Edge States

Classical Picture

skipping orbit

\[\text{gh} \quad \Rightarrow \text{propagating state} \quad \text{"one way"} \]

Topological boundary modes

\[
m_+ = -m_-
\]

\[n = 1 : \text{QHE} \quad x \]

\[m_+ = +m_- \quad n = 0 : I \]

\[\text{band inversion} \]

\[m_+(x) \]

\[h = \nu_F \left(-i \sigma_x d_x + k_y \sigma_y \right) + m_+(x) \sigma_z \]

Same as Jackiw-Rebbi for fixed \(k_y \).

Zero mode \[\psi \] of \[e^{i \frac{k_y y}{E} - \int_{m(x)}^{0} \frac{m(x)}{v} \text{d}x} \]

\[|\sigma_i \rangle \]
\[E \left| \psi \right> = +v_F k_y \left| \psi \right> \]

Chiral Dirac Fermion

Other edge: \[\frac{1}{2} \left(\left| \psi^+ \right> - \left| \psi^- \right> \right) \]

\[E = -v_F k_y \]

Chiral Dirac Fermion

1. One way: no choice but to go forward
2. Robust: Insensitive to disorder (nowhere to go)
 Impossible to localize
3. Impossible in purely 1D:
 Fermion doubling theorem: What goes up must go down
 Evaded by spatially separating right & left movers.
Concrete model: Haldane model on a strip

Chiral edge modes $N_L - N_R$ is topo invariant

Bulk-Boundary Correspondence

Boundary invariant Δ Bulk invariant

$N_L - N_R = \Delta N$
Generalizations

1. 3D layered unit cell states (Halperin)

\[n_z = \int \frac{dk_x dk_y}{k^2} F(k_x, k_y, k_z) \]

In general, \((n_x, n_y, n_z)\) define reciprocal lattice vector

\[G = x \hat{a} + y \hat{b} + z \hat{c} = \frac{2\pi}{a} (n_x, n_y, n_z) \]

Miller indices for lattice planes

Chiral surface states
\[d = 4 : \quad \text{4D IQHE (Zhang, Hu '01)} \]

\[A_{ij} = \langle u_i | \nabla_{ij} | u_j \rangle \, dk \]

- **Non-Abelian Berry Connection 1-form**

\[F = dA + A \wedge A : \quad \text{Non-Abelian Berry Curvature 2-form} \]

\[n = \frac{1}{8\pi^2} \int \text{Tr} [F^2] \in \mathbb{Z} \]

- **2nd Chern Number**

- **Integral of 4-form over 4D BZ**

Boundary States: 3+1D chiral Dirac Fermions
- (single Weyl point)

Higher D:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

- **A**

All

\[Z \, \, \, \, \, \, \, \, Z \, \, \, \, \, \, \, Z \]

- **``Bolt Periodicity: \(d \rightarrow d + 2 \)``**
Topological Defects

Imagine a Band Structure that varies slowly in real space.

\[H = H \left(\frac{1}{k}, s \right) \]

1 parameter family of 3D Bloch Hamiltonians

2nd Chern number: \[n = \frac{1}{8\pi^2} \int_{T^3 \times S^1} Tr \left[F \wedge F \right] \]

Generalized bulk-boundary correspondence:

\[n \rightarrow \# \text{chiral modes bound to defect line} \]

Example: 3D IQHE

\[n = \frac{1}{2\pi^2} G \cdot B \]

Burgers' Vector

3D Chern # Burgers' Vec.
Quantum Spin Hall Insulator

Energy Gaps in Graphene $\mathcal{H} = \epsilon_{\sigma} \sigma_x q_x + \sigma_y q_y + V$

1. $V = m_{CPW} \sigma_z$
 \Rightarrow IQHE (Break P)

2. $V = m_{H} \sigma_z \tau_z$
 \Rightarrow IQHE (Break T)

3. Intrinsic spin-orbit interaction
 $V = m_{SO} \sigma_z \tau_z S_z$ (Respects all symmetries)

\[
\mathcal{H} = \begin{pmatrix}
\mathcal{H}_{\uparrow} & 0 \\
0 & \mathcal{H}_{\downarrow}
\end{pmatrix} = \begin{pmatrix}
\mathcal{H}_{\text{Haldane}} & 0 \\
0 & \mathcal{H}_{\text{Haldane}}^\ast
\end{pmatrix}
\]

Is it an artifact of S_z conservation?
Time Reversal Symmetry \[[H, \Theta] = 0 \]

\[\Theta \psi = e^{i \pi S_y} \psi^* \]

\[\text{Spin } \frac{1}{2}: \quad \Theta \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = \begin{pmatrix} \psi_+ \\ -\psi_- \end{pmatrix} \]

\[\Theta^2 = -1 \quad \text{(Same minus sign \text{!})} \]

Kramers' Theorem:

For spin \(\frac{1}{2} \) all states are at least 2-fold degenerate.

Simple without spin-orbit, but non-trivial with spin-orbit.

Proof: If \(|\psi\rangle \) is non-degenerate, then

\[\Theta |\psi\rangle = c |\psi\rangle \]

\[\Theta^2 |\psi\rangle = c^* \Theta |\psi\rangle = |c^2 |\psi\rangle \]

\[\Theta^2 \Theta = |c^2 \neq -1 \]

Contradiction
Consequence for edge states

1. Crossing of edge state is protected
2. Absence of elastic backscattering
3. Absence of localization even for strong disorder

\[
\begin{align*}
\Psi_{in} \quad \text{disordered region} \quad \Psi_{out}
\end{align*}
\]

Under \(\psi \): \(r \rightarrow -r \Rightarrow r = 0 \)

\[|t| = 1 \]

All eigenstates are extended, even for strong disorder.

What is the difference between QSHI and ordinary insulator?

- Chern number \(n = 0 \)
- There is a new \(\mathbb{Z}_2 \) invariant character \(\nu = 0 \),

\[H(k) \text{ s.t. } H(-k) = \Theta H(k) \Theta^{-1} \]
Show why there are 2 and only 2 states

conventional insulator
\[U = 0 \]

Topo Ins.
\[U = 1 \]

There are two ways for Kramers pairs to match.

Physical Meaning of \mathbb{Z}_2 Invariant Argument

Electron number parity at end changes

\Rightarrow Kramers degeneracy changes

$\Delta \Phi = \frac{\Phi_0}{2}$

Many-body states
Formula for \mathbb{Z}_2 invariant

- Block WF's \[U_n(k) \] (\(N \) bands)
- T-reversal matrix
 \[W_{mn}(k) = \langle u_m(k) | \Theta | u_n(-k) \rangle \in U(N) \]
- Antisymmetry
 \[\Theta^2 = -1 \Rightarrow W(k) = -W^T(-k) \]
- T-invariant momenta \(\vec{k} = \Lambda_a = -\Lambda_a \)

\[W(\Lambda_a) = -W^T(\Lambda_a) \]

- Pfaffian: \[\text{det} [w(\Lambda_a)] = (\text{Pf}[w(\Lambda_a)])^2 \]
 (i.e. \[\text{det} \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} = z^2 \])

- Λ_a-parity: \[\frac{\text{Pf}[w(\Lambda_a)]}{\sqrt{\text{det}[w(\Lambda_a)]}} = \mp \]
 \[\delta(\Lambda_a) \]
Gauge Dependent Product:

\[S(\Lambda_a) S(\Lambda_b) \]

Fixes \(\sqrt{ } \) ambiguity, but not invariant under large gauge transformations

(Anaologous to polarization \(\epsilon^a \phi^a \phi^a \))

\[Z_2 \text{ Invariant} \]

\[(-1)^{2^n} = \prod_{a=1}^{\infty} S(\Lambda_a) \]

Gauge invariant, but requires globally continuous gauge.

\(Z_2 \) is easier to compute if there is symmetry.

1. \(Z_2 \) conserved: \(n_\uparrow = -n_\downarrow \in \mathbb{Z} \)

\[\nu = n_\uparrow \mod 2 \]

2. Inversion (P):

\[(-1)^\nu = \prod_{a=1}^{\infty} \prod_n S_{2n}(\Lambda_a) \]

\(\nu \) Parity

\(\in \) Eigenvalues
HgCdTe Quantum Wells

Bernien, Hughes, Chang '96, Molenkamp et al

\[
\begin{array}{c}
\text{Hg}_x\text{Cd}_{1-x}\text{Te} \\
\text{HgTe}
\end{array}
\]

\[\begin{array}{c}
\text{CdTe} \\
\text{HgTe}
\end{array} \]

\(d < 6.3 \text{ nm: Normal band order} \quad d > 6.3 \text{ nm: Inverted} \)

\[\begin{array}{c}
E \\
p \\
s
\end{array} \]

\[\begin{array}{c}
p \\
s \\
E
\end{array} \]

\(\Pi \xi = 1 \)

\(\Pi \xi = -1 \)

\[\begin{array}{c}
I \\
T
\end{array} \]

BHJ model describes band inversion. Symmetry allowed spin-orbital

\[H = (m + k^2) \tau^2 + V T \tau \frac{1}{\delta} \cdot \mathbf{k} \]

\[\tau^2 = \begin{cases}
 +1 & \text{if } m > 0 \text{ (uninverted)} \\
 -1 & \text{if } m < 0 \text{ (inverted)}
\end{cases} \]
3D TI

Consider surface BZ

Lots of Dirac Pts: but How do they connect?

1. Trivial insulator:
 (Possibly) no surface states

2. Weak TI

 2D TI p^2

 Enclose 2/4 dirac pts.

Similar to layered 3D QH. 3 \mathbb{Z}_2 invariants

$$G = \frac{2\pi}{a} \left(\hat{x}_1 \hat{x}_2 \hat{y}_1 \hat{y}_2 \right) \text{ "Mod 2 reciprocal lattice vector"}$$

Can be evaluated by considering 2D time reversal invariant planes in 3D B.Z.
\[\nu (k_z = 0) \equiv \nu (k_z = \frac{\pi}{a}) = \nu \equiv \nu_0 = -1 \]

Strong T

Surface Fermi surface encloses a single Dirac PT.

1. Protected by \(T \)

2. Impossible to localize

3. Violates doubling Thm:

 can't have single Dirac Pt. protected by \(T \) in 2D.

Dirac Pts are nice, but even more interesting when you kill them by lowering symmetry.
Break T:

1. Surface QH effect (orbital field)

\[B \rightarrow \text{O.L.L. (non-degenerate)} \]

\[\sigma_{xy} = \frac{e^2}{h} \left(n + \frac{1}{2} \right) \] Fractional IQHE?

Resolution: Surface can't have boundary

Zeeman Field

\[H = H_{\text{Zeeman}} + m \mathbf{\sigma}_z \]

Domain Wall

\[\begin{array}{c}
\text{Chiral mode}
\end{array} \]
Barel Gauge Symmetry \Rightarrow S.C.

$$H_{\text{BdG}} = \tau_z \left(\vec{v}_f \cdot \vec{p} - \mu \right) + \tau_x \Delta_1 + \tau_y \Delta_2$$

S.C. order parameter $\Delta = \Delta_1 + \Delta_2 = \left| \Delta \right| e^{i\phi}$

Similar to spinless p-wave

$$\text{spinless: } \langle c_{k} c_{-k} \rangle \sim \Delta e^{i\phi} \left(k_x + i k_y \right)$$

Ordinary S.C.

$$\langle c_{k\downarrow}^\dagger c_{k\downarrow} \rangle = \Delta e^{i\phi}$$

TI surface

$$\langle c_{k\uparrow}^\dagger c_{-k\uparrow} \rangle = \Delta e^{i\phi}$$
0D Majorana Bound States

1. Vortex on surface of \mathcal{F} 3D T_1

\[\text{SC} \downarrow \text{ch}12e \uparrow 0 \rightarrow \text{Majorana Bound State} \]

(Jackiw & Rossi) for $\mu=0$

2. S.C. - Magnet on edge of 1D T_1

\[\text{SC} \downarrow \text{M} \uparrow \text{2DT}_1 \rightarrow \text{Majorana Bound State} \]
3. 1D chiral Majorana on surface of 3D Ti

Like edge of ptip S.C.

Role of vacuum in ptip played by magnetic gap. T broken on outside instead of inside S.C.