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I. INTRODUCTION

This paper examines instabilities of t-J-V models on the square lattice to arbitrary or-

derings in the spin-singlet, particle-hole channel. Our analysis allows for charged stripes,2

checkerboard and bond density waves,3–5 Ising-nematic order,6–8 staggered flux states,9–14

and states with spontaneous currents.15

In our works1,16,17, ordering wavevectors associated with hot spots on the Fermi surface

play a special role (see Fig. 1).

FIG. 1: Fermi surface with t1 = 1, t2 = −0.32, t3 = 0.128, and µ = −1.11856. For this dispersion

we have Q0 = 4π/11.

II. RPA ANALYSIS

This section will carry out a computation similar to that in Ref. 16, but we will work with

a more general Hamiltonian and use a slightly different formalism. We consider electrons

ciα on the sites, i, of a square lattice, with α =↑, ↓ the spin index, and repeated spin indices,
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α, β . . ., are implicitly summed over. We work with the following Hamiltonian

H = Ht +HC +HJ

Ht = −
∑
i,j

tijc
†
iαcjα − µ

∑
i

c†iαciα

HC = U
∑
i

c†i↑ci↑c
†
i↓ci↓ +

∑
i<j

Vijc
†
iαciαc

†
jβcjβ

HJ =
∑
i<j

∑
a

Jij
4
σaαβσ

a
γδc
†
iαciβc

†
jγcjδ, (1)

where σa are the Pauli matrices with a = x, y, z. We will consider first, second, and third

neighbor hopping t1, t2, t3. Similarly, we have first, second, and third Coulomb and exchange

interactions V1, V2, V3 and J1, J2, and J3.

We now introduce our generalized order parameters, PQ(k) , at wavevector Q in the

particle-hole channel by the parameterization〈
c†iαcjα

〉
=
∑
Q

[∫
d2k

4π2
PQ(k)eik·(ri−rj)

]
eiQ·(ri+rj)/2. (2)

A conventional charge density wave at wavevector Q has PQ(k) independent of k so that

Eq. (2) is non-zero only for i = j. However, optimization of the bond energies requires that

we allow PQ(k) to be an arbitrary function of k in the first Brillouin zone. Here, we will

find it useful to expand PQ(k) in terms of a set of orthonormal basis functions φ`(k)

PQ(k) =
∑
`

P`(Q)φ`(k), (3)

and the coefficients P`(Q) become our order parameters. As we will shortly see, for the

Hamiltonians we work with it is only necessary to include a finite set of values of ` in

Eq. (3): we work with the 13 basis functions φ`(k) as shown in Table I.

We take the index ` = 0, 1, . . . 12. Note that the orderings with ` = 0, . . . 6 represent

charge/bond density waves which preserve time-reversal, while those with ` = 7, . . . 12 rep-

resent states with spontaneous currents which break time-reversal.

A key step is to rewrite the interaction terms in Eq. (1) in the following form

HJ +HC =
∑
k,k′,q

12∑
`=0

φ`(k)φ`(k
′)

[∑
a

J`
8
c†k′−q/2,α σ

a
αβ ck−q/2,β c

†
k+q/2,γ σ

a
γδ ck′+q/2,δ

+
V`
2
c†k′−q/2,α ck−q/2,α c

†
k+q/2,β ck′+q/2,β

]
(4)
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` φ`(k) J` V`
0 1 0 U

1 cos kx − cos ky J1 V1

2 cos kx + cos ky J1 V1

3 2 sin kx sin ky J2 V2

4 2 cos kx cos ky J2 V2

5 cos(2kx)− cos(2ky) J3 V3

6 cos(2kx) + cos(2ky) J3 V3

` φ`(k) J` V`

7 sin kx − sin ky J1 V1

8 sin kx + sin ky J1 V1

9 2 cos kx sin ky J2 V2

10 2 sin kx cos ky J2 V2

11 sin(2kx)− sin(2ky) J3 V3

12 sin(2kx) + sin(2ky) J3 V3

TABLE I: Relevant basis functions

�`(k)

↵ �

�m(k0)T`m(Q)

k � Q/2

k + Q/2 k0 + Q/2

k0 � Q/2

�↵

↵ �

k � Q/2

k + Q/2 k0 + Q/2

k0 � Q/2

�↵

�`(k) �m(k0)

↵ �

k � Q/2

k + Q/2 k0 + Q/2

k0 � Q/2

�↵

p � Q/2

p + Q/2

�`(p) �n(p)�`(k) �m(k0)Tnm(Q)= + ⇧`n(Q)

�

k � Q/2

k + Q/2 k0 + Q/2

k0 � Q/2

�

�`(k) �m(k0)

↵ �

k � Q/2

k + Q/2 k0 + Q/2

k0 � Q/2

�↵

p � Q/2

p + Q/2

�`(p) �n(p)�`(k) �m(k0)Tnm(Q)+ ⇧`n(Q)+
↵

↵

FIG. 2: Schematic equation for the T -matrix in the spin-singlet particle-hole channel with total

momentum Q

where the φ`(k) are 13 orthonormal basis functions in Table I, and J` and V` are the

corresponding couplings shown in Table I. The appearance of a finite set of basis functions

in Eq. (4) is the reason we are able to truncate the expansion in Eq. (3).

We can now use the basis φ`(k) to also decompose the Bethe-Salpeter equation in the

spin-singlet, particle-hole channel, as shown in Fig. 2. The eigenmodes of the resulting

T -matrix T`m(Q) will determine the structure of the ordering, P`(Q) at the wavevector Q.
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Summing ladder diagrams for both direct and exchange interactions we obtain

T`m(Q) =

(
3

4
J` + V`

)
δ`m − 2δ`,0δm,0W (Q) (5)

+
1

2

12∑
n=0

(
3

4
J` + V`

)
Π`n(Q)Tnm(Q)− δ`,0

12∑
n=0

W (Q)Π0n(Q)Tnm(Q)

where

W (Q) ≡
12∑
`=0

V`φ`(0)φ`(Q) (6)

is the direct interaction, and Π`m(Q) is a 13 × 13 matrix which is the polarizability of the

Hamiltonian HC

Π`m(Q) = 2
∑
k

φ`(k)φm(k)
f(ε(k −Q/2))− f(ε(k + Q/2))

ε(k + Q/2)− ε(k −Q/2)
(7)

with ε(k) is the single particle dispersion:

ε(k) = −2t1(cos(kx) + cos(ky))− 4t2 cos(kx) cos(ky)− 2t3(cos(2kx) + cos(2ky))− µ. (8)

We choose the dispersion ε(k) to have hot spots which intersect the magnetic Brillouin zone

boundary, as shown in Fig. 1. The hot spots for this dispersion are separated by the vectors

shown with Q0 = 4π/11. Note that Q0 is simply a geometric property of the Fermi surface,

and plays no special role in the Hamiltonian.

By rearranging terms in Eq. (5), we see that the charge-ordering instability is determined

by the lowest eigenvalues, λQ of the matrix

δ`m −
1

2

(
3

4
J` + V`

)
Π`m(Q) + δ`,0W (Q)Π0m(Q), (9)

and the Pm(Q) are determined by the corresponding right eigenvector. The values of λQ

are shown in Figs. 3 and 4 for the metallic state with the Fermi surface in Fig. 1.

In Fig. 3 we consider a case with vanishing on-site interactions, as in Ref. 16. As found

previously, the lowest eigenvalue is at Q ≈ (Q0, Q0) and the corresponding eigenvector is

purely d-wave.

We turn on Coulomb interactions in Fig. 4, while keeping other parameters the same.

The main change is that the eigenvalues near Q = (π, π) become significantly smaller. The

eigenvectors in this region of Q break time-reversal16, and the eigenvector at Q = (π, π)

is PQ(k) = sin(kx) − sin(ky). Some intuition about which wavevector is favored with the
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FIG. 3: Lowest eigenvalues, λQ, of the 13×13 matrix in Eq. (9) at a temperature T = 0.06. The

Fermi surface is as in Fig. 1, and the interaction couplings are J1 = 0.5, J2 = 0.2, J3 = 0.05, U = 0,

V1 = 0, V2 = 0, V3 = 0. Minimized over Q, the lowest eigenvalue is at Q = (0.38, 0.38)π; this is

very close to the value Q0 = 0.36π as determined from the Fermi surface in Fig. 1. The eigenvector

at Q = (0.38, 0.38)π is PQ(k) = 0.9996(cos(kx)− cos(ky)) + 0.0275(cos(2kx)− cos(2ky)).

corresponding eigenvector can be gained from the plots of the relevant integrand in the

instability equation.

Π(k,Q) =
f(ε(k −Q/2))− f(ε(k + Q/2))

ε(k + Q/2)− ε(k −Q/2)
(10)

in Fig. 5.

In both Figs. 3 and 4, there is a ridge of minima extending from (Q0, Q0) to (0, Q0), and

also to (Q0, 0). The latter wavevectors are close to the experimentally observed values.18 At

the wavevector Q = (0, Q0), the charge ordering eigenvector for Fig. 4 is

PQ(k) = −0.352− 0.931
[
cos(kx)− cos(ky)

]
+ 0.017

[
cos(kx) + cos(ky)

]
(11)

− 0.168 cos(kx) cos(ky)− 0.028
[
cos(2kx)− cos(2ky)

]
+ 0.029

[
cos(2kx) + cos(2ky)

]
.

So the largest component at this Q remains a d-wave on the nearest neighbor bonds, but

now there is a significant on-site density wave.
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FIG. 4: As in Fig. 3, with all parameters the same apart from U = 1, V1 = 0.4, V2 = 0.2,

and V3 = 0.05. Minimized over Q, the lowest eigenvalue is again at Q = (0.38, 0.38)π and the

corresponding eigenvector is PQ(k) = 0.9995(cos(kx)−cos(ky))+0.0312(cos(2kx)−cos(2ky)). Now

there are also small, but slightly larger, eigenvalues near Q = (π, π) with eigenvectors which break

time-reversal.

There is also a local minimum in Fig. 4 at Q = (π, π). Here the eigenvector is

PQ(k) = sin(kx)− sin(ky). (12)

This represents the “staggered flux” state of Refs. 9–14. This state was called a “d-density

wave” in Ref. 12, which is an unfortunate terminology from our perspective. With our

identification of the bond expectation values in Eq. (2), this state is actually a p-density

wave,16 as is evident from Eq. (12).
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