
S. E. Palmer, April 22, 2019 Notes on efficient encoding

These notes will take you through our calculation of the optimal stimulus transform, Φ(m), of
a stimulus message, m, that maximizes the response, r, entropy, S(r), in a Gaussian channel. We
learned at the end of class that some neurons in the fly visual system actually obey this optimal
relationship between the stimulus distribution, P (m), and the response, r(m).

Preliminaries: We started class by reviewing some results from information theory. We asserted
a few facts that are easy enough to prove on your own, like the overly-fancily-labeled Bayes’ Rule,
which follows very simply from the fact that P (A,B) = P (B,A), and an identity on the joint
probability, P (A,B) = P (A|B)P (B):

P (A|B) =
P (B|A)P (A)

P (B)
(1)

Next, we defined the average uncertainty about some variable X that takes values xi. The formula
for the average uncertainty about X’s value is its entropy,

S(X) = −
∑
i

P (xi) log2 P (xi). (2)

We noted that the choice of the base for the logarithm really doesn’t matter, but most info
theory works choose base 2, so your entropies and information quantities are in units of ‘bits’.
Using the natural logarithm gives you ‘nats’ or ‘nits’. Using base 10 yields ‘dats’ or ‘dits’. For
obvious reasons, folks never use ‘bats’ to describe base 2 units of information.

The mutual information between two variables X and Y can be understood as the generalized
correlation between these variables (to all orders), or perhaps more intuitively, the reduction in
uncertainty about one variable provided by knowing the other. The mutual information has the
form

I(X;Y ) = S(X)− 〈S(X|Y )〉y. (3)

It’s a positive quantity (see separate notes that prove this using Gibb’s inequality; you can also
prove this using Jensen’s inequality), it’s symmetric, and it’s a special case of the Kullback-Leibler
divergence (DKL), between two distributions. You can see this last fact most easily by rewriting
the mutual information in terms of the joint distribution of X and Y to yield

I(X;Y ) =
∑
i,j

P (xi, yj) log2

(
P (xi, yj)

P (xi)P (yj)

)
. (4)

The DKL has the form

DKL(P ||Q) =
∑
i

P (xi) log
P (xi)

Q(xi)
. (5)

The mutual information is a particular instance of theDKL, where the two distributions we are com-
paring are the joint distribution, P (X, Y ), and the product of the marginals, P (X)P (Y ). Clearly,
if and only if X and Y are independent, these two distributions are eqivalent.
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Information in a Gaussian channel: We are sending messages, m, through a response
function, r, that makes some transform on the stimulus, Φ, and has noise such that

r = f(m) = Φ(m) + z, (6)

where z is independent, Gaussian noise with zero mean and variance σ2
z . Now let’s write down the

mutual information between the response and the stimulus message.

I(R;M) =S(R)− 〈S(R|m)〉m (7)

=S(R)− 〈S(Φ(m) + z|m)〉m (8)

. . . at this step we invoked the translation invariance of the entropy, because Φ(m) given a particular
m is a constant. . .

=S(R)− 〈S(Z|m)〉m (9)

=S(R)− S(Z) (10)

In the last step, we use the fact that the noise is independent of the stimulus message, m, so we
simply recover the noise entropy. If we have a fixed noise source, as we often do in biological
systems, then S(Z) is given and the only thing we can do to maximize I(R;M) is maximize
S(R). So now that we have that result, let’s derive the distribution that maximizes S(R).

We want to maximize the entropy while ensuring that the probability distribution remains
normalized, so we’ll use the method of Lagrange multipliers here, though there are other ways to
solve for the optimal P (r):

L =−
∑
i

P (ri) logP (ri)− λ

(
1−

∑
i

P (ri)

)
(11)

δL
δP (rk)

=− P (rk)

P (rk)
− logP (rk) + λ = 0 (12)

P (rk) =e1−λ (13)

where we note that the optimal P (r) doesn’t have a k dependence, i.e. is constant. To be clear,
the δ symbol here is a variational derivative, also called a functional derivative. We are trying to
compute how L changes when we vary the parameters P (rk). These are all functions of rk, so
one should be careful with notation. Here, our functional, L(P (r)), is a sum (or for the continuous
case, an integral) of some function of P (r). What we need to do is expand our functional in powers
of δP . The linear term is defined as our functional derivative. We do not encounter any dependence
of our summands (integrands) on derivatives of P (r), so our functional derivative is, in this case,
equal to the partial derivative, ∂L/∂P (r). Check out the wiki page on the Euler-Lagrange equation
if you’d like to know more. Practically speaking, you can think of this like a continuous version of
a partial derivative, and mechanically, you will take derivatives in the usual way.
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Solving for λ we have that ∑
i

e1−λ =1 (14)

Ne1−λ =1 (15)

e1−λ =
1

N
(16)

=⇒ P (rk) =
1

N
, ∀rk (17)

where N is the number of response levels. If we imagine that we have binned our response states
between 0 and some maximal response rmax using a bin size ∆r, then we have that

P (rk) =
∆r

rmax
, ∀rk (18)

We have shown that the distribution that maximizes the entropy for a discrete, normalized probabil-
ity distribution is the uniform distribution. You can show that maximizing entropy while constrain-
ing the mean rate of response, and confining responses to be greater than or equal to zero leads
to an exponential distribution of responses. Maximizing entropy while constraining the mean and
variance (and relaxing the positivity constraint) leads to a Gaussian distribution.

Keeping with our uniform maximum response entropy distribution, we now want to derive the
relationship between the response r and the stimulus. In particular, we want to derive the form of
Φ(m) that gives us a uniform distribution of P (r), for some distribution of the stimulus messages,
P (m).

We start with a continuity condition on the probability density functions for r and m, taking
the limit of small ∆r and ∆m. For a small change in the message, ∆m, the probability that the
message falls between m and m + ∆m is simply p(m)∆m. This creates a response, r, that falls
between Φ(m) and Φ(m + ∆m). The probability that the response falls in this range is p(r)∆r,
with ∆r = Φ(m+ ∆m)− Φ(m) and p(r) = p(Φ(m)). Taking this step by step:

p(r)∆r = p(m)∆m (19)

where p(r) is now the probability density function for r, p(r) = P (r)/∆r.

p(r)∆r =p(m)∆m (20)

p(r)(Φ(m+ ∆m)− Φ(m)) =p(m)∆m (21)

(22)

Now, let’s fill in the p(r) that maximizes the response entropy:

1

rmax
(Φ(m+ ∆m)− Φ(m)) =p(m)∆m (23)

(Φ(m+ ∆m)− Φ(m))

∆m
=rmaxp(m) (24)
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If Φ(m+ ∆m) ≥ Φ(m), i.e. if Φ is monotonic in m, and if ∆m→ 0, we can rewrite the left hand
side as the derivative of Φ:

dΦ

dm
=rmaxp(m) (25)

Integrating both sides yields

Φ(m) = rmax

∫ m

mmin

p(m′)dm′ (26)

This holds for monotonic Φ(m) and small ∆m. To obtain a uniform response distribution, which
we have shown maximizes the response entropy and thereby the mutual information between the
stimulus, m, and the response, r(m), the response should be the CDF of the stimulus distribution
up to the stimulus value, m. Simon Laughlin was the first to show that this response form is
actually observed in biological systems, in a seminal paper on large monopolar cells in the blowfly
retina in 1981.
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