Phenomenological theory and symmetry aspects of superconductivity

Linearized gap equation and gap symmetry Eigenvalue equation

$$-\lambda\psi(\vec{k}) = -N(0)\langle V_{\vec{k},\vec{k}'}\psi(\vec{k}')\rangle_{\vec{k}',FS}$$

$$-\lambda d_{\mu}(\vec{k}) = -N(0)\sum_{\nu}\langle V_{\vec{k},\vec{k}',\mu\nu}d_{\nu}(\vec{k}')\rangle_{\vec{k}',FS}$$

$$k_{B}T_{c} = 1.14\epsilon_{c}e^{-1/\lambda}$$

Solutions classified according to the irreducible representations of symmetry group

representation Г example angular momentum

degenerate solutions for
$$\lambda = N(0)V_{\Gamma}$$

 $\psi_{\Gamma m}(ec{k})$
 $ec{d}_{\Gamma m}(ec{k})$
 $m = 1,\ldots,dim_{\Gamma}$

Generalized gap functions

Even parity, spin singlet:

$$\hat{\Delta}_{\vec{k}} = \begin{pmatrix} 0 & \psi(\vec{k}) \\ -\psi(\vec{k}) & 0 \end{pmatrix} = i\sigma^{y}\psi(\vec{k})$$
Scalar wave function:

$$\psi(\vec{k}) \quad \text{with} \quad \psi(-\vec{k}) = \psi(\vec{k}) \quad |\Delta_{\vec{k}}|^{2} = |\psi(\vec{k})|^{2}$$
Odd parity, spin triplet:

$$\hat{\Delta}_{\vec{k}} = \begin{pmatrix} -d_{x} + id_{y} & d_{z} \\ d_{z} & d_{x} + id_{y} \end{pmatrix} = i\vec{d}(\vec{k}) \cdot \vec{\sigma} \sigma^{y}$$
Vector wave function:

$$\vec{d}(\vec{k}) \quad \text{with} \quad \vec{d}(-\vec{k}) = -\vec{d}(\vec{k}) \quad |\Delta_{\vec{k}}|^{2} = |\vec{d}(\vec{k})|^{2}$$

Symmetry operations

Symmetries of	normal phase:	G =	Go	X	Gs	x	K	X	U(1)
				`	$\overline{}$			\neg	\sim
		orb	ital rotati	on	spin rotation	n ti	me reve	rsal	gauge

symmetry operation	
orbital rotation	$\hat{g}_o c_{ec{k}s} = c_{\hat{R}_o ec{k}s} \hat{R}_o$ orbital rotation
spin rotation	$\hat{g}_s c_{\vec{k}s} = \sum_{s'} D_{ss'} c_{\vec{k}s'} \qquad \hat{D} = e^{i\vec{\theta}\cdot\hat{\sigma}/2}$
time reversal	$\hat{K}c_{\vec{k}s} = \sum_{s'} (-i\sigma_y)_{ss'} c_{-\vec{k}s'}$
U(1) gauge	$\hat{\Phi}c_{\vec{k}s} = e^{i\phi/2}c_{-\vec{k}s'} \qquad \vec{A} = \vec{A} + \frac{\hbar c}{2e}\vec{\nabla}\phi$

presence of strong spin-orbit coupling ----- spin and lattice rotation go together

Symmetry operations

Symmetries of normal phase: $G = G_0 \times G_s \times K \times U(1)$ spin singlet symmetry operation spin triplet $\hat{q}_o\psi(\vec{k}) = \psi(\hat{R}_o\vec{k})$ $\hat{g}_o \vec{d}(\vec{k}) = \vec{d}(\hat{R}_o \vec{k})$ orbital rotation $\hat{g}_s \vec{d}(\vec{k}) = \hat{R}_s \vec{d}(\vec{k})$ $\hat{q}_s \psi(\vec{k}) = \psi(\vec{k})$ spin rotation $\hat{K}\psi(\vec{k}) = \psi^*(\vec{k})$ $\hat{K}\vec{d}(\vec{k}) = \vec{d}^*(\vec{k})$ time reversal $\hat{I}\psi(\vec{k}) = \psi(\vec{k})$ $\hat{I}\vec{d}(\vec{k}) = -\vec{d}(\vec{k})$ inversion $\hat{\Phi}\psi(\vec{k}) = e^{i\phi}\psi(\vec{k})$ $\hat{\Phi}\vec{d}(\vec{k}) = e^{i\phi}\vec{d}(\vec{k})$

presence of strong spin-orbit coupling

 $g\vec{d}(\vec{k}) = \hat{R}_{s}\vec{d}(\hat{R}_{o}\vec{k})$ identical 3D rotations $\begin{cases} \hat{R}_{o}\\ \hat{R}_{s} \end{cases}$ spin triplet pairing:

Order parameter

U(1) gauge

relevant order parameter in represention Γ with highest T_c (instability) $\begin{cases} \{\psi_{\Gamma m}\} \\ \{\vec{d}_{\Gamma m}\} \end{cases}$ restrict to set (vector space basis) $\psi(\vec{k}) = \sum_{m} \eta_{m} \psi_{\Gamma m}(\vec{k}) \qquad \quad \vec{d}(\vec{k}) = \sum_{m} \eta_{m} \vec{d}_{\Gamma m}(\vec{k})$ order parameter $\eta_m = \eta_m(\vec{r},T)$ complex trivial representation Γ conventional pairing / SC phase e.g.: l = 0non-degenerate other representations Γ unconventional pairing / SC phase degeneracy > 1e.g.: l > 0

Symmetry operations

Symmetries of normal phase: $G = G_0 \times G_s \times K \times U(1)$

symmetry operation	spin singlet	spin triplet		
orbital rotation	$\hat{g}_o\psi(\vec{k}) = \psi(\hat{R}_o\vec{k})$	$\hat{g}_o \vec{d}(\vec{k}) = \vec{d}(\hat{R}_o \vec{k})$		
spin rotation	$\hat{g}_s\psi(\vec{k})=\psi(\vec{k})$	$\hat{g}_s \vec{d}(\vec{k}) = \hat{R}_s \vec{d}(\vec{k})$		
time reversal	$\hat{K}\psi(\vec{k}) = \psi^*(\vec{k})$	$\hat{K}\vec{d}(\vec{k}) = \vec{d^*}(\vec{k})$		
inversion	$\hat{I}\psi(\vec{k}) = \psi(\vec{k})$	$\hat{I}\vec{d}(\vec{k}) = -\vec{d}(\vec{k})$		
U(1) gauge	$\hat{\Phi}\psi(\vec{k}) = e^{i\phi}\psi(\vec{k})$	$\hat{\Phi}\vec{d}(\vec{k}) = e^{i\phi}\vec{d}(\vec{k})$		

Possible broken symmetries:

U(1)-gauge Orbital rotation Spin rotation Time reversal

superconductivity crystal structure magnetism magnetism

Order parameter

relevant order parameter in represention Γ with highest T_c (instability)

→ restrict to set (vector space basis)
$$\begin{cases} \{\psi_{\Gamma m}\} \\ \{\vec{d}_{\Gamma m}\} \end{cases}$$

$$\psi(\vec{k}) = \sum_{m} \eta_{m} \psi_{\Gamma m}(\vec{k}) \qquad \vec{d}(\vec{k}) = \sum_{m} \eta_{m} \vec{d}_{\Gamma m}(\vec{k})$$
order parameter $\eta_{m} = \eta_{m}(\vec{r}, T)$ complex

order parameters describe spontaneous symmetry breaking

Ginzburg-Landau theory

Ginzburg-Landau theory for teneral order parameters

Landau's recipe:

order parameters belong to irreducible representations of the normal state symmetry group

$$\psi(\vec{k}) = \sum_{m} \eta_{m} \psi_{\Gamma m}(\vec{k})$$

transform according free energy functional as a scalar function of η_m

to the representation

$$F[\eta_{m}] = \int d^{3}r[a\sum_{m} |\eta_{m}|^{2} + \sum_{m_{1},\dots,m_{4}} b_{m_{1},\dots,m_{4}} \eta_{m_{1}}^{*} \eta_{m_{2}}^{*} \eta_{m_{3}} \eta_{m_{4}}$$
$$+ \sum_{m_{1},m_{2}} \sum_{n_{1},n_{2}} K_{m_{1}m_{2}n_{1}n_{2}} (D_{n_{1}}\eta_{m_{1}})^{*} (D_{n_{2}}\eta_{m_{2}}) + \frac{1}{8\pi} (\vec{\nabla} \times \vec{A})^{2}]$$

invariant under all symmetry operations of rotations, time reversal and U(1)-gauge

 $a = a'(T - T_c)$, $b_m, K_{mm'nn'}$ real constants, $\vec{D} = \vec{\nabla} + i \frac{2e}{\hbar c} \vec{A}$ gradient: gauge-invariance

Ginzburg-Landau theory of conventional superconductor

trivial representation $\psi(\vec{k}) = \eta(\vec{r},T)\psi_0(\vec{k})$

GL free energy functional:

Invariant under all symmetry operations

$$F[\eta, \vec{A}] = \int d^3r \left[a|\eta|^2 + b|\eta|^4 + K|\vec{D}\eta|^2 + \frac{\vec{\nabla} \times \vec{A}}{8\pi} \right]$$

$$a(T) = a'(T - T_c) \qquad a', b, K > 0 \qquad \vec{D} = \vec{\nabla} + i\frac{2e}{\hbar c}\vec{A} \qquad \vec{B} = \vec{\nabla} \times \vec{A}$$

variational GL equations for inhomogeneous order parameter:

•
$$\left\{a+2b|\eta|^2-K\vec{D}^2\right\}\eta=0$$

• $\vec{\nabla}\times\vec{B}=\frac{4\pi}{c}\vec{J}$
supercurrent $\vec{J}=\frac{eK}{2\hbar i}\left\{\eta^*(\vec{D}\eta)-\eta(\vec{D}\eta)^*\right\}$
 $\vec{\nabla}^2\vec{B}=\lambda^{-2}\vec{B}$
 $\vec{\Delta}^{-2}=\frac{32\pi e^2}{c^2}K|\eta|^2$

Ginzburg-Landau theory of conventional superconductor

trivial representation $\psi(\vec{k}) = \eta(\vec{r},T)\psi_0(\vec{k})$ Invariant under all GL free energy functional: symmetry operations $F[\eta, \vec{A}] = \int d^3r \left[a|\eta|^2 + b|\eta|^4 + K|\vec{D}\eta|^2 + \frac{\vec{\nabla} \times \vec{A}}{8\pi} \right]$ $a(T) = a'(T - T_c) \qquad a', b, K > 0 \qquad \vec{D} = \vec{\nabla} + i\frac{2e}{\hbar c}\vec{A} \qquad \vec{B} = \vec{\nabla} \times \vec{A}$ uniform phase: $|\eta(T)|^2 = \frac{a'(T_c - T)}{2b} \quad |\eta|$ F T>T_ / /T<T_c spontaneously chosen phase α $|\Psi|$ $\eta = |\eta| e^{i\alpha}$

broken U(1) gauge symmetry

Specific example:

Superconductor with tetragonal crystal structure

Example of a tetragonal crystal with spin orbit coupling

Example of a tetragonal crystal with spin orbit coupling

Point g	roup: D _{4h} 4 on eve	4 one-dim., 1 two-dim. representation even (g) / odd (u) parity			
Г	$\psi(ec{k})$	Г	$\vec{d}(\vec{k})$		
A _{1g}	1	A _{1u}	$\hat{x}k_x + \hat{y}k_y$		
A _{2g}	$k_x k_y \left(k_x^2 - k_y^2 \right)$	A _{2u}	$\hat{y}k_x - \hat{x}k_y$		
B _{1g}	$k_x^2 - k_y^2$	B _{1u}	$\hat{x}k_x - \hat{y}k_y$		
B _{2g}	$k_x k_y$	B _{2u}	$\hat{y}k_x + \hat{x}k_y$		
E _g	$\left\{k_{x}k_{z},k_{y}k_{z}\right\}$	E _u	$\left\{\hat{z}k_x,\hat{z}k_y\right\} \left\{\hat{x}k_z,\hat{y}k_z\right\}$		

Conventional: A_{1q}

Unconventional: everything else

only one representation is relevant for the superconducting phase transition

Ginzburg-Landau free energy functionals:

 $\begin{aligned} 1-\text{dimensional representations:} \qquad \psi(\vec{k}) &= \eta \ \psi_0(\vec{k}) \ , \qquad \vec{d}(\vec{k}) = \eta \ \vec{d}_0(\vec{k}) \\ F[\eta, \vec{A}] &= \int d^3 r \ \left[a|\eta|^2 + b|\eta|^4 + K|\vec{D}\eta|^2 + \frac{1}{8\pi} (\vec{\nabla} \times \vec{A})^2 \right] \qquad \substack{\text{like} \\ \text{conventional SC}} \\ 2-\text{dimensional representations:} \qquad \psi &= \eta_x \psi_x + \eta_y \psi_y \ , \quad \vec{d} = \eta_x \vec{d}_x + \eta_y \vec{d}_y \\ F[\vec{\eta}, \vec{A}] &= \int d^3 r \ \left[a|\vec{\eta}|^2 + b_1|\vec{\eta}|^4 + \frac{b_2}{2} \left\{ \eta_x^{*2} \eta_y^2 + \eta_x^2 \eta_y^{*2} \right\} + b_3 |\eta_x|^2 |\eta_y|^2 \\ &+ K_1 (|D_x \eta_x|^2 + |D_y \eta_y|^2) + K_2 (|D_x \eta_y|^2 + |D_y \eta_x|^2) + K_3 (|D_z \eta_x|^2 + |D_z \eta_y|) \\ &+ \left\{ K_4 (D_x \eta_x)^* (D_y \eta_y) + K_5 (D_x \eta_y)^* (D_y \eta_x) + c.c. \right\} + \frac{1}{8\pi} (\vec{\nabla} \times \vec{A})^2 \right] \end{aligned}$

Possible homogeneous superconducting phases Higher-dimensional order parameters are interesting $\vec{\eta} = (\eta_x, \eta_y)$

$$F[\vec{\eta},\vec{A}] = \int d^3r \, \left[a|\vec{\eta}|^2 + b_1|\vec{\eta}|^4 + \frac{b_2}{2} \left\{ \eta_x^{*2} \eta_y^2 + \eta_x^2 \eta_y^{*2} \right\} + b_3|\eta_x|^2|\eta_y|^2 \right]$$

phase	$\psi(\vec{k})$	$\vec{d}(\vec{k})$	broken symmetry	
Α	$(k_x\pm ik_y)k_z$	$\hat{z}(k_x\pm ik_y)$	$U(1), \mathcal{K}$	
В	$(k_x \pm k_y)k_z$	$\hat{z}(k_x \pm k_y)$	$U(1), D_{4h} \rightarrow D_{2h}$	
С	$k_x k_z, k_y k_z$	$\hat{z}k_x,\hat{z}k_y$	$U(1), D_{4h} \rightarrow D_{2h}$	
$\mathcal{K} \longrightarrow$ magnetism				
$D_{4h} \rightarrow D_{2h} \longrightarrow$ crystal deformation				

Degeneracy: 2 domain formation possible

Volovik-Gor'kov classification

• orbital angular momentum: $\vec{L}_{\vec{k}} = i\hbar d_{\nu}^{*}(\vec{k})\{\vec{k} \times \vec{\nabla}_{\vec{k}}\}d_{\nu}(\vec{k})$ $\langle \vec{L}_{\vec{k}} \rangle_{\vec{k}} \neq 0 \quad "ferromagnetic" \quad (chiral) \\ e.g. (d_{x^{2}-y^{2}} + id_{xy}) \text{ -wave}$ $\langle \vec{L}_{\vec{k}} \rangle_{\vec{k}} = 0 \quad "antiferromagnetic" \\ e.g. (d_{x^{2}-y^{2}} + is) \text{ -wave}$ $\bullet \text{ spin: } \vec{S}_{\vec{k}} = i\hbar \vec{d^{*}}(\vec{k}) \times \vec{d}(\vec{k})$ $non-unitary \ states, \ e.g. \ A_{1}\text{ -phase of superfluid }^{3}\text{He} \\ \text{ in a magnetic field}$

analogous Volovik-Gor'kov classification

Volovik-Gor'kov classification

• orbital angular momentum: $\vec{L}_{\vec{k}} = i\hbar d_{\nu}^*(\vec{k})\{\vec{k} \times \vec{\nabla}_{\vec{k}}\}d_{\nu}(\vec{k})$

Ferromagnetic or chiral phase A: For pairing state within representation Γ decomposition of $\Gamma \otimes \Gamma$ includes pseudovector representation e.g.: chiral p-wave $\vec{d}(\vec{k}) = \hat{z}(k_x + ik_y)$ in E_u $E_u \otimes E_u = A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g}$ m_z

analogous Volovik-Gor'kov classification

Orbital angular momentum and magnetic moment

chiral p-wave phase: $\vec{d}(\vec{k}) = \eta_0 \hat{z}(k_x \pm ik_y) = \hat{z}\vec{\eta}\cdot\vec{k}$ with $\vec{\eta} = (\eta_x, \eta_y) = \eta_0(1, \pm i)$

orbital angular momentum:

$$\vec{L}_{\vec{k}} = |\eta_0|^2 \hbar \begin{pmatrix} k_z(k_x \mp ik_y) \\ -ik_z(k_x \mp ik_y) \\ \pm (k_x^2 + k_y^2) \end{pmatrix} \longrightarrow \langle \vec{L}_{\vec{k}} \rangle_{\vec{k}} \parallel \hat{z}$$

 $\langle \vec{L}_{\vec{k}} \rangle_{\vec{k}} \propto i(\vec{\eta}^* \times \vec{\eta})$

electron charge: $\langle \vec{L}_{\vec{k}} \rangle_{\vec{k}} \propto \vec{M}$

i magnetic moment

Intrinsic magnetism

polarization of spin of trapped muon $P_{KT}(t) = \frac{1}{3} \left[1 + 2 \left(1 - \sigma_{KT}^2 t^2 \right) \exp(-\sigma_{KT}^2 t^2 / 2) \right]$

 $\sigma_{\rm KT}^2$: 2nd moment of field distribution

other SC showing intrinsic magnetism:

 $U_{1-x}Th_xBe_{13}$, Re_6Zr , $PrOs_4Sb_{12}$ UPt_{3} , SrPtAs,

Effective magnetic moment

Cooper pairs with angular momentum
$$L_z = \pm 1$$

 \longrightarrow magnetic moment of superconductor $\vec{M} = \hat{z}\mu_B \frac{n_s}{2}$??

Surface states - spontaneous supercurrents for chiral phase surface scattering detrimental interference effects:

$$E_{u}: \vec{d}_{x}(\vec{k}) = \hat{z}k_{x}$$

$$\vec{d}_{y}(\vec{k}) = \hat{z}k_{y}$$

$$\vec{d} = \eta_{x}(\vec{r})\vec{d}_{x} + \eta_{y}\vec{d}_{y}$$

Example of a tetragonal crystal with spin orbit coupling

Point group: D_{4h}

4 one-dim., 1 two-dim. representation even (g) / odd (u) parity

60

80

100

Г	$\psi(ec{k})$	Г	$\vec{d}(\vec{k})$
A _{1g}	1	A _{1u}	$\hat{x}k_x + \hat{y}k_y$
A _{2g}	$k_x k_y \left(k_x^2 - k_y^2\right)$	A _{2u}	$\hat{y}k_x - \hat{x}k_y$
B _{1g}	$k_x^2 - k_y^2$	B _{1u}	$\hat{x}k_x - \hat{y}k_y$
B _{2g}	k _x k _y	B _{2u}	$\hat{y}k_x + \hat{x}k_y$
E_{g}	$\left\{k_{x}k_{z},k_{y}k_{z}\right\}$	E _u	$\left\{\hat{z}k_x,\hat{z}k_y\right\} \left\{\hat{x}k_z,\hat{y}k_z\right\}$

cuprate high-T_c superconductor: ${\sf B}_{1g}$ $\psi_{B_{1g}}(ec{k})=k_x^2-k_y^2$

Tests for the pairing symmetry

4 line nodes on basically cylindrical Fermi surface

Probing the phase structure

Phase probed by interference using Josephson effect

Supercurrent between SC1 and SC2 due to phase coherent Cooper pair tunneling

$$J = J_c \sin(\beta - \alpha)$$

Current determined by phase difference

Probing the phase structure

 ψ_2 = $|\psi_2| e^{i\beta}$

Phase probed by interference

using Josephson effect

Supercurrent between SC1 and SC2 due to phase coherent Cooper pair tunneling

 $J = J_c \sin(\beta - \alpha)$

Current determined by phase difference

Probing the phase structure

SQUID (Superconducting QUantum Interference Device) Conventional SC

Segmented loop Φ $\pi = \Delta \phi_i$ $\oint \left(\vec{A} - \frac{\Phi_0}{2\pi} \vec{\nabla} \phi\right) \cdot d\vec{s} = \sum_i \Delta \phi_i$ $\Phi = \Phi_0 \left(n + \frac{1}{2} \right)$ odd number of π -shifts $\Delta \phi_i$ half-integer flux quantization note: smallest flux $|\Phi| = \Phi_0 / 2$

Superconducting loops

Tsuei-Kirtley frustrated loops

Tri-cristall-configuration

Tsuei, Kirtley et al. (1995)

Superconducting loop $\oint = 60 \ \mu m$ YBa₂Cu₃O₇ T_c = 92 K even number of π -shifts

unfrustrated loops

no signal

SQUID-scanning-microscope

Tsuei-Kirtley frustrated loops

Tri-cristall-configuration

Tsuei, Kirtley et al. (1995)

Superconducting loop $\oint = 60 \ \mu m$ YBa₂Cu₃O₇ T_c = 92 K

SQUID-scanning-microscope