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BEC (1924-25) 
 
o  Bosons 
o  Macroscopic  
     occupation of 
     a quantum state 
o  superfluidity  

BCS (1956-57) 
 
o  Fermions 
o  Pairing 
o  Condensation  
     of pairs 
o  superconductivity 
 



Before 2004: 
 
BCS-BEC crossover was a problem of 
purely theoretical interest  
… with diverse motivations, but 
no direct experimental relevance!  
 
o  D. M. Eagles (1969) [Doped semiconductor SrTiO3] 

o  A. J. Leggett (1980) [Superfluid He3] 

o  P. Nozieres & S. Schmitt-Rink (1985) [Excitons, …] 

o  M. Randeria & collaborators (1990’s)  [HTSC] 



2004: BCS-BEC crossover in ultracold Fermi gases  
Realized in the lab! 
Experiments:  
Jin (JILA)  
Ketterle (MIT)  
Salomon (ENS)  
Grimm (Innsbruck)  
Hulet(Rice) 
Thomas (Duke) 

6Li, 40K
10

5 � 10

7
atoms

dilute : k�1
F ⇠ 0.3µm

EF ⇠ 100 nK � 1 mK

  “spin up” & “down” 
   two hyperfine states 

[Jin	
  group]	
  

 Tunable two-body interaction:     
  Feshbach Resonance  

|a| ! 1
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Feshbach Resonance: 
Two-channel description ßà Single channel model* 

(kF r0 ⌧ 1)Tuning parameter = B-field 
Cheng, Grimm, Julienne & Tiesinga. RMP (2010) 
See: Leo Radizihovsky’s lectures 

*broad resonance 
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Feshbach Resonance (simplified) 

Unitarity à |a| = 1

Two-body problem in 3D: 

Low-energy 
effective interaction: 
s-wave scattering length a

    threshold for  
à two-body  
    bound state  
    (in vacuum)     

kr0 ⌧ 1

d�

d⌦
= |f |2
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Attractive  Fermi Gas: 

Dimensionless  
Coupling constant 

o 	
  	
  

Dilute Gas:   range                      interparticle distance r0 ⌧ k�1
F

⇤ ' 1

r0

o 	
  	
   g(⇤) ! a

�1

g(⇤)
=

m

4⇡a
�

X

k<⇤

m

k2
! 1

For an equivalent real-space approach with range  
See: Y. Castin & F. Werner in Zwerger Book  

r0 ! 0



BCS-BEC crossover [Leggett (1980); Nozieres & Schmitt-Rink (1985)] 
10	
  

     BCS limit 
•  cooperative 
  Cooper pairing 
•  pair size	
  	
  

    BEC limit 
•  tightly bound 
  molecules 
•  pair size 

Unitarity 

 pair size	
  	
  
strongly interacting gas 

|a| = 1

V (r) V (r) V (r)

a < 0 a > 0|a| = 1
No	
  bound	
  	
  
state	
  

	
  bound	
  	
  
state	
  

Threshold	
  

1/kFa
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Based on: Sa deMelo, MR & Engelbrecht, PRL (1993) 

Qualitative description of BCS-BEC crossover 



T=0 BCS-Leggett Mean Field Theory: 

SadeMelo, MR, Engelbrecht, PRL (93), PRB(97) 

•  MFT Qualitatively correct at T=0:  
  all the way from Cooper pairs to composite bosons! 
•  will address Quantitative limitations later 
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•  Note: crossover region 
•  No small parameter near unitarity!  



Energy Gap for  
Fermionic Excitations:   

14 BCS regime (“weak pairing”) 

BEC regime (“strong pairing”) 

à  Phase transition (not a crossover)  
    for non-s-wave pairing, e.g. p+ip [Read & Green] 

Gapless Goldstone excitations: phonon   
BCS BEC 

Petrov, Salomon, Shlyapnikov ab = 0.6a



BCS limit 

T*: Pairing  
saddle-point/MFT 

Saha ionization 

Tc: Phase 
Coherence  
saddle-point  
+ Gaussian 
fluctuations 
= NSR 

SadeMelo, Randeria & Engelbrecht, PRL (1993) 

Tc

Ef
' 0.2

maximum 

BCS-BEC @ Finite Temperatures 

G-MB correction 



*Pairing Pseudogap  
Randeria, Trivedi, 
Scalettar & Moreo 
                    PRL (1992) 
Trivedi & Randeria,  
                     PRL (1995) 
 à   possible    
    Breakdown of 
     Fermi-liquid 
     description in 
  pseudogap regime       

Recent QMC: 
Tc = 0.15 Ef 
Burovski et al,  
PRL (2008)  
T* = 0.2 Ef 
Magierski et al, 
PRL (2009)  
 
Experiments? 
See later! 

Evolution from  
Normal Fermi à Normal Bose Gas? 
Is the system quantum degenerate 
at these high T? 
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[27] Engelbrecht, Randeria, & SadeMelo. PRB 55, 15153 (1997) 
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       *revised [G. Zurn, PRL 110, 135301 (2013)] 

MFT & NSR: 
 
ε-expansion: 
 
  
QMC: 
 
 
 
 
Experiments: 

* 

Unitary Fermi Gas 

Table from: 
Randeria & Taylor 
Ann. Rev. CMP 
(2014) 
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  Universality:  
Results, independent of microscopic details (e.g. Li, K, …) 
across the entire BCS-BEC crossover  
provided 
 
All (dimensionless) results can be expressed as 
F(T/Ef , 1/kFa)

kF r0 ⌧ 1

|a| = 1No interaction scale at Unitarity 
 
Universal results for  
All observables F(T/EF ) Bertsch (2003)  

Ho (2004) 

E(T = 0) = ⇠s

✓
3EF

5

◆
e.g. ground state 
Energy per particle 

⇠s is a 
Universal 

number 
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T	
  

•  Quantum critical point                  
        Sachdev & Nikolic (2007) 
 
•  Non-relativistic  
 Conformal Field Theory          
                                 Son (2008)	
  

Scale-invariance at Unitarity: 

T = 0, µ = 0

|a| = 1

1/a	
  

µ1/|a| = 0, T = 0, µ = 0

0 

No length scale at 

AdS/CFT 
duality? 
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dg

d`
= (2� d)g � g2

2
Nikolic & Sachdev (2007) 

Dimensionality expansions: 

0 

Renormalization Group: 

Nishida & Son  
    (2006) 

d = 2 + "
d = 4� "

2D = lower critical dimension 
Randeria, Duan, Shieh (1989) 

Expand about free fermions 
 
Expand around free bosons in 
Two-channel formulation 

Large N expansion: Veillette, Sheehy & Radzihovsky 
 Nikolic & Sachdev  
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G0 vs. G

Large N approx 
Veillette, Sheehy & Radzihovsky 
Nikolic & Sachdev 

Luttinger-Ward/Conserving Approx: 
Zwerger, Hausman et al. 

Diagrammatic Approx: 
Levin et al. 
Strinati, Perali et al. 
Hu, Liu & Drummond  

Gaussian Approx: 
Diener, Sensarma & Randeria 

Analytical Approximations: Mean-Field + Pair Fluctuations  

Why bother? 
(when there is no small parameter!) 
Analytical theories can give insights. E.g.: Why is 
                              reduced by 40% from its MF value?  



Quantum Monte Carlo (QMC) Simulations: 
 
•  Best available tool for non-perturbative problems 

•  Fermion sign problem (sometimes absent!  
                                       e.g., lattice problem 
                                       with zero range attraction) 
 
•  Analytic continuation problem:  

Many types of QMC: 
 
* T=0 Diffusion QMC -- wave function  [Trento; Urbana; LANL, …]                  
* Finite temperature QMC  
  -- imaginary-time functional integrals [Amherst; Seattle; ETH; …]   
  -- diagrammatic MC [Amherst] 

(⌧ or i!n ! ! + i0+)



Burovski et al, PRL (2008) 

Quantum Monte Carlo 
 
Transition Temperature 

Tmax

c ' 0.2EF

T unitarity
c ' 0.15EF

T = 0.15TF = TC

T = 0.18TF > TC

T = 0.20TF > TC

Magierski et al,
PRL 103, 210403 (2009)

(!¡ ¹)=²F

(k=kF)
2

QMC 
+ Analytic 

Continuation

 pseudogap

Tc < T < T¤

Tc = 0:15TF

T¤ ' 0:20TF

P. Magierski et al, PRL (2009, 2011) 

Tc < T < T ⇤Pseudogap 

unitarity 

1/kFa
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Some Key Experiments: 

 * vortices 

 * thermodynamics 

* spectroscopy  

 * transport 



Quantized Vortices in  
Rotating Superfluid Fermi Gases 

M.W. Zwierlein et al., Nature, 435, 1047, (2005) 

Li Fermi gas through a Feshbach Resonance 6 

27 



T/TF 
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M. J. H. Ku et al., 
Science (2012) 
[Zwierlein group] 

Thermodynamics of the Unitary Fermi Gas 
                                    [MIT; ENS; Tokyo groups] 

•  λ-Transition 
•  Determination of 
       



T/TF 
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M. J. H. Ku et al., 
Science (2012) 
[Zwierlein group] 

Thermodynamics of the Unitary Fermi Gas 

K. Van Houcke et al.,  
Nature Phys. (2012) 
Expt: Zwierlein group 
BD QMC: UMass group 
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Fermion spectral function = probability to make an excitation 
                                             at momentum k and energy ω	



RF spectroscopy: 

k-resolved RF ~ ARPES [Jin] 

k-integrated RF [Grimm; Ketterle] 

RF threshold not at Δ but (in MF) at:  

QMC: Carlson & Reddy (2008)        Expt: Schirotzek et al., (2008) 



Observation of a pairing pseudogap: 
“energy gap” in the normal state near unitarity 

Gaebler et al, Nature Phys. (2010) 

k-resolved RF spectroscopy   ßà Angle Resolved     
Stewart, Gaebler & Jin, Nature (2008)           Photoemission (ARPES) 

o  unusual dispersion  þ 
o well-defined quasiparticles? anomalous line-shape?  

f(!)A(k,!)

|a| = 1



à Bulk viscosity 
Dissipation with 

isotropic u  
r · u 6= 0 32 

Transport coefficients: shear & bulk viscosity 

à Shear viscosity 
Dissipation in 
presence of a  
flow gradient 

dE

dt
= �⌘

Z
d3r

✓
@u

x

@y

◆2 dE

dt
= �⇣

Z
d3r

✓
@u(r)

@r

◆2

⇣⌘



Transport in strongly interacting fluids 
 
 Shear viscosity ⌘

⌘ ⇠ np`

p` � ~ ) ⌘/n � ~
Boltzmann equation: 

Sharp “quasiparticles” 

` = Mean free path 

Minimum viscosity conjecture  
based on AdS/CFT [Kovtun, Starinets, Son (2005)] 
 

(shear viscosity)/(entropy density) ratio of all fluids obeys: 

⌘/s � ~/kB

status of bound not clear,  
even in string theory  à No known violations in the laboratory! 
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Tyler	
  et	
  al,	
  PRB	
  58	
  R10	
  107	
  (1998)	
  

A digression: Mott & Ioffe-Regel  
                      à minimum conductivity conjecture 

Rosenbaum	
  et	
  al,	
  PRB	
  27,	
  7509	
  (1983)	
  

Si:P	
  

σ	



T=0 Metal-Insulator 
        transition High T incoherent transport 

` � `min ' k�1
F

 Experiments à conjecture is false for charge transport! 
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Experiments: Unitary Fermi gas   

  

“Elliptic Flow” 

The measurement of the viscosity is of par-
ticular interest in the context of a recent con-
jecture, derived using string theory methods, that
defines a perfect normal fluid (12). An example
of a nearly perfect fluid is the quark-gluon plas-
ma produced in gold ion collisions, which ex-
hibits almost perfect frictionless flow and is thought
to be a good approximation to the state of matter
that existed microseconds after the Big Bang
(13). The conjecture states that the ratio of the
shear viscosity h to the entropy density s has a
universal minimum, h/s ≥ ħ/(4pkB), where ħ is
Planck’s constant h divided by 2p and kB is the
Boltzmann constant. This ratio is experimentally
accessible in a trapped unitary Fermi gas, in which
the entropy has beenmeasured both globally (6, 9)
and locally (10, 11) and the viscosity can be de-
termined fromhydrodynamic experiments (14–17),
so that the predicted minimum ratio can be
directly compared with that from Fermi gas ex-
periments (16, 17).

In a Fermi gas, the h/s ratio for the normal
fluid is expected to reach a minimum just above
the superfluid transition temperature (16). This
can be understood by using dimensional analysis.
Shear viscosity has units of momentum per area.
For a unitary gas, the natural momentum is the
relative momentum ħ k of a colliding pair of par-
ticles, whereas the natural area is the resonant
s-wave collision cross section, 4p/k2 (18). Thus,
h º ħ k3. At temperatures well below the Fermi
temperature at which degeneracy occurs, the Fermi
momentum sets the scale so that k ≅ 1/L, where L
is the interparticle spacing. Then, hº ħ /L3, and
h º ħ n. For a normal fluid above the critical
temperature, the scale of entropy density s ≅ n kB,
so that h/s ≅ ħ /kB. For much higher temperatures
above the Fermi temperature, one expects that ħ k
is comparable with the thermal momentum
pT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
, giving the scale h º pT

3/ħ2 1º
T3/2/ħ2.

To properly measure the shear viscosity with
high precision over a wide temperature range, we
used universal hydrodynamic equations, which
contain both the friction force and the heating
rate, to extract the viscosity from two experiments,
one for each of two temperature ranges. For mea-
surement at high temperatures, we observed the
expansion dynamics of a unitary Fermi gas after
release from a deep optical trap and demonstrated
the predicted universal T 3/2 temperature scaling.
For measurement at low temperatures, we used
the damping rate of the radial breathing mode,
using the raw cloud profiles from our previous
work (19). The smooth joining of the data from
the two measurement methods when heating is
included (20), and the discontinuity of the data
when heating is excluded, demonstrates the im-
portance of including the heating as well as the
friction force in the universal hydrodynamic
analysis.

The experiments employ a 50-50 mixture
of the two lowest hyperfine states of 6Li, which
was magnetically tuned to a broad Feshbach res-
onance and cooled by means of evaporation in

the optical trap. The initial energy per particle E
is measured from the trapped cloud profile (20).

In the high-temperature regime, the total
energy of the gas E is larger than 2EF, well above
the critical energy Ec < 0.8EF for the superfluid
transition (9–11). In this case, the density pro-
file is well fit by a Gaussian, n(x,y,z,t) = n0(t)
exp(−x2/sx2−y2/sy2−z2/sz2), where si(t) is a time-
dependent width, n0(t)=N/(p

3/2sxsysz) is the cen-
tral density, and N is the total number of atoms.

The aspect ratio sx(t)/sz(t) was measured as a
function of time after release so as to characterize
the hydrodynamics, for different energies E
between 2.3EF and 4.6EF (Fig. 1). We also took
expansion data at one low-energy pointE= 0.6EF,
where the viscosity is small as compared with
that obtained at higher temperatures and the den-
sity profile is approximately a zero-temperature
Thomas-Fermi distribution. The black curve in

Fig. 1 shows the fit for zero viscosity and no free
parameters. To obtain a high signal-to-background
ratio, wemeasured the aspect ratio only up to 1.4.
For comparison, the green dashed curve in
Fig. 1 shows the prediction for a ballistic gas.

We determined the shear viscosity h by using
a hydrodynamic description of the velocity field
v(x,t) in terms of the scalar pressure and the shear
viscosity pressure tensor,

mð∂t þ v ˙ ∇Þvi ¼ fi þ ∑
j

∂jðh sijÞ
n

ð1Þ

where f = −∇P/n is the force per particle arising
from the scalar pressure P and m is the atom
mass. For a unitary gas, the bulk viscosity is pre-
dicted to vanish in the normal fluid (21, 22), so
we did not include it in the analysis for the ex-
pansion. The second term on the right describes
the friction forces arising from the shear viscos-
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0.5

A
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16001400120010008006004002000

Time After Release (µs)

 E=0.6 EF
 E=2.3 EF
 E=3.3 EF
 E=4.6 EF
 Ballistic Expansion 

B

A

Fig. 1. Anisotropic expansion. (A)
Cloud absorption images for 0.2,
0.3, 0.6, 0.9, and 1.2 ms expansion
time; E = 2.3EF. (B) Aspect ratio
versus time. The expansion rate
decreases at higher energy as the
viscosity increases. Solid curves indi-
cate hydrodynamic theory, with the
viscosity as the fit parameter. Error
bars denote statistical fluctuations in
the aspect ratio.

Fig. 2. Trap-averaged viscosity
coefficient a = ∫d3x h=(ħN) versus
initial energy per atom. Blue
circles indicate breathing-mode
measurements; red squares indi-
cate anisotropic expansion mea-
surements. Bars denote statistical
error arising from the uncertainty
in E and the cloud dimensions.
(Inset) a versus reduced temper-
ature q0 at the trap center before
release of the cloud. The blue curve
shows the fit a0 = a3/2 q0

3/2,
demonstrating the predicted uni-
versal high-temperature scaling.
Bars denote statistical error arising
from the uncertainty in q0 and a.
A 3% systematic uncertainty in EF
and 7% in q0 arises from the sys-
tematic uncertainty in the abso-
lute atom number (20).
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Hydrodynamic modeling of: 

Damping of radial  
Breathing mode 

Searching for Perfect Fluids: Quantum Viscosity in a Universal Fermi Gas 18
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Figure 10. Estimated ratio of the shear viscosity to the entropy density. Blue circles:
Breathing mode measurements; Red squares: Anisotropic expansion measurements;
Inset: Red dashed line denotes the string theory limit. Bars denote statistical error
arising from the uncertainty in E, ᾱ, and S [21].
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KSS bound 

|a| = 1

⌘/s

C. Cao, et al. Science 331,58 (2011) 

Data	
  from:	
  T.	
  Schafer	
  &	
  D.	
  Teaney,	
  Rept.Prog.Phys.	
  (2009)	
   QGP	
  (RHIC)	
  

~ 0.4 
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* Tan Relations 
 
 
* Sum Rules               

Exact Results valid for all 1/kFa and all T/EF 

S. Tan (2005/2008) 
OPE: Braaten & Platter (2008) 

Castin & Werner (2009)   
Zhang & Leggett (2009) 

* Review: E. Braaten’s chapter in Zwerger book                           

Baym et al, PRL (2007) 
Punk & Zwerger, PRL (2007) 
Zhang & Leggett, PRA (2008) 

RF spectroscopy: 

Viscosity  
Spectral Functions: 

Taylor & Randeria PRA (2010), PRL (2012) 
Enss, Haussmann, Zwerger, Ann. Phys.(2011) 
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Tan’s Contact “C” 

�(r) ⇡
✓
1

r
� 1

a

◆
Two-body problem: at short distances 

In the many-body problem: 

C = k4FF(T/Ef , 1/kFa)

hn"(r)n#(0)i ⇡ C

✓
1

r
� 1

a

◆2
Density correlations 

r ⌧ k�1
F

range r0 ! 0

n(k) ⇡ C/k4

Momentum distribution: 

k � kF

Contact 
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Exact results: Tan Relations 

•   " =
Z

d3k

(2⇡)3
k2

2m

⇥
n(k)� C/k4

⇤
+

C

4⇡ma

Energy relation 

Kinetic Energy: 
Divergent in  

zero range limit 

•   P = 2"/3 + C/(12⇡ma)

Pressure relation 

•   
Adiabatic relation 

n(k) ⇡ C/k4

k � kF

“The tail that 
wags the dog” 
-- E. Braaten 
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´

Schneider & MR (2010) 

Momentum-resolved RF 

Contact & Tails of Dynamical Correlations: 

lim
!!1

lim
q!0

S(q,!) ⇡ 2Cq4

45⇡2m1/2!7/2

lim
!!1

I�(!) ⇡
1

4⇡2
p
m

C

!3/2

RF Intensity  

Son & Thomson (2010) 
Taylor & MR (2010) 

 Dynamic Structure factor  

A(k,!) Schneider & MR (2010) 
Pieri, Perali & Strinati (2009) 
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Universal Relations for Fermions with Large Scattering Length 23

(k )Fa
-1

C
/k

F

-3 -2 -1 0
0

1

2

3

4

5
Momentum
RF lineshape
PES

Fig. 5 Three measurements of the dimensionless contact C/kF for a trapped gas of 40K
atoms as a function of 1/kF a, from Ref. [39]. The Fermi wavenumber kF is defined by the
Fermi energy for the trapped system: EF = h̄2k2F /2m. Two of the data sets are from the
tail of the momentum distribution measured directly by ballistic expansion (solid dots)
and indirectly by photoemission spectrometry (open dots). The third data set is from the
high-frequency tail of the rf lineshape (stars).

The contact was then determined from the behavior of � (!) at large !. It
was measured for values of 1/kFa ranging from about �1.7 to about +0.2.

The third method for measuring C also used the Tan relation in Eq. (2),
but the tail of the momentum distribution was determined by photoemission
spectroscopy (PES). This involves using momentum-resolved rf spectroscopy
to measure the distribution n

2

(k,!) of the momentum and energy of atoms
in state 2, and then integrating over ! to determine the momentum distri-
bution n

2

(k). The contact C is the large-momentum limit of k4n
2

(k). It was
measured for the same values of 1/kFa as the second method.

The three sets of measurements of the contact by the Jin group [39] are
shown in Figure 5. The results from the three methods are all consistent.
They lie close to the theoretical prediction of Ref. [28], which was based on
the local density approximation, with the contact density for the homoge-
neous system obtained by interpolating between the BEC, unitary, and BCS
limits. These results provide direct experimental verification of the role of the
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Fig. 6 Test of the adiabatic relation in a trapped gas of 40K atoms, from Ref. [39]. The
dimensionless contact C/kF as a function of 1/kF a determined from the derivative of
the energy E with respect to 1/a (solid dots) is compared to the measurements using
photoemission spectrometry (open dots). The Fermi wavenumber kF is defined by the
Fermi energy for the trapped system: EF = h̄2k2F /2m.

contact in large-momentum and high-frequency tails for a many-body system
of fermions with a large scattering length.

5.4 Tests of the thermodynamic Tan relations

The adiabatic relation in Eq. (8) and the virial theorem in Eq. (11) relate
di↵erent contributions to the total energy E to the contact C. The adiabatic
relation expresses a derivative of (T + U) + V in terms of the contact. The
virial theorem expresses the combination (T +U)�V in terms of the contact.
Thus measurements of T + U , V , and C provide two nontrivial tests of the
Tan relations for the thermodynamic properties of the system.

The Jin group at JILA in Boulder has tested these Tan relations by mea-
suring T+U and V for the same system of 40K atoms for which they measured
the contact C [39], as described in Section 5.3. They measured the external
potential energy V by imaging the spatial distribution of the cloud of atoms,

JILA: Stewart et al, PRL 104, 235301 (2010)  

Experimental studies of “Contact”  

n(k); I(!);

Z
f(!)A(k,!)

k and ω Tails: 

Universal Relations for Fermions with Large Scattering Length 5

⌦
n
1

(R+ 1

2

r) n
2

(R� 1

2

r)
↵
�! 1

16⇡2

✓
1

r2
� 2

ar

◆
C(R). (7)

Tan also pointed out that the contact density appears in the short-distance
expansion for the correlator of the quantum field operators that create and
annihilate the atoms. This expansion will be discussed in Section 6.4.4.

2.2 Changes in the scattering length

From the three universal relations described above, one might conclude that
the contact is an esoteric property of the system that has only to do with tails
of distributions. In the second of Tan’s 2005 papers [3], he derived another
universal relation that makes it clear that the contact is an absolutely central
property of the system:

Adiabatic relation. The rate of change of the energy due to a small
change in the inverse scattering length is proportional to the contact:

✓
dE

da�1

◆

S

= � h̄2

4⇡m
C. (8)

The derivative is evaluated with the entropy S held fixed. The particle
numbers N

1

and N
2

are also implicitly held fixed.

In the simplest case, E is just an energy eigenvalue. The adiabatic relation
also holds for any statistical mixture of eigenstates if the derivative is eval-
uated with the occupation numbers held fixed. By the adiabatic theorem
of quantum mechanics, if the scattering length changes su�ciently slowly
with time, the occupation numbers remain constant. Thus if the contact C is
known as a function of a, the adiabatic relation in Eq. (8) can be integrated
to obtain the accumulated change in E.

The adiabatic relation can also be expressed in terms of the derivative of
the free energy F = E � TS with the temperature T held fixed:

✓
dF

da�1

◆

T

= � h̄2

4⇡m
C. (9)

As pointed out by Tan, this implies that the contact determines the ther-
modynamics of the system. Given the contact of a system as a function of
the scattering length a and other variables, such as N

1

, N
2

, and T , the free
energy F can be obtained by integrating Eq. (9) with respect to a. A conve-
nient boundary condition is provided by the limit a ! 0�, in which the atoms
are noninteracting. From F , one can determine all the other thermodynamic
functions.

Thermodynamics: 

RF k-resolved RF 

[See also: Vale group  
Hoinka, PRL 110, 055305 (2013)] 
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Viscosity sum rules 

o  Kramers-Kronig: causality à analyticity 
o  Lehmann spectral representation 

⌘(!), ⇣(!)o  Linear Response (Kubo) 	
  

⌘(!)

!

Z
d! ⌘(!)

Z
d! ⇣(!)

=  Thermodynamic 
          Quantities o Sum rules 

PRA 81,053610 (2010) 
PRL 109, 135301 (2012)    

•  analyzing experiments   
•  constraining approximate 

calculations 
•    proving rigorous results 

Sum rules useful for 

Ed Taylor 
(McMaster) 

Valid for arbitrary interactions, all temperatures, all phases 
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Sum-Rule, as calculated, has an 
ultraviolet divergence in zero-range limit  

“Two-body problem” has  
exactly the same divergence  
solvable limit: density n à 0, Tà 0 

Z
d!

⇡
⌘(!) =

"

3
+ ↵

C

a
+ �C⇤I ⌘

Z
d!

⇡
⌘0(!) =

"0
3

+ ↵
C0

a
+ �C0⇤I0 ⌘

The difference                              is finite! I �
✓

C

C0

◆
I0

[Linear	
  in	
  3D;	
  log	
  in	
  2D]	
  

⇤ = 1/r0 ! 1

C = Contact 

1

⇡

Z 1

0
d!


⌘(!)� C

15⇡
p
m!

�
=

"

3
� C

12⇡ma
(3D)	
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  Shear viscosity Sum Rule in 3D 

1

⇡

Z 1

0
d!


⌘(!)� C

15⇡
p
m!

�
=

"

3
� C

12⇡ma

P = pressure " = energy/vol. ⇢ = mass density

Valid for all T and all scattering lengths a 

o   Constraints for approximate calculations 
                                 Enss, Haussmann, Zwerger, Ann. Phys. (2011) 
o  Constraints for numerical procedures 
    for analytic continuation of QMC data     
    from imaginary time à real frequency 
                                        Wlazłowski, Magierski, Drut, PRL (2012) 
 

o   No progress on bounds yet 



45 Bulk Viscosity Sum Rule in 3D 

P � "/9� ⇢c2s

= 0

At unitarity =
1

72ma2
�
@C/@a�1

�
s

F(T/Ef , 1/kFa)

Valid for all T and all scattering lengths a 

for all ω and T at  )

But 2nd law of thermodynamics 

|a| = 1
Consequence of Scale invariance 
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Vanishing bulk viscosity at unitarity 

•  Bulk viscosity à relax to equilibrium   
                             after uniform dilation 
 
•  Scale invariance at unitarity 
  à w.f. after scale change remains eigenstate of H 
  à gas never leaves equilibrium under dilation 
                       [Werner & Castin (2006); CFT: Son (2007)] 
 
•  Our result generalizes this to all frequencies  

⇣(0) = 0
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Measuring the shear viscosity spectral function in 3D 

Continuity  
equation )

Prediction for two-photon Bragg spectroscopy 



Expt:  E. Vogt et al.,  
PRL 108, 070404 (2012) 

Apparent scale invariance in 2D Fermi gases 
Monopole breathing mode in 2D 
* Frequency  
* No damping 

!m = 2!0

⇣ = 0

E. Taylor & MR, PRL 109, 135301 (2012)  

Why? 

•  Variational bound on ωb 
•  2D Sum rule constraint on ζ	


   Both implicate   

|"b| = 1/ma22

Characteristic of  
scale-invariant behavior!  
-- without any fine tuning 
-- in a system with a scale: 
    dimer binding energy  
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High Tc Superconductors 
•  Highest known Tc (in K) 
  * cuprates 
•  Charged electrons 
•  Repulsive interactions 
•  d-wave SC 
•  doped Mott insulator 
•  competing orders:  
  AFM, CDW, … 
•  single band 
•  repulsion U >> bandwidth  
•  ξ ∼ 10 A 
•  Tc ~ ρs << Δ (underdoped) 
•  anomalous normal states 
  - strange metal  
  - pseudogap 

BCS-BEC crossover 
•  Highest known Tc/Ef ~ 0.2 
  * ultracold atomic gases 
•  Neutral Fermi atoms 
•  Attractive interactions 
•  s-wave SF 
•  only pairing instability 
 
 
•  single band 
•  attraction >> Ef 
•  ξ ∼ 1/kf 
•  Tc ~ ρs << Δ   (for as > 0)	


•  pairing pseudogap 
•  Mean-field theory  
  fails for Tc 
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High Tc Cuprates BCS-BEC crossover 

T* 

Tc 

0 BEC BCS 

Fermi  
Liquid   s-wave 

Superfluid 

Pseudo 
 -gap 

normal 
 Bose  
  gas 

T 

Superconductivity is strongest  
-  near crossover from  
  pair-breaking (Δ)  
  to phase-fluctuation (ρs)  
  dominated  regimes 

Pseudogap when Δ > ρs 
 
Cuprate pseudogap is 
much more complex:  
Mott physics &  
competing orders 

Tν	



d-wave 



* hydrodynamic expansion of  
   unitary Fermi gas [Thomas] 
  ßà“elliptic flow” in quark-gluon  
          plasma at RHIC 
  ßà Viscosity/entropy bounds 
         Ads/CFT [Son et al] 

Connections with Nuclear & High Energy Physics 

* Color SC in Quark matter 
ßà Phases of Fermi gases with 
                            
                         [Ketterle; 
                             Hulet]       
•  Phase separation  
•  no evidence for FFLO  
   at unitarity 
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[Grimm] 



Outline:        

•  (pre)History & Introduction 

•  Qualitative ideas of BCS-BEC crossover 

•  Theoretical progress 

•  Some key experiments 

•  Exact Results for strongly interacting regime 

•  Connections to other areas in physics 

•  Outlook 
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BCS-BEC Crossover: Experiments & Theory 
 
•  A remarkable new chapter in 
     many-body physics 
 
•  Unitary Fermi gas: a new paradigm for 
     strongly interacting systems 
 
•  Open questions 
    -- Is there a general upper bound on Tc/Ef? 
    -- 2D systems 
    -- vortices, solitons, … 
    -- transport  
    -- non-equilibrium dynamics 
    -- non-s-wave, SOC & topological states … 
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The End! 


