. The phase of each 
GPC network at x(t),t is given by equation (2). We assume that the accruing 
integration error is the dominant error in the problem. If the location x(t) is per­
fectly known because of external sensory cues, then the integration error is zero.  
The vector of the N grid network phases is 


f f f= { , ..., }1 N .

Comparable noise and coding setups for the GPC and CPC. Both the GPC and 
the CPC encodings involve NM neurons: N networks of M neurons each in the 
GPC, and one network of MN neurons in the CPC. The CPC response is character­
ized by a single phase variable, φCPC, instead of N different phase components φα 
as in the GPC. The spatial period corresponding to φCPC is RCPC. Equation (2) 
also describes CPC phase, if the subscript α is replaced by CPC and λα is replaced 
by RCPC. Thus, the CPC can be thought of as one grid network, with each neuron 
replaced by N neurons, and with spatial period RCPC.

Phase errors of variance sa
2  in each grid network are compared against a 

CPC with phase error of variance sa
2 /N  (Table 1). The 1/N reduction of the 

CPC phase squared error reflects the best-case decrease in error in a neural 
code when the number of neurons is increased by a factor of N with fixed 
coding range and tuning curve width11–16. The truly optimal case is to also 
reduce the CPC tuning curve width by 1/N, which results in a best-case scaling 
of squared error of 1/N2 (our results are qualitatively unchanged if the CPC 
phase error is sa

2 2/N ; the exponential gains of the GPC over the CPC persist, 
but there is an additional factor of 1/ N  in equation (6) and an additional 
factor of N  in equation (7); the results are qualitatively unchanged if CPC 
phase error scales as some other power of 1/N). These scalings of the CPC 
versus GPC phase error are assumed to make our comparisons as conservative 
(favoring the CPC) as possible.

Note that independent noise in the time-varying network phases, as con­
sidered here, is equivalent to independent, time-varying noise in the network 
periods. If all periods were to expand by the same fraction, corresponding to 
correlated noise across periods, all phases would shift in concert. This would 
result in a simple rescaling of location (distances) by a decoder ignorant of 
the expansion.

Spatially patterned neural firing responses. If the spatial phase of the αth  
network is φα (x,t), it is equivalent to saying that (up to small shifts in the peak 
activation caused by the readout error) the firing rate of the ith neuron in the 
network is 

r x t f x ti ia a af f( , ) (|| ( , ) ||)*= −

where fα is the shape of the neural tuning curve at each preferred location in 
the grid cell response and fi

* is the preferred spatial phase of the ith cell. If 
f fa a( , ) ( ( ))x t x t=  (noise-free phases, equation (1)) for all times t, the neural 
responses r x t r x ti ia a af( , ) ( ( ( )))= , plotted as a function of x over a long time 
interval [0,T], will be perfectly periodic, with period λα. If the network phases are 
given by equation (2), the responses rαi (x,t) accumulated (summed) over [0,T] 
and plotted against x will look increasingly smeared and not necessarily periodic, 
with increasing phase variance and integration interval length T.

Because we express the tuning curve f as a function of phase, it is unimodal 
(the tuning curve as a function of x would be multimodal and periodic). We 
model it by a Gaussian 

f e
e

s f f f f
s

( , ) exp || ||*
*

= − −





2

22where 
|| || min(| |, | |)f f f≡ −1

is the distance metric on phases. The width σe in phase is independent of the 
underlying grid networks’ spatial response periods. Thus, the firing field width, 
plotted in real space, scales linearly with the grid period. This is consistent with 
experimental data21: grid cell responses with different periods look to be uni­
formly scaled versions of each other. The network periods are l l l1 2< < <... N .  
For the CPC, we use σp = σe or s sp e N= / . The choice σp = σe corresponds to 
equal lifetime and population sparseness for individual grid cells and CPC cells, 
if RCPC=Rl. Our results do not change qualitatively for a different choice, for 
example, s sp e N= /  or σp = σe/N (Supplementary Results, section 4).

(8)(8)

(9)(9)

(10)(10)

Coding range. We assume that the legitimate coding range (Rl) far exceeds any 
grid period (~λ), so that λ << R l << R. Indeed, animals can forage 100−1,000 m 
away from home per linear dimension per day, eclipsing the 0.1−10-m range 
of grid period magnitudes. The represented ranges for the GPC and CPC are 
always equal, RCPC = Rl.

Network weights, inference and correction. We describe here the network com­
putations that occur in one pass through the error-correcting loop (assumed to 
take ∆t = 200 ms).

The readout network infers instantaneous location by finding the maximally 
activated readout neuron 

ˆ argmaxi i ih=

where hi (x,t) are the summed inputs to the readout cells. The operation to iden­
tify the maximally driven readout cell is assumed to happen in CA1 through 
(group) winner-take-all dynamics or other attractor dynamics which produce a 
narrow distribution of active cells. To mimic the result of a dynamical winner-
take-all operation, the maximally driven cell becomes maximally active, and the 
rest are silenced, so that r x t

i i≠
=ˆ ( , ) 0 and 

r
i

x tˆ( , ) = 1

The preferred location of the most active cell is the inferred location 

ˆ ( ) ˆ
*x t x
i

=ˆ

The summed input hi to the ith readout cell depends on the firing patterns of the 
grid cells (equation (8)) and on the learned grid cell–readout weights Wijα :

h x t W r x t h x ti ij j i
j

( , ) ( , ) ( , )= +∑ a a
a

0

Here, hi
0 represents any non–grid cell input to readout cell i, including input 

originating from external sensory cues, or input based on predictions or learned 
contextual priors.

The weights Wijα are set once at the beginning, through Hebbian learning, in 
one simulated run over the range Rl with noise-free grid cell activation due to 
external cues and sparse place cell activation 

W r x r xij i j
x

Rl
a a af= ′ ′

′=
∑ ( ) ( ( ))

0

where the sum is over (sufficiently finely) sampled locations in the legitimate 
range. r xja af( ( ))′  is the correct activity pattern of the grid cells for the location 
x′ (that is, only grid cells with tuning curve peaks centered near x′ are activated). 
r xi( )′  is the locally peaked response of the readout neurons, assumed to be driven 
at random or by landmark-based input during learning. We let 

r x G x xi ih( ) (| |)*= −s

where xi
* designates the location of that readout cell’s peak response. This is the read­

out cell’s preferred location. In the simulations of Figure 4, Gσ (x−µ) is bell-shaped 
with mean µ and variance σ2. Because the learning trajectory is only over the range 
Rl, readout cells are only activated and assigned preferred locations in that range.

Correction of the grid cell phases after inference (winner-take-all) in the read­
out network is based on the summed drive gαk from the readout network to the 
grid cells, with the weights from the readout to grid cells being the transpose of 
the learned weights from grid cells to the readout 

g x t W r x tk ik i
i

a a( ( )) ( ( ))= ∑

The grid states activated as a result of this input drive are shown in Figure 4c. For the 
next iteration of integration and correction, the activated grid states were assumed 
to revert to their steady state patterns, which most resemble this input drive 
(share the same peak of activation). For the open-loop simulations of Figure 4,  
everything is as described above, except that the grid cell states were not corrected 
on the basis of the return drive from readout cells (that is, phases were not reset 
on the basis of ˆ( )x t ).

The mechanism for equations (11) and (13) can be implemented by a spik­
ing readout network with global inhibition34,35, which could quickly select the 
maximally activated readout cell while silencing the rest. Similarly, if the grid cell  

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)

(17)(17)ˆˆ

nature NEUROSCIENCE

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



nature NEUROSCIENCEdoi:10.1038/nn.2901

networks were implemented as recurrent networks, as in references 22,24, then 
drive from the winning readout cell(s) through the transpose of the grid cell–rea-
dout weights W would activate the steady state grid cell pattern that is peaked 
around the peak of this corrective drive.

For the CPC network,
ˆ ( ) ( )x t R tl= × fCPC .

Continuity prior as an external drive to the readout cells. The contextual prior 
used in Figure 4c is the ‘ball prior’ 

P x t x t t
x t B x t tv

( ( ) | ( ))
( ) ( ( ))

max− ∝
∈ −





∆

∆1

0

if

otherwise
P x t x t t

x t B x t tv
( ( ) | ( ))

( ) ( ( ))
max− ∝

∈ −




∆

∆1

0

if

otherwise
ˆ

ˆ

Here, B yvmax
( )B yvmax
( ) is the ball of radius νmax∆t centered about the location y, and νmax 

is the maximum possible speed of the animal. In one time step, the animal cannot 
leave B yvmax

( )B yvmax
( ) if its last location was y.

This continuity constraint is easily implemented in the network model by 
biasing the readout’s winner-take-all competition with an excitatory drive to all 
cells in the ball prior, using the term hi

0. Cell i receives a current hi
0 0≠  if its  

preferred location is inside the prior ball of the last decoded location, that is,  
if ̂ ( ˆ ( ))*

max
xx B x t ti v∈ − ∆ˆˆ ( ˆ ( ))*

max
xx B x t ti v∈ − ∆ ). This input can be interpreted as excitatory drive from 

cells with similar preferred locations that were recently active.
Because this continuity prior is based on the last inferred (not necessarily 

true) location, it is only approximate. If the last inferred location is wrong, this 
approximate prior becomes a false belief.

Parameters and details for results in figures. In all simulations, σe = 0.11 (the full-
width at half-max of the grid cell tuning curves equals 1/4 of the response period) 
and the preferred grid phases are distributed evenly over [0,1). Grid periods are 
spaced at regular intervals of 4 cm, starting from the smallest, λ1. For better cor-
respondence with actual neural responses, all numerical results and simulations 
are based on the full firing-rate response vector 


r r i M Ni= = ={ | , ..., ; , ..., }a a1 1  

(equation (8)). Thus, quantities such as dmin are computed in the space of spatially 
patterned firing rates (not the informatically equivalent space of phases, which 
would produce qualitatively similar overall results). Phase noise in all simula-
tions is implemented by truncating a Gaussian with zero mean and variance 
sa

2  in its tails, at 4 × σα. This truncation is so deep in the tails that it affects only 
1 in e8 samples on average; thus, in a sample of size smaller than ~3,000, it is 
indistinguishable from the full Gaussian. The reason for truncation is to ensure 
that we are either exclusively in the correctable (noise amplitude < dmin / 2) or the 
uncorrectable regime.

In Figures 1 and 3, λ1 = 10 cm and M = 50. In Figures 1e,f and 3b, N = 5.  
The resulting range, estimated by increasing x in steps of size ∆x = 0.25 cm, is  
R = 90089.75 cm. In Figures 1e,f and 3b, σα = 0.04. In Figure 1f, Rl = 500 cm, a 
value that produces dmin / . /2 3 87 2≈ , which is typically larger than the ampli-
tude of the perturbations. Thus, the perturbed phase vectors typically map to 
locations outside Rl or in a narrow spread of <0.75 cm around the true location. 
In Figure 1e,f, we plotted the maximally likely locations x0ˆ  for the rate vector 
 
r ( )f  corresponding to the noisy phase 

  
f f x= +( )x0  at true animal location x0 

(explicit ML decoding), ˆ argmin | ( ) ( ( ))|[ , ]x r r xx Rl0 0= −∈
   f f , with Rl = R in Figure 

1e and Rl << R in Figure 1f. The distance between firing rates is the Euclidean 
(L2) norm. Explicit ML decoding was also used in Figure 3d,e.

To verify that our estimate of dmin and R (for example, in Fig. 3b) was inde-
pendent of the sampling grain ∆x, we set ∆x equal to 1, 0.5, 0.25 or 0.005 cm, 
and obtained essentially identical results. For convenience, we therefore sampled 
locations every ∆x = 0.25 cm for Figures 1 and 2.

In Figure 3c, N was varied (thus R changes), but Rl = 500 cm was held fixed. 
In Figure 3d, σα = 0.05, which always produced error smaller in amplitude than 
dmin/2. Thus, our results are from the regime in which error correction is possible.  
Rl was varied to keep ρ ≈ 0.5 (using the value λ∆φ = 1 cm) as N (and thus R) increased;  
this criterion led to values of Rl ≈ {118, 307, 799, 2,076, 5,394, 14,015, 36,413, 94,606} cm,  
respectively, for the increasing values of N in the plot. The resulting exponential 
decay of the ratio of GPC and CPC squared errors with N at fixed ρ holds regard-
less of the specific estimate of λ∆φ in computing ρ. For values of λ∆φ <1 cm, the 
exponentially decaying curves are upper bounded by the curve in Figure 3c.

Figure 3e quantifies the performance of the GPC as a function of the SNR per 
information bit (also known as Eb/N0) of the code. The SNR per bit is defined as 
the average total signal energy of a codeword divided by the average total noise 
energy, all divided by the number of information bits in a codeword. Thus, 

E
N

r

r r R
b

ii

i ii l0

2

2
1=

− +

∑

∑

| ( ) |

| ( ) ( ) | log,

aa
f

a aa f x

f

f f x
l f



  


 
∆







where rαi is the firing rate of the αi neuron, and the angle brackets   
f f x

,
,  

denote expectations computed over all coding phases or over all coding phases 
and the Gaussian phase noise, respectively. In Figure 3e, N = 9 with resulting 
estimated R = 29,099,069.75 cm. We set Rl = 5,000 cm. Assuming λ∆φ = 1 cm, 
this corresponds to an information rate ρ ≈ 0.5. Assuming λ∆φ = 0.1 cm, ρ ≈ 
0.56. We then computed Eb/N0 as in equation (18) for various values of σα, and 
numerically estimated the probability Pe that position is incorrectly decoded 
from the corresponding noisy phases (1,000 noise samples). The probability of 
incorrect decoding equals the probability the firing rate vector for the perturbed 
phase falls a distance dmin/2 or more from the firing-rate vector for the correct 
phase (this is by definition of dmin). The value of Eb/N0 for the CPC is derived 
identically, but with no sum over α and with the total number of information 
bits in the code given by log( /( )) log( )R R NMl CPC CPC∆f = . The criterion for 
a CPC decoding error is when the decoded location falls outside a threshold 
distance of the true location, with the same numerical threshold as used for the 
corresponding GPC. The curve for the Reed-Solomon code corresponds to an 
information rate of 0.936 (ref. 18).

In Figure 4d,e, N = 12, M = 50, λ1 = 30 cm, λN = 74 cm, νmax = 50 cm s–1 
and ∆t = 200 ms. We chose Rl = 300 m. For all α values, σα = 0.033 in Figure 4d  
and σα = 5 × 0.033 = 0.165 in Figure 4e. Location readout is by the network 
(equations (11)–(13)) using 3,000 readout cells with preferred locations 
spaced evenly over Rl and widths σh = 6 cm. This approximates ML estimation 
(Supplementary Section 6). In Figure 4d, hi

0 0= . In Figure 4e, hi
0 = 15,000, an 

arbitrarily large value that greatly exceeds the maximal direct grid cell input, 
ensuring that the winner readout cell is selected from among this set. Subsequent 
feedback to grid cell lattices and inference of the corrected phase are described by 
equation (17). The CPC consists of NM = 600 cells, with s sp e N= =/ .0 0367 
and preferred locations spaced evenly on [0,Rl]. All trajectory curves represent the 
medians over 100 simulated trajectories. The choices for the noise variance are 
based on the results of integration drift in detailed dynamical models of stochastic 
grid cell firing in continuous attractor neural networks24. A recurrent grid cell 
network model of 32 × 32 Poisson-spiking neurons with periodic boundary con-
ditions and ‘perfect’ (nonstochastic) connectivity produced errors in position esti-
mation with standard deviation σCA = 0.0391, close to the value used in Figure 4d  
(the larger the network, the smaller σCA; for example, σCA = 0.00874 in a 128 × 128 
network). The σα used in Figure 4e is to accommodate possible effects of stochas-
tic connectivity and other sources of variability not modeled in reference 24.

(18)(18)

ˆ
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