

MIT DEPARTMENT OF PHYSICS

Massachusetts Institute of Technology

Genome in 3D

Leonid Mirny leonid@mit.edu

Andrea Duncan (2002) Wellcome Collection, London

What we know

Walther Flemming in 1882

Thomas Cremer et al in 2005

Chromosome Conformation Capture (Hi-C)

- ensemble average (over 10⁷ cells)
- unless synchronized, averages over the cell cycle as well!

Lieberman-Aiden & van Berkum et al. Science 2009

Job Dekker

Genome Folding across Kingdoms

C. crescentus

S. cerevisiae

A. thaliana D. melanogaster

M. musculus

H. sapiens

12 Mb

157 Mb

2.7 Gb

3 Gb

Bacteria

4 Mb

Fungi

Plants

Insects

180 Mb

Mammals

Chromosome Conformation Capture (Hi-C)

HiGlass Hi-C browser: higlass.io

Chromosomes: non-equilibrium polymer system

Normalized Pc

From a melt of rings to chromosome territories: the role of topological constraints in genome folding

α≈1.15

Jonathan D Halverson¹, Jan Smrek², Kurt Kremer³ and Alexander Y Grosberg^{2,4}

Chromosomes: non-equilibrium polymer system

shoulder

Multiple levels of organization

compartments and domains

cis+trans Hi-C maps

checkered pattern in cis & trans

cis Hi-C maps

domains of local contact enrichment

Mechanisms: compartments and domains

Problems

• Formation of TAD (domains) in in

 Compaction and segregation of chromosomes in mitosis

New process: loop extrusion

Occam's razor approach

Compartments

http://HiGlass.io

Mechanism of compartmentalization **microphone separation in polymers**

Martin Falk MIT

Mechanism of compartmentalization

Attractions (direct or mediated)

>Which are more important for compartmentalization? **B-Lamina**

Yana Feodorova, Plovidv U

Irina Solovei, LMU

A-A

B-B

Job Dekker **UMass Medical**

Nature 2019 Heterochromatin drives compartmentalization of inverted and conventional nuclei

Mechanism of compartmentalization

inverted

rods

conventional

non-rod neurons

inverted

LBR-/- thymocytes

conventional

WT thymocytes

Mechanism of compartmentalization

Summary: Mechanism of compartmentalization

Attractions:

AA BB <— for compartmentalization B-Lamina <— for positioning in the nucleus

inverted is the default state of the nucleus!

inverted is new conventional

Nature 2019 Heterochromatin drives compartmentalization of inverted and conventional nuclei

Martin Falk^{1,8}, Yana Feodorova^{2,3,8}, Natalia Naumova^{4,5,8}, Maxim Imakaev¹, Bryan R. Lajoie^{4,6}, Heinrich Leonhardt³, Boris Joffe³, Job Dekker⁴, Geoffrey Fudenberg^{1,7}*, Irina Solovei³* & Leonid A. Mirny¹*

Problem

• Formation of TAD (domains) in

Problem

What's the mechanism of domain formation?

Domains boundaries are essential for domain formation

Teunissen, H., Splinter, E., Wijchers, P.J., Krijger, P.H., and de Laat, W. (2015). CTCF Binding Polarity Determines Chromatin Looping. Mol Cell *60*, 676-684.

Narendra V, et al. (2015) CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. *Science (New York, NY)* 347(6225):1017–1021.

Guo Y, et al. (2015) CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. *Cell* 162(4):900–910.

Sanborn AL, et al. (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. *Proceedings of the National Academy of Sciences* 112(47):E6456–65.

Elphège P. Nora^{1,2,3}, Bryan R. Lajoie⁴*, Edda G. Schulz^{1,2,3}*, Luca Giorgetti^{1,2,3}*, Ikuhiro Okamoto^{1,2,3}, Nicolas Servant^{1,5,6}, Tristan Piolot^{1,2,3}, Nynke L. van Berkum⁴, Johannes Meisig⁷, John Sedat⁸, Joost Gribnau⁹, Emmanuel Barillot^{1,5,6}, Nils Blüthgen⁷, Job Dekker⁴ & Edith Heard^{1,2,3}

Domains boundaries controls functional interactions

Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions

Darío G. Lupiáñez,^{1,2} Katerina Kraft,^{1,2} Verena Heinrich,² Peter Krawitz,^{1,2} Francesco Brancati,³ Eva Klopocki,⁴ Denise Horn,² Hülya Kayserili,⁵ John M. Opitz,⁶ Renata Laxova,⁶ Fernando Santos-Simarro,^{7,8} Brigitte Gilbert-Dussardier,⁹ Lars Wittler,¹⁰ Marina Borschiwer,¹ Stefan A. Haas,¹¹ Marco Osterwalder,¹² Martin Franke,^{1,2} Bernd Timmermann,¹³ Jochen Hecht,^{1,14} Malte Spielmann,^{1,2,14} Axel Visel,^{12,15,16} and Stefan Mundlos^{1,2,14,*}

Lupiáñez et al., 2015, Cell *161*, 1–14 May 21, 2015 ©2015 Elsevier Inc. http://dx.doi.org/10.1016/j.cell.2015.04.004

In cancer...

• Formation of TAD (domains) in in

Enhancer hijacking

PROBLEM 1: Problem of scales

Loop extrusion with boundaries => TADs

Fudenberg, Imakaev et al. DOI: 10.1101/024620

Complex architecture of TADs

- corner peaks (~50%)
- flames
- nested

data: GM12878 Rao et.al Cell 2014

Loop extrusion => TADs, flames, dots, grids etc

PROBLEM 1: Formation of domains by loop extrusion

Fudenberg et al Emerging Evidence of Chromosome Folding by Loop Extrusion *CSH Symposia in Qunat. Bio* (2018)

Domain — systems of actively extruded loops

Search youtube mirnylab

🕨 YouTube

https://www.youtube.com/watch?v=8FW6gOx5IPI

Cohesin — accumulates near boundaries

Hypothesis: **cohesin** (and other SMCs) — loop extruding motor

cohesin

Known molecular motors

Nature Reviews | Molecular Cell Biology

REVIEW: Fundenberg et al bioRxiv 2018

Testing the theory

depleting1. loop extruding enzyme (cohesin)2. boundary element (CTCFs)

ΔNipbl = no extruders

Two independent modes of chromatin organization revealed by cohesin removal

Wibke Schwarzer^{1*}, Nezar Abdennur^{2*}, Anton Goloborodko^{3*}, Aleksandra Pekowska⁴, Geoffrey Fudenberg⁵, Yann Loe-Mie^{6,7}, Nuno A Fonseca⁸, Wolfgang Huber⁴, Christian H. Haering⁹, Leonid Mirny^{3,5} & Francois Spitz^{1,4,6,7}

2 NOVEMBER 2017 | VOL 551 | NATURE | 51

CTCF-AID = no boundaries

Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization

Elphège P. Nora,^{1,2,*} Anton Goloborodko,³ Anne-Laure Valton,⁴ Johan H. Gibcus,⁴ Alec Uebersohn,^{1,2,7} Nezar Abdennur,³ Job Dekker,⁴ Leonid A. Mirny,³ and Benoit G. Bruneau^{1,2,5,6,8,*}

Cell 169, 930-944, May 18, 2017

Predictions

1. deplete loop extruding enzyme (cohesin)

Geoff Fudenberg (UCSF)

Predictions

2. deplete boundary element (CTCFs)

Geoff Fudenberg (UCSF)

Experiment

Domains disappear when *cohesin* is removed

e revealed by cohesin

owska, Christian Haering,

Francois Spitz Wibke Schwarzer

Nezar Abdennur MIT Comp/Sys Biology

Anton Goloborodko MIT Physics

TADs (but not compartments) are cohesin-dependent

Experiment

Domains merge when **CTCF** is removed

Elphege Nora Anton Goloborodko Benoit G. Bruneau Job Dekker et al

TADs merge with each other

Testing loop extrusion **Predictions**

Testing loop extrusion

Experiments

Testing loop extrusion

Experiments

Single-molecule experiments Real-time imaging of DNA loop extrusion by condensin

Science Mahipal Ganji,¹ Indra A. Shaltiel,^{2*} Shveta Bisht,^{2*} Eugene Kim,¹ Ana Kalichava,¹ Christian H. Haering,²⁺ Cees Dekker¹⁺

Cees Dekker UT Delft

Cite as: M. Ganji *et al.*, *Science* 10.1126/science.aar7831 (2018).

This video shows how a condensin protein gradually causes DNA to extrude a DNA loop over time.

Cees Dekker lab, Kavli Institute of Nanoscience Delft University of Technology www.ceesdekkerlab.nl

This result is reported in Science (online, Febr.15, 2018)

 Paper title: Real-time imaging of DNA loop extrusion by condensin
Authors: Mahipal Ganji (1), Indra A. Shaltiel (2), Shveta Bisht (2), Eugene Kim (1), Ana Kalichava (1), Christian H. Haering (2), Cees Dekker (1)
Affiliations: 1 Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
2 Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

Take home message

protein folding

interactions (energy)

Walther Flemming in 1882 interactions and active processes

cytoskeleton

active processes

Conclusions

1. Strong experimental support of the loop extrusion hypothesis

2. **Domains** and **compartments** are formed by different mechanisms

A/B Compartments Topological Association Domains (TADs)

Biophysical Journal Article

RESEARCH ARTICLE

Chromosome Compaction by Active Loop Extrusion

Anton Goloborodko,¹ John F. Marko,² and Leonid A. Mirny^{1,3,*}

Compaction and segregation of sister chromatids via active loop extrusion

Anton Goloborodko¹, Maxim V Imakaev¹, John F Marko^{2,4}, Leonid Mirny^{1,3*}

PROBLEM 2: how can chromosome condense while acquiring elongated morphology and linear order?

Loop extrusion is sufficient for chromosome condensation https://www.youtube.com/watch?v=_Vc7__xfnfc

chromatids via active loop extrusion

eLIFE

Anton Goloborodko¹, Maxim V Imakaev¹, John F Marko^{2,4}, Leonid Mirny^{1,3*}

PROBLEM 3: how can two sister chromatids condense separately, i.e. segregate and disentangle

Loop extrusion is sufficient for sister segregation

https://www.youtube.com/watch?v=stZR5s9n32s

Compaction and segregation of sister chromatids via active loop extrusion

Anton Goloborodko¹, Maxim V Imakaev¹, John F Marko^{2,4}, Leonid Mirny^{1,3*}

Hi-C of mitotic condensation

Bill Earnshaw Job Dekker University of Edinburgh

Chr 4

Chr 4

Chr 4

Chr 4

Distance

Model of prophase chromosomes

Anton Goloborodko MIT Physics

Model: metaphase with spiral scaffold

Model: metaphase

Nested loops: 400Kb and 80Kb loops on spiral scaffold

Model of mitotic chromosome

https://www.youtube.com/watch?v=cJSpWClqb7k

Summary: chromosomes need a motor

Formation of Chromosomal Domains by Loop Extrusion *bioRxiv* Aug 14 (2015), Cell Reports (2016) Goloborodko A et. al, *eLife* (2016) Goloborodko A, Marko JF, Mirny LA *Biophysical J* (2016)

Summary

Take home message

protein folding

interactions (energy)

Walther Flemming in 1882 interactions and active processes

cytoskeleton

active processes

Anton Goloborodko MIT Physics

Nezar Abdennur MIT Comp/Sys Biology

Hugo Brandao Harvard Biophysics

Martin Falk MIT

Geoff Fudenberg UCSF

Carolyn Lu MIT senior

Maxim Imakaev MIT

Aafke Van den Berg MIT

Johannes Nübler MIT

Simon Grosse-Holz MIT

NSF, **NIH**: Center of Structure and Physics of the Genome

Job Dekker UMass Medical

Francois Spitz Institut Pasteur

Irina Solovei, LMU

Kick Tachibana-Konwalski IBMA, Vienna

John Marko Northwestern U.

Elphege Nora Benoit G. Bruneau UCSF

Bill Earnshaw U of Edinburgh

http://mirnylab.mit.edu/resources/

Falk et al.,

Heterochromatin drives compartmentalization of inverted and conventional nuclei

Nature (2019)

MirnyLab 92 subscribers • 15 videos Videos for publications of Mirny Lab @ MIT http://mirnylab.mit.edu

Fudenberg et al.,

Emerging Evidence of Chromosome Folding by Loop Extrusion

CSH Symposia in Quantitative Biology (2018)

Schwarzer W, Abdennur N et al

Two independent modes of chromatin organization revealed by cohesin removal.

Nature (2017)

Nature April 19, 2017

DNA's secret weapon against knots and tangles

A simple process seems to explain how massive genomes stay organized. But no one can agree on what powers it.

Elie Dolgin

19 April 2017

🖄 PDF 🔍 Rights & Permissions

