Learning to navigate

== amid uncertainties
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Navigation in uncertain environments
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Olfactory navigation Olfactory navigation Soaring by birds
by 1nsects and snifters by rodents and gliders
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Soaring in birds

Akos, Nagy, Vicsek, PNAS, ‘08
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Soaring energetics

' dw
E=v(T - D)+mgw, —mv.2F

Steppe eagle
If flapping: T"' = D =~ %pSCDVQ

For migration of a 1000km:

AFE =~ 5000 kcal S ~ 0.5m?

CD ~ (.3

About 500 grams of fat v 15 IIl/ S

-> 25% of body mass m ~ 2 ko
~ 5



A bit of history...

; dw
E=—vD +mgw, —mv. -
L row . ds own
Lord Rayleigh, 1883:”...Whenever therefore a bird pursues his course for some time

without working his wings, we must conclude either
1. that the course 1s not horizontal,
2.that the wind is not horizontal, or
3. that the wind 1s not uniform.
It 1s probable that the truth 1s usually represented by (1) or (2); but the question I wish

to raise 1s whether the cause suggested by (3) may not sometimes come into operation."

t

Thermal and Dynamic .
ridge soaring and gust soaring

da Vincy, ca 1513-1515
P. Richardson, “da Vinci's discovery of the dynamic soaring by birds in wind shear", 2018



Thermals in the atmospheric boundary layer

U CONVECTION
"1?:;'.!‘"?;{ ' Basics of thermals:

the ground and low-lying layer
of air are heated by the sun
and tend to raise
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The profile of vertical velocity vs hour of the day
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Dynamic soaring

Rayleigh
model »

no wind in
separated
region

Rayleigh Cycle

Strong wind above

Sh% ;{ Rayleigh, Nature, 1883
\\. / Richardson, Progr. Oceanography, 2011
WESE TR Bousquet et al, J. R. Soc. Interface, 2017

<<
Light wind below



Questions

All these flows are highly fluctuating

What quantities should a bird sense?
vertical velocities, temperature, gradients, etc?

How should the bird respond to these cues?

Experiments hard to control and strategies ditficult to infer

We will instead ask: how does an optimal agent
navigate thermals? and what sensorimotor cues are
most useful for the task?

(most focus on navigating a single thermal)



Model of turbulent flow

Instantaneous profiles are
strongly turbulent

ou Pr\ /2
E-H‘ -Vu=-VP+ (E) Viu + 6,




Aerodynamics of a gliding object

Airspeed knots ——

Lift

Velocity

Sink rate knots

-

The glide polar
Glide-to-sink ratio
Swift 12:1
Hangglider 15:1
Frigatebird 20:1

Sailplanes 40:1



Learning of a flying agent

(b)

z LiftL |
bank angle \J:
y
1
Lift L !
Drag D

angle of attack

I
z 9glide angl:a Y a wing direction
velocity direction

X

sink rate (ms=")

0

airspeed (ms h

10

20

30 40

1 - male condor

2- female condor

3 - black vulture
4 - caracara

Shephard & Lambertucci, 2013

Horizontal speed v, (m/s)

D

@Y

o ~ o)
T

w
T

)

0. PR ST T S T T
Angle of attack a(”)

1 llo. "

..1I5...

20

—1.0

Agent exposed to an ensemble of turbulent flows tries to learn a
policy for soaring; 1.e., what “short-term” sensorimotor
cues and what response should it use to gain height?

Foreplanning & Credit assignment



An “optimally” behaving agent: the

reinforcement learning framework

rt+1 rt+2 rt+3
—_— St —_— St41 ——— StH2  —

at at+1 at+2

Action-Value : Q(s;, a;) = 1441 + BQ(Sis1,a041) , 0< 8 <1
— N

7

~
reward sum of future rewards

Policy: g = arg max Q(s, a’)
a

Learns empirical statistics and rewards solely through experience

Model-free
https:/ /webdocs.cs.ualberta.ca/~sutton/book/bookdraft2016sep.pdf

States s — sensorimotor cues + bank angle + angle of attack
Actions a — modify angles



Learning by TD

We use Markov Decision Processes (MDPs) - a framework for
modeling decision-making
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ST | | t 3"_
t) \“j t+1 \t+2/ t+2 \+/ at+3

Action-Value :  Q(st,at) = 741 + ?CJ(SHLZ[: a-'t+ll o 0< <1

.
reward sum of future rewards

Extracting Value: Q(s, a;) = max(ryq + SQ(S+1, az4y))

at

TD update: Q(s,a) = Q(s,a)+nr+pO(s',a’)—Q(s,a))

Policy: 7 o< exp (+ Q(s, a)/7)



Credit assignment and reward shaping

Vertical velocity as a reward would be the natural choice,
yet 1t does not work while vertical accelerations do

Accelerations Velocities
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Policy optimal for a given reward 1s also optimal when
taking “discrete time derivatives” of the reward



After training in simulations...

After ~200 5-minute “training episodes” 1n different thermal environments..
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Learned flight policy

Weak tluctuations Strong fluctuations
Low u,,,. High «,.,,.
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More risk-averse policy for strong fluctuations
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Do birds measure
these quantities?

Sensory-motor cues
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Still works 1n the field? ( ) body rotation
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Measuring vertical wind accelerations

GPS/baro \+,,\.?/
Wind vel. / Glider vel.
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W A g/v ~ 1Hy of attack

Measuring vertical wind velocity gradients

1-2 meters
Q change in bank = feedback
v |5° control + aerodynamics +

T wind gradients
Vz T T



Learning works in the field as well




Learning works in the field
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A few more examples

17700 T
o - 500
- a9 500 Z ()
AW, S [ Z (m) - - 300
- 300
® «
- 100
-100
Y (m)
X () 500 -100
- 500
- " 300
Z

- 100




Can a bird sense the relevant cues?

“artistic” view of turbulence
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Reading material can be found at

1) Reddy et al., Infomax strategies for an optimal balance between exploration and

exploitation, J. Stat Phys, 2016
2) Reddy et al, Learning to soar in turbulent environments, PNAS, 2016

3) Reddy et al, Glider soaring via reinforcement learning in the field, Nature, 2018
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