
Lecture 3 

Mesoscopic  effects in hopping conductivity 

 1.  Anomalous transmission of  a barrier 

  

  4.   Hopping conductivity in 1D    

Topics 

3.  Distribution function of  hopping conductivity of a finite-size sample  

2.  Hopping conductivity through an amorphous film 



system  of filaments with random traps 
D -probability to pass through a trap  

average conductance exceeds   

of a typical filament    
exponentially  the conductance      

the product                 is maximal      for                      

sparse  filaments  with   close to                      

determine the average conductance     

I.M. Lifshitz 

Poisson’s distribution 



electrons with broadly  distributed     
energies are incident on a barrier     

    with randomly  positioned impurities     impurity level position     distance from the center     
for a chain of  N  impurities    

resonant tunneling through a     
chain of  four localized states           probability  of formation      

 of a chain     

rigorous calculation yields     

increases with  N     
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energy interval where     
transmission is high      

miniband  width     



Hopping conductivity of      
an amorphous film     

resistance of one hop     

resistance of one chain    probability of formation    

the product    is maximal for   1−
NN Rw
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and    must be smaller than these conditions are 
also met when 1>>λ



Misha Fogler 



Sample of a finite area  

Since the distances between punctures are exponentially large, 
the situation may occur when no optimal puncture is present 
in a sample 

Then the conductivity of a typical sample will be determined   
by a few punctures of highest transmittance  present      
 in the sample    

conductivity will strongly 
 fluctuate from sample  

conductivity will  
strongly depend on  

to sample  

 the sample area 

Ensemble of samples should be characterized    
 by the distribution function    



u
 area of the sample 

Areal  density of punctures 

Peak position of the distribution function  

Sample-averaged conductivity 

For punctures with anomalously high transmission 

characteristic puncture area 

The integrand has a sharp maximum at  such that 

Cross section of transmission of a puncture 

decreases with increasing  )(uΩ



Applies when the number of optimal punctures within the sample area  is large 

Since the condition of applicability  reduces to 

For  the  conductivity  of  a typical sample  will be dominated  by   

a few punctures with highest transmission present in the sample 

this  condition defines such that 

maximum of the distribution function 

fu defines the lower limit in ( )∫
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Width of the distribution function 

from Poisson’s statistics 

The integrand has a sharp maximum at   such that 

punctures responsible for variance are  
 exponentially more sparse than  
 punctures  responsible for average   

variance 

determines the width of the   
 the distribution function if    

where is the solution of  

definition of the function 

iii nnn =− 22



The width of the distribution function of   for                      

integration only over punctures present in a typical sample  

 for                      

 for                      

the width is inversely proportional to 

 uncertainty in                                             determines the width of the distribution function   



Example: 

peak position 

evolution of the width of the  
distribution function with area  
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Analytical  expression for the distribution function  

Fourier transform of the          function  δ

insummation over 

in the continuous limit 

each type of punctures  
is Poisson-distributed 

    of punctures  
sum over the types  

+



For  the distribution function is gaussian 

non- gaussian but the peak position is still determined by optimal punctures  

the peak position is determined by  punctures with  

 distribution function of 0∆ σln
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is given by 

For the variance  

Asymptotic form for small area, 

longer tail towards large conductivities 
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Is it possible to measure the distribution function experimentally? 

A single sample of a  small area  in external field  

 regular component   

 with  random  component   

transmissions of two most transparent punctures within    
 a given sample have different rate of change with    

the difference in log-transmissions exceeds  the width of the distribution function at   

 “individuality”  of the sample is forgotten   

distribution function of mesoscopic fluctuations of conductivity of a  given sample   
                               yields the distribution functions over samples   



a break in a one-dimensional chain 
resistance of 1D sample  

Mott’s law in 1D 



For a given resistance of a break 
its area is the smallest if it is rhombus-shaped 
with the diagonals 

2
au uT2and 

 the resistances between two sites  
 arranged symmetrically  on the opposite 
sides  of the rhombus  are the same  

the are of the rhombus 

Any decrease of  the rhombus area 
results in the decrease of its resistance 

the product is maximal for 

Contribution of breaks to the resistance    
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R.A. Webb 

 1D 

 2D 



Upon decreasing temperature: 





dependence of  the resistance between two sites on the gate voltage     

percolation simulation in 1D     current  flows when resistors with     are switched on    

in experiment    
the sample length   mµ10~

exceeds    7020~ − times 
the localization length   

at low temperatures plateaus are absent    
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Average log-resistance obeys a 1D   

Mott’s law   
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increases with wire length   0Tover Fermi level positions 

“period”   
 grows     
 with T    
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typical log-resistance 

Qualitative picture of mesoscopic fluctuations: switching of most resistive breaks 

Mott’s law 

Quantitative description 

absence of plateaus: sites on opposite sides of the Fermi level never determine the resistance 



Width of the distribution function: 

“Period “of  mesoscopic fluctuations  
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For a general         the resistance is dominated by  two  breaks shifted in  
 in energy by 

µ

cδµ2   their log-resistances differ by   Tcδµ~

On the other hand, this difference should be    ∆~

)(νϕfunction  for 1D hopping 



9.42 =∆

Igor Ruzin 



Wide samples 



Alexander Savchenko 
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