


Plan for Dan Ralph’s Lectures (Tentative)

1.  Basic introduction to Coulomb blockade in quantum dots
     Simple spin physics, Zeeman spin splitting
     Spin-orbit effects on Zeeman splitting, including random-matrix-theory
           ideas

2.  Interacting Electrons within Quantum Dots -- the Universal Hamiltonian
     (a)  Weak exchange interactions -- non-zero spin states prior to the
          Stoner instability
     (b)  Superconducting pairing
     (c)  Ferromagnetic quantum dots

3.  Review of Kondo Experiments
     Single-Molecule Devices

4.  Nano-magnetics (in metals)
     (a) basics of “giant magnetoresistance” (GMR)
     (b) spin-transfer torques and magnetic dynamics
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Coulomb-Staircase Curves
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Effects of Gate Voltage on Coulomb Blockade
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Coulomb-Blockade Effects in One Molecule

• High resistance ( > megaOhms) - single electron charging.

• Coulomb blockade  > 150 meV (unstable beyond this).
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Coulomb blockade (~15 mV)

level spacing (~0.5 mV)
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Tunneling through Individual Quantum States
G << kT



Part of Coulomb Diamond
for Aluminum Particle

Color scale denotes
dI/dV.

Red lines - excited states of 
n+1 electrons

Blue lines - excited states of 
n electrons

Black lines - ground states

n
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Magnetic-Field Dependence of Aluminum Levels

g = 2.0 ± 0.1 for Al.
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odd number of electrons     even number of electrons

g = 1.30 to 1.82
<g> = 1.58
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In general, copper is a little more complicated than aluminum.









Random Matrix Theory Predictions:  Distributions of the principal g-factors
for different strengths of spin-orbit interaction.



• With one fitting parameter per sample, both the average g-factor and the
standard deviation are described well.
• Significant differences in spin-orbit strength even for particles made of
the same metal.
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Variations from Quantum State to Quantum State

Red:  Cu#1

Blue:  Cu#2



Principal-axis directions
g1 axis g2 axis g3 axis

Principal-axis directions are randomly oriented in space.
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Exp. RMT
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Check agreement between experiment and RMT predictions
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Single parameter fit: l (spin-orbit scattering strength) is determined by matching the 
experimental and theoretical values of                    .

Cu #4
l=1.8

Cu #5
l=1.1

Theory and experiment are in excellent agreement.



One Mystery:  The g factors in gold nanoparticles are smaller than expected

Strong spin-orbit scattering limit (Matveev et al.)
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spin contribution
orbital contribution

From Matveev et al.
PRL 85, 2789 (2000)

For a ballistic nanoparticle, l~L
2 1≥ ≥g

For a diffusive nanoparticle, l<L
g £ 2

If we assume the orbital part does not contribute, the spin contribution to the average
g factor gives an estimate for tso consistent with weak localization measurements.

Are the nanoparticles much more disordered than we expect so that they can quench the
orbital contribution, or is there some shortcoming in the theory?

We see <g2> as small as 1/50.








