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1 Introduction

The linked cluster method is one of the most efficient ways to generate per-
turbation series expansions for quantum lattice models. For the ground state
energy and related properties, a linked cluster approach was first discussed in
unpublished work by Nickel, followed by work of Marland [1], Irving and Hamer
[2] and others, as reviewed by He et al. [3]. The approach was later rediscovered
and applied to a whole new range of problems in condensed matter physics by
Singh, Huse and Gelfand [4, 5].

For the energies of excited states, it is more difficult to formulate a true linked
cluster expansion, although related methods have been known for some time [6].
It was only in 1996 that the key to a true linked cluster expansion for one-particle
excited states was discovered by Gelfand [7]. Since then, many applications of
this technique have been made, calculating single-particle energies, dispersion
relations and spectral functions in models of interest in condensed matter physics.
For a recent review, see Gelfand and Singh [8].

The cluster expansion method allows that the calculations can be carried out
systematically and efficiently by fully automated computer programs. Further-
more, these methods work by breaking up the thermodynamic problem into a
purely combinatorial problem and a number of finite-cluster problems. Thus,
while they are technically harder in higher than one dimension, the difficulty is
not fundamental. The combinatorial problem itself lies in an efficient treatment
of the underlying clusters: Cluster data for the lattices at hand have to be gen-
erated while clusters leading to redundant calculations should be classified in
terms of canonical clusters. Further a convenient handle to iterate and refer the
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subclusters of a given cluster should be provided. Over the years several groups
have developed computer programs to deal with these problems [8, 9, 10]. An
approach using object-oriented programming tools and highly efficient algorithms
from graph theory has been presented in [11].

Conceptually, our new approach is a generalization of Gelfand’s linked cluster
expansion for single-particle excited states to two-particle states [12]. From a
technical point of view, the development of an orthogonality transformation now
enables a linked cluster theorem for multi-particle states even when their quantum
numbers are identical with the ground state [13]. We show how to calculate en-
ergies and dispersion relations for two-particle excitations, and coherence lengths
for the bound states.

2 Formalism

We consider a Hamiltonian

H = H0 + λH1 , (1)

where the unperturbed Hamiltonian H0 is exactly solvable, and λ is the per-
turbation parameter. In the lattice models of interest, H0 will typically consist
of single-site operators, while interaction terms between different sites will be
included in the perturbation operator H1. Our aim is to calculate perturbation
series in λ for the eigenvalues of H and other quantities of interest. This sce-
nario of an expansion around a local Hamiltonian is in contrast to the case of
free particles with non-local, infinitely extended states. Here, one might apply
Wick’s theorem to construct a perturbation theory.

In the following we will review the procedure for ground state properties
and single-particle excitations and present an extended formalism to study two-
particle excitations. The calculation generally proceeds in three stages, block
diagonalization, linked cluster expansion and calculation of eigenvalues.

2.1 Block Diagonalization

On any finite lattice or cluster of sites, the first step is to block diagonalize the
Hamiltonian to form an effective Hamiltonian, where the ground state is in a
block by itself, the one-particle states form another block, the two-particle states
another block, and so on. Here a particle may refer to a spin-flip, a lattice
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fermion, or other excitation, depending on the model at hand. We assume that
all the unperturbed states in each block are degenerate under H0.

In the following we will present a procedure to generate these effective Hamil-
tonians in the respective particle sectors order by order. We present a recursive
formulation of Rayleigh-Schrödinger perturbation theory which can be easily im-
plemented.

To calculate ground state properties is almost trivial as one can apply non-
degenerate perturbation theory. For single particle excitations a similarity trans-
formation can be applied to block diagonalize the effective Hamiltonian, since the
excited state and the ground state usually have non-identical quantum numbers.
This is in contrast to the case of two-particle excitations which may be described
by the same quantum numbers as the ground state. This situation requires a
more elaborated block diagonalization in terms of an orthogonal transformation.

2.1.1 Ground state energy

We start with a cluster Hamiltonian H of the form

H = H0 + λH1 ,

where all Hamiltonians are restricted to act on the Hilbert space associated with
the cluster at hand. We assume that there exists a ground state of the unper-
turbed Hamiltonian H0 which is unique allowing us to apply a non degenerate
perturbation theory.

The assumption of a unique ground state does not imply that this ground
state has to be non degenerate. It rather denotes that the application of the
perturbative Hamiltonian H1 does not transfer a chosen ground state to a de-
generate one.

Expanding the ground state energy E0 and the unnormalized ground state
wave vector |ψ〉 in λ gives

E =

∞∑

n=0

λnen

|ψ〉 =

∞∑

n=0

λn|ψn〉 . (2)
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Inserting these expansions into the Schrödinger equation gives

H|ψ〉 = E|ψ〉
∑

n=0

H0λ
n|ψn〉 +

∑

n=1

H1λ
n|ψn−1〉 =

∑

n=0

λn

n∑

m=0

em|ψn−m〉 . (3)

Collecting all terms of order λn we find

H0|ψn〉 +H1|ψn−1〉 =
n∑

m=0

em|ψn−m〉 . (4)

We now choose a particularly convenient normalization condition of the form

〈ψ0|ψn〉 = δ0n , (5)

which will give the recursion relations

en = 〈ψ0|H1|ψn−1〉 (6)

〈k|ψn〉 =
1

E0 − Ek

(

〈k|H1|ψn−1〉 −
n−1∑

m=1

em〈k|ψn−m〉
)

, (7)

where |k〉 denotes any basis state but the ground state and Ek = 〈k|H0 |k〉 is
the corresponding energy.

The occurrence of the ratios 1
E0−Ek

strongly determines the convergence of
the generated series. If the energy gap to the elementary excitation vanishes
the ratios will diverge and the calculated series is not expected to show a good
convergence and vice versa.

2.1.2 Single-particle excitation: Similarity transformation

Gelfand [7] showed that by means of a linked cluster expansion one can efficiently
generate high-order expansions which directly give the Fourier series coefficients
of the dispersion of the low-lying excitations. The numerical calculations involved
are straightforward extensions of those previously described to generate ground
state energy expansions.

Again, we consider a Hamiltonian

H = H0 + λH1 ,
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in which the unperturbed Hamiltonian H0 is trivially diagonalizable and of fixed
degeneracy on any finite cluster.

The new approach that is based on the construction of an effective Hamil-
tonian within a degenerate manifold of excited states for each finite cluster with
respect to some unperturbed Hamiltonian H0. Let us assume that there are
L degenerate states out of M states total and that the eigenstates of H0 are
ordered in a way that the first L states are those of the degenerate manifold.
We can choose a similarity transformation S so that in H eff there are vanishing
matrix elements between the states of the degenerate manifold, that is, S equals
the identity matrix within the upper left L × L block. By doing so, H eff breaks
up onto an L × L block in the upper left, H eff(1), describing the interactions
between the degenerated states of the manifold, and an (M − L) × (M − L)
block, describing all the other physics of the cluster

S−1HS =











Heff(1) 0

0 . . .











. (8)

We can think of the similarity transformation S as a set of column vectors
(
ψ(l)
)
.

Rewriting equation (8) as
HS = SHeff (9)

gives an equation where the vectors ψ(l) with 1 ≤ l ≤ L are not coupled to those
with L + 1 ≤ l ≤ M . In order to calculate H eff we can thus neglect the lower
right (M − L) × (M − L) block of H eff. To this end, we now expand ψ(l) and
Heff in terms of λ

ψ(l) =
∑

n

λnψ(l)
n

Heff(l′, l) =
∑

n

λnHeff

n (l′, l) . (10)

Inserting these expansions in equation (9) and collecting all terms of order λn

gives

H0ψ
(l)
n +H1ψ

(l)
n−1 =

n∑

m=0

L∑

l′=1

ψ(l′)
m Heff

n−m(l′, l) . (11)
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We now choose a normalization convention of the form

〈l|ψ(l′)
n 〉 = δn,0δl,l′ , (12)

which gives us the desired recursive relations

Heff

n (m, l) = 〈m|H1|ψ(l)
n−1〉 (13)

〈k|ψ(l)
n 〉 =

1

E0 − Ek

(

〈k|H1|ψ(l)
n−1〉 −

n−1∑

m=1

L∑

l′=1

Heff

n−m(l′, l)〈k|ψ(l′)
m 〉
)

.(14)

Here |k〉 is a state out of the degenerate manifold and Ek is the corresponding
unperturbed energy Ek = 〈k|H0|k〉. These recursion relations for the excited
states are very similar to those obtained in the development of the ground state
energy in equation (7). It is reasonable that the computer code written for the
ground state expansion can be easily extended to study the first excited state as
well.

2.1.3 Two-particle excitation: Orthogonal transformation

We developed a generalization of the single-particle approach to block diagonalize
the Hamiltonian in order to calculate an effective Hamiltonian for two-particle
excitations. In this case, we also intend to transform the Hamiltonian so that
we obtain a block structure with the ground state sitting in a block H eff(0), the
one-particle states form another block H eff(1), the two-particle states another
block Heff(2), and so on:

OTHO = Heff =



























Heff(0) 0 0 0

0 Heff(1) 0 0

0 0 Heff(2) 0

0

︸ ︷︷ ︸

ground state

0

︸ ︷︷ ︸

1−particle

0

︸ ︷︷ ︸

2−particle

. . .

block block block



























. (15)
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While Gelfand used a similarity transformation we need to apply a unitary trans-
formation in order to preserve all the proper symmetries of the Hamiltonian in the
two-particle case. This is due to the circumstance that a two-particle excitation
may be classified by the same quantum numbers as the ground state. For exam-
ple, one may consider a spin system with a singlet ground state where two triplet
excitations can form a singlet state again. Here we will only account for the case
when the Hamiltonian is real and symmetric, and can be block diagonalized by
an orthogonal transformation O.

The orthogonality of O can be ensured by writing

O = eS , (16)

where S is real and antisymmetric

ST = −S . (17)

This transformation is again constructed order by order in perturbation theory.
The matrix elements of Heff between different blocks are zero, up to the given
order in perturbation theory. Each matrix is expanded in powers of λ:

O =
∞∑

n=0

λnOn , (18)

S =

∞∑

n=0

λnSn , (19)

Heff =

∞∑

n=0

λnHeff
n , (20)

where at zeroth order we set

S0 = 0, O0 = I, Heff
0 = H0 . (21)

Here I is the unit matrix, H0 is a diagonal matrix, with diagonal matrix elements
Ei

0.
At higher orders n 6= 0, we have

On = Sn +
1

2

n∑

m,l=1

SmSlδm+l,n +
1

3!

n∑

m,l,k=1

SmSlSkδm+l+k,n + ... (22)
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Figure 1: Block structure of the matrices H eff
n and Sn. Setting the upper right

blocks of Heff
n to zero determines the corresponding (shaded) blocks of Sn. The

diagonal blocks of Sn are set to zero.

and
n∑

m,l=0

OmH
eff
l δm+l,n = H0On +H1On−1 , (23)

where it is convenient to define

Rn = On − Sn . (24)

If we demand that at any given order n the off-diagonal blocks of H eff
n vanish

in (say) the upper right triangle, then the entries in the corresponding blocks of
Sn are determined by equation (23). The block structure of these matrices is
illustrated in Fig. 1. The transposed blocks in the lower left triangle are then
determined by the antisymmetry condition (17) and only the diagonal blocks of
S remain to be determined. The simplest choice is to set the diagonal blocks to
zero. Thus, Sn is completely determined by

S(ij)
n = −R(ij)

n +
1

E
(j)
0 − E

(i)
0

(

H1On−1 −
n−1∑

m,l=1

OmH
eff
l δm+l,n

)(ij)

(25)

and

O(ij)
n =

1

E
(j)
0 − E

(i)
0

(

H1On−1 −
n−1∑

m,l=1

OmH
eff
l δm+l,n

)(ij)

(26)

for elements (ij) in the off-diagonal (shaded) blocks. The diagonal blocks of
Heff

n ) are then obtained as

(Heff
n )(ij) = {H1On−1 −

n−1∑

m,l=1

OmH
eff
l δm+l,n}(ij) . (27)
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The right-hand sides of equations (25),(26), and (27) can be computed recur-
sively from the results at order (n− 1).

The key differences from the similarity transformation are as follows. In the
similarity transformation, the diagonal blocks of Sn are undetermined, and so are
chosen to be zero, while the off-diagonal blocks of Sn are antisymmetric and can
be determined by demanding the off-diagonal blocks of H eff

n to be zero. In the
orthogonal transformation, on the other hand, the diagonal blocks of On cannot
be chosen to be zero. Instead the diagonal blocks of Sn are chosen to be zero,
while the diagonal blocks of On are required to be nonzero by orthogonality, and
are determined by Eq. (22).

At the end of this process, the effective Hamiltonian has been block diagonal-
ized, up to a given order in perturbation theory. The orthogonal transformation
will turn the unperturbed two-particle states into dressed states containing ad-
mixtures of different particle numbers. In particular, there will be no annihilation
process for these dressed states. The states will still be labeled by the positions of
the original unperturbed particles, though they will contain admixtures of other
particle states at n earby locations.

At any finite order in perturbation theory, we may assume that the effective
Hamiltonian will remain local (that is, interactions between states do not extend
beyond a finite range) and will have the same bulk symmetries as the original
Hamiltonian, such as translation symmetry. These properties are sufficient to
admit a linked cluster approach to the calculation of eigenvalues.

We note that the solution of the equations above is not nearly as efficient
as the similarity transformation of Gelfand. In particular, the solution of the
equation (22) is expensive in CPU time and memory.
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2.2 Linked Cluster Expansions

In order to obtain a strong coupling cluster expansion we consider problems where
H0 and H1 can be expressed as a sum of various local terms

H =
∑

k

hk . (28)

The index k runs over all pairs of lattice sites that are connected by some inter-
action which can be expressed by local operators. For example, in a spin model a
nearest neighbor interaction can be modeled by an interaction term

∑

〈ij〉
~Si · ~Sj,

or by a kinetic term
∑

〈ij〉 c
†
icj in a fermionic model. Here, the generic index k

is replaced by the index 〈ij〉 that runs over all nearest neighbor pairs.
Let P be a generic extensive property to be studied by a cluster expansion.

For the development of a cluster expansion, we associate each term in H1 with
an individual coefficient λk. We can then rewrite P as a formal multivariable
expansion in powers of the λk

P ({λk}) =
∑

{nk}

p{nk}
∏

k

λk
nk , (29)

where each of the nk runs over all non-negative integers.
A cluster C is a non-empty set of indices k. Thus, a cluster is a set of

connected sites, but not necessarily connected itself. By reorganizing the terms
in equation (29), one can formulate a cluster expansion

P ({λk}) =
∑

C

W[P ](C) . (30)

The cluster weight W[P ](C) contains all terms in the former multivariable ex-
pansion for P in equation (29) which have at least one power of λk for all the
indices k in the actual cluster and no powers of any other λk. The cluster weight
W[P ](C) can be calculated by inverting equation (30)

W[P ](C) = P (C) −
∑

C′⊂C

W[P ](C
′) . (31)

Thus, the cluster weight is given by calculating the property P (C) on the cluster
C and subtracting all the weights of the subclusters C ′ of C.

The crucial feature of the cluster weights is that if a cluster C contains n
edges, that is that there are n indices of terms in H1, it will contribute first in
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Figure 2: Two equivalent graphs.

order λn. The explicit subtraction of subclusters sets all coefficients of λ0, λ1,
. . ., λn−1 to zero. Thus, to obtain an expansion of P/N which is correct to order
n one has to sum up the cluster weights only from clusters with up to n edges.
Here N is the system size.

2.2.1 Canonical clusters

By explicitely defining a multivariable expansion we have introduced the concept
of a cluster expansion. Now we can simplify the above expansions by setting all λk

equal to λ. Topologically equivalent clusters will then give identical contributions
to the expansion.

Two clusters G and H are called (topologically) equivalent if there is a map-
ping M of the vertices of G to the vertices of H such that M(G) and H are
identical. Clusters related by basic symmetries such as translations and various
reflections are obviously equivalent by this definition.

In the following we will identify sets of equivalent clusters by a single canonical
representative C̃. The number of clusters from this set covering an arbitrary (but
fixed) site on the infinite lattice is called the lattice constant1 of the cluster, L(C̃).
Thus, the lattice constant equals the number of embeddings of the cluster C̃ on
the underlying lattice.

In terms of canonical representatives the cluster expansion for the property

1This lattice constant reflecting geometric properties of a cluster embedded on a lattice is

not to be confused with the lattice constant describing the lattice spacing.
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P on the infinite lattice is expressed as

P (λ)/N =
∑

C̃

L(C̃) ·W[P ](C̃) , (32)

where N is the system size.

2.2.2 Linked cluster theorem

For a number of ground state properties it turns out that disconnected clusters
have vanishing cluster weights and only a finite number of connected clusters
has to be considered in the actual expansion.

In general, properties that are additive for disjoint unions of non-empty clus-
ters have a connected or linked cluster expansion. The linked cluster theorem is
given by

PC = PA + PB ⇒ W[P ](C) = 0 , (33)

which is easily proved by the following argument

W[P ](C) = PC −
∑

C′⊂C

W[P ](C
′)

= PA −
∑

C′⊆A

W[P ](C
′) + PB −

∑

C′⊆B

W[P ](C
′)

= 0 .

A cluster is called disconnected if the cluster Hamiltonian HC can be ex-
pressed as a sum of disjoint subcluster Hamiltonians acting on direct product
spaces

HC = HA ⊗ IB + IA ⊗HB , (34)

where IA and IB are identity operators on the subclusters A and B. The ground
state wavefunction for such a disconnected cluster C can be written as

|ψC〉 = |ψA〉 ⊗ |ψB〉 . (35)

This directly implies that the ground state energy obeys the linked cluster theorem
and that there is a linked cluster expansion for the ground state energy.

Let us now briefly summarize the linked cluster approach in various particle
sectors.
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Figure 3: Decomposition of a one-particle matrix element into irreducible compo-
nents as given by equation (40). The round box denotes the full matrix element,
the square boxes the irreducible matrix elements, and the single line denotes a
delta function.

2.2.3 Ground state energy

The ground state energy E0 is a simple extensive quantity which obeys the linked
cluster theorem (33), that is:

EC
0 = EA

0 + EB
0 , (36)

where EC
0 is the ground state energy on a cluster C composed of two discon-

nected subclusters A and B. Thus, one can perform a linked cluster expansion as
outlined above [2, 5]. An efficient recursive algorithm to generate a perturbation
series for the ground state energy involves the following steps:

i) Generate a list of canonical clusters {C̃}, along with their lattice constants
L(C̃), appropriate to the problem at hand [11];

ii) For each cluster C̃, the diagonal entry in the 0-particle sector of H eff gives

a perturbation series for the energy E C̃
0 ;

iii) Calculate the cluster weight W[E0](C̃) by subtracting all subcluster contri-

butions to E0(C̃) according to equation (31);

iv) Summarize all cluster weights as in equation (32) to obtain the desired
perturbation series for E0.

2.2.4 One-particle excited states

It turns out that the effective Hamiltonian constructed by a similarity transforma-
tion (see previous section) is not an additive property obeying the linked cluster
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theorem (33). For a cluster C that is the disjoint union of the subcluster A and
B

Heff

C =
[
Heff + eBI

]

A
⊕
[
Heff + eAI

]

B
6= Heff

A ⊕Heff

B , (37)

where eA denotes the ground state energy of cluster A and I is the identity
operator. Thus, Heff itself does not have a cluster expansion.

Gelfand [7] demonstrated how to generalize the method to one-particle ex-
cited states. Let

E1(i, j) = 〈j|Heff(1)|i〉 (38)

be the matrix element of Heff between initial one-particle state |i〉 and final one-
particle state |j〉, labeled according to their positions on the lattice. The excited
state energy is not extensive and does not obey the cluster addition property, but
there is a related quantity which does. If cluster C is made up of disconnected
subclusters A and B, and states |i〉 and |j〉 reside on cluster A, then

EC
1 (i, j) = EA

1 (i, j) + EB
0 . (39)

However, if we define the irreducible one-particle matrix element (Fig. 3)

∆1(i, j) = E1(i, j) − E0δi,j , (40)

it is given by
∆C

1 (i, j) = ∆A
1 (i, j) , (41)

whereas if |i〉 and |j〉 reside on cluster B, we obtain

∆C
1 (i, j) = ∆B

1 (i, j) , (42)

or in general
∆C

1 (i, j) = ∆A
1 (i, j) + ∆B

1 (i, j) , (43)

where ∆1(i, j) vanishes for any cluster not containing i and j. Note that a one-
particle state cannot vanish on one subcluster and reappear on the other, after
the initial block diagonalization.

From the cluster addition property (43) it follows that the elements ∆1(i, j)
can be expanded in terms of contributions from connected clusters alone. They
can be calculated efficiently by an analogous algorithm to the one outlined for
the ground state energy.
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Figure 4: Decomposition of two identical particle matrix element into irreducible
components as given by equation (45). Notation as in Fig. 3

2.2.5 Two-particle states

The generalization to two-particle states is now a straight forward extension. Let

E2(i, j;k, l) = 〈k, l|Heff(2)|i, j〉 (44)

be the matrix element between initial two-particle state |i, j〉 and final state |k, l〉.
To obtain a quantity obeying the cluster addition property, we must subtract the
ground state energy and one-particle contributions, to form the irreducible two-
particle matrix element [Fig. 4]:

∆2(i, j;k, l) = E2(i, j;k, l) − E0(δi,kδj,l + δi,lδj,k) − ∆1(i,k)δj,l − ∆1(i, l)δj,k

−∆1(j,k)δi,l − ∆1(j, l)δi,k . (45)

This quantity is easily found to be zero for any cluster unless i, j, k and l are
all included in that cluster and it meets the cluster addition property. Once
again, the block diagonalization ensures that two particles cannot vanish from
one cluster and reappear on another disconnected one. Thus, the matrix elements
of ∆2 can be expanded in terms of connected clusters alone, which are rooted
or connected to all four positions i, j, k, l.

2.3 Calculation of eigenvalues

While the ground state energy was directly obtained as a series in the previous
subsection, the determination of energies of the excited states still needs some
further calculations. To this end, the Schrödinger equation has to be solved for
the excited states, that is the effective Hamiltonians in the respective degenerate
manifolds need to be diagonalized. While this can be done by a simple Fourier
transformation in the one-particle sector a more sophisticated procedure needs
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to implemented in the two-particle case. We will discuss the solution of the two-
particle Schrödinger equation by using an integral equation in momentum space
or alternatively by a finite lattice approach in coordinate space.

2.3.1 One-particle states

The one-particle effective Hamiltonian can be diagonalized by a Fourier trans-
formation. We thereby obtain a series expansion of the dispersion relation in
momentum space. Assuming a homogeneous system

∆1(i, j) ≡ ∆1(δ) , (46)

where δ is the difference between positions i and j, translation invariance implies
that the momentum K is a good quantum number. The corresponding eigenstate
is obtained as:

|K〉 =
1√
N

∑

j

exp(iK · j)|j〉 , (47)

where N is the number of sites in the lattice. A Fourier transformation of the
effective one-particle Hamiltonian

Heff(|K〉) =
∑

δ

eiK·δHeff(r) , (48)

will then yield the dispersion of the one-particle excitation, ε1(K) as

ε1(K) =
∑

δ

∆1(δ) cos(K · δ) . (49)

Here we have assumed that ∆1(δ) is inversion symmetric, so that

∆1(−δ) = ∆1(δ) . (50)

2.3.2 Two-particle states: Integral equation in momentum space

The calculation of the eigenvalues in the two-particle sector requires a more
elaborated implementation. First, we describe a procedure to obtain an integral
equation in momentum space. This approach is similar to one used by Mattis
[14].

Consider an unsymmetrized state of non-identical particles, types a and b.
Then there are N(N − 1) states on an N -site lattice, labeled by positions |i, j〉,
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where i, j refer to the positions of particles a and b, respectively. We have
assumed here that two particles may not reside at the same position (the results
are easily amended if this is not the case). Then the irreducible two-particle
matrix element is

∆ab
2 (i, j;k, l) = Eab

2 (i, j;k, l) − E0δi,kδj,l − ∆a
1(i,k)δj,l − ∆b

1(j, l)δi,k . (51)

Let the two-particle eigenstate be

|ψ〉 =
∑

i,j

fij|i, j〉, (i 6= j) , (52)

which can be substituted in the Schrödinger equation

Heff |ψ〉 = E|ψ〉 . (53)

By taking the overlap with 〈i, j| one obtains

(E−E0)fij−
∑

k6=j

∆a
1(k, i)fkj−

∑

k6=i

∆b
1(k, j)fik =

∑

k,l

∆ab
2 (k, l; i, j)fkl , (i 6= j) .

(54)
The completion of the sums on the left-hand side leads to

(E − E0)fij −
∑

k

[∆a
1(k, i)fkj + ∆b

1(k, j)fik]

=
∑

k,l

∆a,b
2 (k, l; i, j)fkl − ∆a

1(j, i)fjj − ∆b
1(i, j)fii , (55)

The fictitious amplitudes fii are introduced to simplify the calculations, and are
taken to be defined by these equations [14].
Now we define a center-of-mass position coordinate

R =
1

4
(i + j + k + l) , (56)

and relative coordinates

r =
1

2
(i + j − k − l) ,

δ1 = i − j , (57)

δ2 = k − l .
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Furthermore, translation invariance implies that

∆2(i, j;k, l) ≡ ∆2(r, δ1, δ2) . (58)

Next, perform a Fourier transformation,

f(K,q) =
1

N

∑

i,j

ei(k1·i+k2·j)fij , (59)

where K,q are the center-of-mass and relative momenta

K = (k1 + k2) ,

q =
1

2
(k1 − k2) . (60)

Inserting the relative coordinates and momenta into equation (55) we obtain the
generic form of the integral equation
(

E − E0 −
∑

δ

∆a
1(δ) cos(K · δ/2 + q · δ) + ∆b

1(δ) cos(K · δ/2 − q · δ)

)

f(K,q)

=
1

N

∑

q′

f(K,q′)

(
∑

r,δ1,δ2

∆ab
2 (r, δ1, δ2) cos(K · r + q · δ1 − q′ · δ2)

−
∑

δ

∆a
1(δ) cos(K · δ/2 + q · δ) + ∆b

1(δ) cos(K · δ/2 − q · δ)

)

,

(61)

where we have again assumed inversion symmetry

∆a,b
1 (δ) = ∆a,b

1 (−δ) ,

∆ab
2 (r, δ1, δ2) = ∆ab

2 (−r,−δ1,−δ2) . (62)

Finally, we can simplify the integral equation (61) by considering definite ex-

change symmetries of the two-particle states. We will take into account sym-
metric and antisymmetric states as well as the case of identical particles.

Symmetric states
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For symmetric states the amplitudes of the two-particle states obey

fij = +fji (63)

and therefore
f(K,q) = +f(K,−q) . (64)

Averaging over f(K,±q) (i.e. taking 1
2
[f(K,q)+f(K,−q)]) the integral equa-

tion (61) is simplified as

(

E − E0 −
∑

δ

[∆a
1(δ) + ∆b

1(δ)] cos(K · δ/2) cos(q · δ)

)

f(K,q) =

1

N

∑

q′

f(K,q′)

(
∑

r,δ1,δ2

∆ab
2 (r, δ1, δ2) cos(K · r) cos(q · δ1) cos(q′ · δ2)

−
∑

δ

[∆a
1(δ) + ∆b

1(δ)] cos(K · δ/2) cos(q · δ)

)

. (65)

Antisymmetric states

For antisymmetric states the amplitudes of the two-particle states we use

fij = −fji (66)

which implies
f(K,q) = −f(K,−q) . (67)

Averaging over f(K,±q) (i.e. taking 1
2
[f(K,q)−f(K,−q)]) the integral equa-

tion (61) can be written as

(

E − E0 −
∑

δ

[∆a
1(δ) + ∆b

1(δ)] cos(K · δ/2) cos(q · δ)

)

f(K,q) =

1

N

∑

q′

f(K,q′)
∑

r,δ1,δ2

∆ab
2 (r, δ1, δ2) cos(K · r) sin(q · δ1) sin(q′ · δ2) . (68)

Identical particles

19



If the particles a and b are identical, the solution is the same as for symmetric
states except that the labels a and b can now be dropped. However, to avoid
double counting it turns out that the ∆2 term must be adjusted by an extra
factor 1/2:

(

E − E0 − 2
∑

δ

∆1(δ) cos(K · δ/2) cos(q · δ)

)

f(K,q) =

1

N

∑

q′

f(K,q′)

(

1

2

∑

r,δ1,δ2

∆2(r, δ1, δ2) cos(K · r) cos(q · δ1) cos(q′ · δ2)

− 2
∑

δ

∆1(δ) cos(K · δ/2) cos(q · δ)

)

. (69)

Solving the integral equation

The above integral equations can be solved, for a given value of K, using
standard discretization techniques. Instead of using the continuous momentum
q, one can use N discretized and equally spaced values of momentum. This
way one only needs to compute the eigenvalue and eigenvector of an N × N
matrix for the discretized system. Although the matrix is non-symmetric due to
the artificially introduced fii term in Eq. (55), the eigenvalues obtained from
this matrix are real. The solutions of the integral equation include an unphysical
one with eigenvalue equal to 0 which is ascribed to the unphysical fii terms. As
N → ∞ the results obtained from the calculation with discretized momenta will
converge to those with continuous momentum. Actually for those bound states
with finite coherence length, the calculation will normally be well converged for
quite small values of N , but for unbound states, we have an infinite coherence
length, so one may need to do finite N extrapolations to get results at N = ∞.

The eigenvalues of the discretized N ×N matrix can be evaluated by using
standard numerical techniques. Nevertheless, this approach is restricted to cal-
culate eigenvalues for fixed values of the coupling constant λ and momentum
K. That is, we perform a naive sum for the series of ∆1 and ∆2. Since we do
not obtain explicit series for the energies we can not benefit from using series
extrapolation techniques. As a consequence, one may not be able to reach a
region of critical coupling.

Analyzing the solutions of the integral equation one generally finds a two-
particle continuum which is delimited by the maximum (minimum) energy of two
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single particle excitations whose combined momentum is the center of mass mo-
mentum. Apart from the unphysical eigenvalue, there may be multiple solutions
above or below the two-particle continuum. Those solutions with energy below
the bottom edge of the continuum are bound states, while the solutions with
energy higher than the upper edge of the continuum are called antibound states.
The binding energy is defined as the energy difference between the lower edge of
the continuum and the energy of the bound state, while the antibinding energy
is defined as the energy difference between the upper edge of continuum and the
energy of the respective antibound state.

Note that the series for ∆2 may depend on the transformation used to block
diagonalize the Hamiltonian. If we compute ∆2 to order n, the resulting series
for the two-particle energy obtained from the above integral equation will have
two parts: the part up to order n which is independent of the transformation,
and the higher order terms which are incomplete and may be transformation
dependent. Further note that the series for ∆2 need not have any singularities.
The singularities, if they exist, arise in the solution of the Schrödinger equation.
Thus, our method should be able to explore new bound states separating from
the continuum as we vary the momentum K. If we get a numerical solution,
rather than a series solution, of the Schrödinger equation, we should also be
able to explore new bound states as we increase λ as long as the naive sum to
the series converges. Examples of both scenarios are presented in the following
chapters.

2.4 Series extrapolation

The perturbative calculations using the cluster expansion method result in a
truncated series which usually is a polynom in some variable λ. The series is
correct in the limit λ → 0, but we have only very limited information about the
radius of convergence. Thus, it is a standard way to extrapolate the polynomials
by Padé or Dlog-Padé approximants [15].

In general a Padé approximant to some finite series is a rational function

f(λ) =
pN(λ)

qM(λ)
, (70)

where pN(λ) and qM(λ) are polynoms in λ of degree Nand M respectively. pN

and qM are chosen in a way that the coefficients of the Taylor series expansion
of f match the coefficients of the approximated series up to the given order.
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Given the degree [N/M] of the polynoms pN and qM the Padé approximant f
is uniquely defined. Evaluating a set of different [N/M]-Padé approximants can
give valuable information on the stability of the approximation.

If one assumes that the series obeys a power-law dependency without restrict-
ing the exponent, it is more suitable to evaluate Dlog-Padé approximants. Given
a series s(λ) that contains a power-law dependency of the form

s(λ) = f(λ) · (λ− λc)
ν ,

where f(λ) is a polynom in λ we differentiate the logarithm of s(λ)

Dlog s(λ) =
f ′(λ)

f(λ)
+

ν

λ− λc

=
pN (λ)

qM (λ)
.

The obtained series is a rational function which can be approximated by Padé
approximants pN (λ)

qM (λ)
. The power-law exponent ν can be evaluated by

ν = resλc

(
f ′(λ)

f(λ)
+

ν

λ− λc

)

=
pN(λc)

q′M(λc)
, (71)

where λc is a critical point, that is a pole of the Padé approximant.
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