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Thermalization and its mechanism for generic
isolated quantum systems
Marcos Rigol1,2, Vanja Dunjko1,2 & Maxim Olshanii2

An understanding of the temporal evolution of isolated many-
body quantum systems has long been elusive. Recently, meaning-
ful experimental studies1,2 of the problem have become possible,
stimulating theoretical interest3–7. In generic isolated systems,
non-equilibrium dynamics is expected8,9 to result in thermaliza-
tion: a relaxation to states in which the values of macroscopic
quantities are stationary, universal with respect to widely differing
initial conditions, and predictable using statistical mechanics.
However, it is not obvious what feature of many-body quantum
mechanics makes quantum thermalization possible in a sense ana-
logous to that in which dynamical chaos makes classical therma-
lization possible10. For example, dynamical chaos itself cannot
occur in an isolated quantum system, in which the time evolution
is linear and the spectrum is discrete11. Some recent studies4,5 even
suggest that statistical mechanics may give incorrect predictions
for the outcomes of relaxation in such systems. Here we demon-
strate that a generic isolated quantum many-body system does
relax to a state well described by the standard statistical-mechanical
prescription. Moreover, we show that time evolution itself plays
a merely auxiliary role in relaxation, and that thermalization
instead happens at the level of individual eigenstates, as first pro-
posed by Deutsch12 and Srednicki13. A striking consequence of this
eigenstate-thermalization scenario, confirmed for our system, is
that knowledge of a single many-body eigenstate is sufficient to
compute thermal averages—any eigenstate in the microcanonical
energy window will do, because they all give the same result.

If we pierce an inflated balloon inside a vacuum chamber, very
soon we find that the released air has uniformly filled the enclosure
and that the air molecules have attained the Maxwell velocity distri-
bution, the width of which depends only on the total number and
energy of the air molecules. Different balloon shapes, placements, or
piercing points all lead to the same spatial and velocity distributions.
Classical physics explains this ‘thermodynamical universality’ as fol-
lows10: almost all particle trajectories quickly begin to look alike, even
if their initial points are very different, because nonlinear equations
drive them to explore the constant-energy manifold ergodically, cov-
ering it uniformly with respect to precisely the microcanonical mea-
sure. However, if the system possesses further conserved quantities
that are functionally independent of the hamiltonian and each other,
then time evolution is confined to a highly restricted hypersurface of
the energy manifold. Hence, microcanonical predictions fail and the
system does not thermalize.

In contrast, in isolated quantum systems not only is dynamical
chaos absent owing to the linearity of time evolution and the dis-
creteness of spectra11, but also it is not clear under what conditions
conserved quantities provide independent constraints on the relaxa-
tion dynamics. On the one hand, any operator commuting with
a generic, and thus non-degenerate, hamiltonian is functionally

dependent on it14, seemingly implying that conservation of energy
is the only independent constraint. On the other hand, even when
operators are functionally dependent, their expectation values—
considered as functionals of states—generally are not: for example,
two states may have the same mean energies but different means of
squared energies. For non-degenerate hamiltonians a maximal set of
constants of motion with functionally independent expectation
values is as large as the dimension of the Hilbert space; examples
include the projectors P̂a~ Yaj i Yah j to the energy eigenstates14

and the integer powers of the hamiltonian5.
The current numerical and analytic evidence from the study of

integrable systems suggests that there exists a minimal set of inde-
pendent constraints the size of which is much less than the dimension
of the Hilbert space but may still be much greater than one. In pre-
vious work3 we showed that an isolated integrable one-dimensional
system of lattice hard-core bosons relaxes to an equilibrium charac-
terized not by the usual Gibbs ensemble but by a generalized Gibbs
ensemble. Instead of just the energy, the Gibbs exponent contains
a linear combination of conserved quantities—the occupation
numbers of the eigenstates of the corresponding Jordan–Wigner fer-
mions—the number of which is still only a tiny fraction of the dimen-
sion of the Hilbert space. Yet this ensemble works, although the usual
one does not, for a wide variety of initial conditions15 as well as for a
fermionic system16; it also explains a recent experimental result, the
absence of thermalization in the Tonks–Girardeau gas1. Thus,
although at least some constraints other than the conservation of
energy must be kept, it turns out that only a relatively limited number
of additional conserved quantities with functionally independent
expectation values are needed; adding further ones is redundant.

As it is not clear which sets of conserved quantities—and some are
always present—constrain relaxation and which do not, it becomes
even more urgent to determine whether or not generic isolated
quantum systems relax to the usual thermal state. This question
has received increased theoretical attention recently, because of the
high levels of isolation1,2,17 and control18,19 possible in experiments
with ultracold quantum gases. However, despite numerous studies of
specific models, there is not yet consensus on how or even whether
relaxation to the usual thermal values occurs for non-integrable sys-
tems7. The conventional wisdom is that it does8,9, but some recent
numerical results indicate otherwise, either under certain conditions4

or in general5.
To study relaxation of an isolated quantum system, we considered

the time evolution of five hard-core bosons with additional weak
nearest-neighbour repulsions, on a 21-site, two-dimensional lattice,
initially confined to a portion of the lattice and prepared in their
ground state there. Figure 1a shows the exact geometry (see also
Supplementary Discussion); the relaxation dynamics begins when
the confinement is lifted. Expanding the initial-state wavefunction
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in the eigenstate basis of the final hamiltonian Ĥ as
y(0)j i~

P
aCa Yaj i, where Ca~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤ t y(0)j i~

P
aCae{iEat Yaj i, where the Ea

are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable Â evolves as

Â(t)
� �

: y(t) Â
�� ��y(t)

� �
~
X

a,b

C�a Cbei Ea{Ebð Þt Aab ð1Þ

where Aab~ Ya Â
�� ��Yb

� �
and the asterisk denotes complex conjuga-

tion. The long-time average of Â tð Þ
� �

is then

Â
� �

~
X

a

Caj j2Aaa ð2Þ

We note that if the system relaxes at all, it must be to this value. We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂a~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂c~ exp {

PD
a~1 laP̂a

� �
, where la 5 2ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx 5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of Â reads

X

a

Caj j2Aaa~ Ah imicrocan E0ð Þ:
1

N E0, DE

X

a
jE0 { Eajv DE

Aaa ð3Þ

where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E0 2DE, E0 1DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalization hypo-

thesis (ETH)’12,13: the expectation value Ya Â
�� ��Ya

� �
of a few-body

observable Â in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of Â at the mean energy Ea

Ya Â
�� ��Ya

� �
~hAimicrocan Eað Þ

The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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Figure 1 | Relaxation dynamics. a, Two-dimensional lattice on which five
hard-core bosons propagate in time. The bosons are initially prepared in the
ground state of the sub-lattice in the lower-right corner and released through
the link indicated by the drawing of a door. b, The corresponding relaxation
dynamics of the central component n(kx 5 0) of the marginal momentum
distribution, compared with the predictions of the three ensembles, plotted
against ‘dimensionless time’ (in our conventions J, the hopping parameter,
has units of inverse time; see Supplementary Information). In the
microcanonical case, we averaged over all eigenstates whose energies lie
within a narrow window (see Supplementary Discussion) [E0 2DE, E0 1DE],
where E0: y(0) Ĥ

�� ��y(0)
� �

~{5:06J andDE 5 0.1J. The canonical ensemble
temperature is kBT 5 1.87J, where kB is the Boltzmann constant, meaning
that the ensemble prediction for the energy is E0. c, Full momentum
distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx 5 5 is the lattice width.
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are no general theoretical arguments supporting the ETH, some
results do exist for restricted classes of systems. For instance, the
ETH holds12 in the case of an integrable hamiltonian weakly per-
turbed by a single matrix taken from a random gaussian ensemble.
Furthermore, nuclear shell model calculations have shown that
individual wavefunctions reproduce thermodynamic predictions20.
There are also rigorous proofs that some quantum systems, whose
classical counterparts are chaotic, satisfy the ETH in the semiclassical
limit21–24. More generally, for low-density billiards in the semi-
classical regime, the ETH follows from Berry’s conjecture13,25, which
in turn is believed to hold in semiclassical classically chaotic sys-
tems26. Finally, at the other end of the chaos–integrability spectrum,
in systems solvable by Bethe ansatz, observables are smooth functions
of the integrals of motion. This allows for the construction of indi-
vidual energy eigenstates that reproduce thermal predictions27.

In Fig. 3a–c we demonstrate that the ETH is in fact the mechanism
responsible for thermal behaviour in our non-integrable system.
Figure 3c additionally shows that the second scenario mentioned
above does not occur, because the fluctuations in the EONs jCaj2
are large. Thermal behaviour also requires that both the diagonal
and the chosen thermal ensemble have sufficiently narrow energy
distributions r(E) (the product of the probability distribution and
the density of states), meaning that in the energy region where the
energy distributions r(E) are appreciable, the slope of the curve of the
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Figure 2 | Thermalization in classical versus quantum mechanics. a, In
classical mechanics, time evolution constructs the thermal state from an
initial state that generally bears no resemblance to the former. b, In quantum
mechanics, according to the ETH, every eigenstate of the hamiltonian always
implicitly contains a thermal state. The coherence between the eigenstates
initially hides it, but time dynamics reveals it through dephasing.
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Figure 3 | Eigenstate thermalization hypothesis. a, In our non-integrable
system, the momentum distribution n(kx) for two typical eigenstates with
energies close to E0 is identical to the microcanonical result, in accordance
with the ETH. b, Upper panel: the EEV n(kx 5 0), considered as a function of
the eigenstate energy resembles a smooth curve. Lower panel: the energy
distributions r(E) (in units of J21) of the three ensembles we consider here.
c, Detailed view of n(kx 5 0) (left-hand scale) and | Ca | 2 (right-hand scale)
for 20 eigenstates around E0. d, In the integrable system, the values of n(kx)
for two eigenstates, a and b, with energies close to E0 and for the

microcanonical and diagonal ensembles are very different from each other;
that is, the ETH fails. e, Upper panel: the EEV n(kx 5 0), considered as a
function of the eigenstate energy gives a thick cloud of points rather than
resembling a smooth curve. Lower panel: the energy distributions in the
integrable system are similar to the non-integrable ones depicted in b. f,
Correlation between n(kx 5 0) and | Ca | 2 for 20 eigenstates around E0. This
correlation explains why in d the microcanonical prediction for n(kx 5 0) is
larger than the diagonal one.
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EEV Aaa plotted against energy (here n(kx 5 0) plotted against
energy) does not change much; see Supplementary Discussion. As
shown in Fig. 3b, this holds for the microcanonical and diagonal
ensembles but not for the canonical ensemble, explaining the failure
of the canonical ensemble to describe the relaxation in Fig. 1. We note
that the fluctuations of the EONs jCaj2 in Fig. 3b are artificially
lowered by the averaging involved in the computation of the density
of states (compare with Fig. 3c).

To strengthen the case for the ETH, we tested another observable.
We chose it with the following consideration in mind: in our system
interactions are local in space, and momentum distribution is a
global, approximately spatially additive property. Thus, for the
momentum distribution the ETH might arise through some simple
spatial averaging mechanism. However, the ETH in fact does not
depend on spatial averaging: for our final test of the ETH we chose
an observable that is manifestly local in space, namely the expectation
value of the occupation number of the central site of the lattice. We
again found that the ETH holds (to within 3% relative standard
deviation of eigenstate-to-eigenstate fluctuations).

On the other hand, Fig. 3d–f shows how the ETH fails for an isolated
one-dimensional integrable system. The system consists of five hard-
core bosons initially prepared in their ground state in an eight-site
chain. We then link one of the ends of this chain to one of the ends of
an adjoining (empty) 13-site chain to trigger relaxation dynamics. As
Fig. 3e shows, n(kx) as a function of energy is a broad cloud of points,
meaning that the ETH is not valid; Fig. 3f shows that the second
scenario mentioned above does not occur in this system either.

Nevertheless, it might be possible for the first scenario to occur in
this case, if the averages over the diagonal and the microcanonical
energy distributions shown in Fig. 3e were to agree. Figure 3d shows
that this does not happen. This is because, as shown in Fig. 3f, the
values of n(kx 5 0) for the most-occupied states in the diagonal
ensemble (the largest values of the EONs jCaj2) are always smaller
than the microcanonical prediction, and those for the least-occupied
states are always larger. Hence, the usual thermal predictions fail
because the correlations between the values of n(kx 5 0) and jCaj2
preclude unbiased sampling of the former by the latter. These corre-
lations have their origin in the non-trivial integrals of motion that
make the system integrable and that enter the generalized Gibbs
ensemble, which was introduced in ref. 3 as being appropriate for
formulating the statistical mechanics of isolated integrable systems.
In the non-integrable case shown in Fig. 3c, n(kx 5 0) is so narrowly
distributed that it does not matter whether or not it is correlated with
jCaj2 (we have in fact seen no correlations in the non-integrable case).
Again, we note that the fluctuations of the EONs jCaj2 in Fig. 3e are
artificially lowered, relative to those shown in Fig. 3f, by the averaging
involved in the computation of the density of states.

The thermalization mechanism outlined thus far explains why
long-time averages converge to their thermal predictions. A striking

aspect of Fig. 1b, however, is that the time fluctuations are so small
that after relaxation the thermal prediction works well at every
instant of time. From equation (1), this might be suspected because
the contribution of the off-diagonal terms is attenuated by temporal
dephasing, which results from the generic incommensurability of
the frequencies of the oscillating exponentials. However, this attenu-
ation scales only as the square root of the number of dephasing terms,
and is exactly compensated for by their larger number: if the number
of eigenstates that have a significant overlap with the initial state is
Nstates, then the scaling of a typical Ca with Nstates is Caj j*1

� ffiffiffiffiffiffiffiffiffiffiffiffi
Nstates

p
,

and the sum over off-diagonal terms in equation (1) finally does not
scale down with Nstates

X

a, b
a=b

ei Ea{Ebð Þt

Nstates

Aab*

ffiffiffiffiffiffiffiffiffiffiffiffi
N 2

states

p

Nstates

A
typical
ab, a=b*A

typical
ab, a=b

where A
typical
ab, a=b is the magnitude of a typical off-diagonal matrix

element of the operator Â between energy eigenstates that have sig-
nificant overlaps with the initial state. Hence, if the magnitudes of the
diagonal and off-diagonal terms were comparable, their contribu-
tions would also be comparable, and time fluctuations of the average
would be of the order of the average. However, this is not the case,
and thus

A
typical
ab, a=b=Atypical

aa

where Atypical
aa is the magnitude of a typical diagonal matrix element of

the operator Â for an energy eigenstate that has a significant overlap
with the initial state.

Figure 4a confirms this inequality for the matrix elements of
the momentum distribution in our system. There is an a priori
argument—admittedly dependent in part on certain hypotheses
about chaos in quantum billiards—in support of this inequality in
the case when the mean value of Â in an energy eigenstate is com-
parable to the quantum fluctuation of Â in that state28.

On the other hand, the thermalization we see appears to be
working a little too well: in a system as small as ours, we would expect
measurement-to-measurement fluctuations to be much larger than is
indicated in Fig. 1b. Indeed, as we show in Fig. 4b, the fluctuations
that would actually be measured would be dominated by the
quantum fluctuations of the time-dependent state. The rather large
size of the quantum fluctuations relative to the thermal mean value is
of course characteristic of small systems; however, the dominance of
the quantum fluctuations over the temporal fluctuations of quantum
expectation values is not, and is actually expected for generic systems
in the thermodynamic limit29.

We have demonstrated that, in contrast to the integrable case, the
non-equilibrium dynamics of a generic isolated quantum system
does lead to standard thermalization. We verified that this happens
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� �
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temporal fluctuations of n(kx 5 0).
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through the eigenstate thermalization mechanism, a scenario prev-
iously demonstrated12 for the case of an integrable quantum hamil-
tonian weakly perturbed by a single matrix taken from a random
gaussian ensemble, compellingly defended13 for the case of rarefied
semiclassical quantum billiards, and conjectured by both authors to
be valid in general. Our results, when combined with the others we
mentioned12,13,20–27, constitute strong evidence that eigenstate ther-
malization indeed generally underlies thermal relaxation in isolated
quantum systems. Therefore, to understand the existence of universal
thermal time-asymptotic states, operator expectation values in indi-
vidual eigenstates should be studied. This is a problem that is linear,
time independent, and conceptually far simpler than any arising in
current research on nonlinear dynamics of semiclassical systems.
Among the fundamental open problems of statistical mechanics
that could benefit from the linear time-independent perspective
are the nature of irreversibility, the existence of a Kolmogorov-
Arnold-Moser-like threshold30 in quantum systems and the role of
conserved quantities in the approach to equilibrium. Finally, having
a clear conceptual picture for the origins of thermalization may
make it possible to engineer new, ‘unthermalizable’ states of matter12,
with further applications in quantum information and precision
measurement.
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systems
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In Figs 3b and e of this Letter, there were two points that could have
been misinterpreted as outlying data points (they were inadvertently
printed parts of a key to the figure that was incompletely removed).
These points have been removed in the HTML and PDF versions. We
thank David S. Weiss for drawing this to our attention.
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