

Continuum Description

- Represent deformation by displacement field u relative to initial positions R → Final position x(R,t) = R + u(R,t)
 Energy can only depend on derivatives of u & rotationally invariant
- Lagrangian strain $E_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} \right]$ Usually assume nonlinear term can be ignored – bad for rubber
- Elastic free energy $F = \frac{1}{2} \int d^d x K_{ijkl} E_{ij} E_{kl}$
- Elastic constants K related to phonons in $q \rightarrow 0$ limit • Stress ∂F

• Stress
$$\sigma_{ij} = \sigma_{ji} = \frac{OF}{\partial E_{ij}} = K_{ijkl}E$$

• Dynamic equation with external force **f**: $\nabla_j \sigma_{ij} + f_i = \rho(\frac{\partial}{\partial t} + v \bullet \nabla)v_i$ In steady state and absence of external force $\nabla_i \sigma_{ii} = 0$

Approaches to Finding Constitutive Laws

- •Assume linear elasticity or other simple form and fit to atomistic results. Better quality fit, smaller atomistic region.
- •Local Quasicontinuum Method Nodes coincide with "rep Calculate energy in eleme. assuming part of infinite c corresponding strain – fu

Approaches to Finding Constitutive Laws •Coarse Grained MD (Broughton, Rudd)

- Integrate out small scale degrees of freedom in advance
- Retain KE, approximate entropy
- •Curtarolo and Ceder Replace springs between eliminated atoms by effective springs between remaining atoms (a la Migdal-

Reflections in Dynamic Simulations Most of above methods consider quasi-static limit Change in representation or resolution \rightarrow reflect short wavelength phonons Want to dissipate waves smaller than element, allow transmission of longer waves For linear systems can use effective Greens function to remove entire exterior $m\ddot{x}_i(t) = -\frac{\partial V}{\partial x_i} + \int_0^t d\tau \sum_{j=1}^N \beta_{ij}(t)\dot{x}_j(t-\tau) + \sum_{j=1}^N \beta_{ij}(t)x_j(0) + R_i(t)$ where $\beta_{ij}(t)$ represents coupling between internal atoms mediated by external atoms, R = random force from ext. Cai et al. PRL 85, 3213 (2000) $\rightarrow \beta$ from simulation of entire ext. Huang and E, PRL 87, 135501 (2001) \rightarrow Simple analytic approximation for short lengths and times Minimizes reflections and transmission of q=0 modes that want

