Lecture 3

Mesoscopic effects in hopping conductivity
Topics

1. Anomalous transmission of a barrier
2. Hopping conductivity through an amorphous film

3. Distribution function of hopping conductivity of a finite-size sample

4. Hopping conductivity in 1D



Theory of the passage of particles and waves through randomly inhomogeneous
media
I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur
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— . . Poisson’s distribution
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system of filaments with random traps :
D -probability to pass through a trap

(o) =exp[—N(1—D)]
{Ingy=—Nn(1/D) In(l/D)>1-D \

In {6>=—N(1—D).
In{oy={Ilna>

the product DVp(N) is maximal for N=DN=N._. <N
average conductance exceeds opt

exponentially the conductance
of a typical filament

sparse filaments with /N close to N opt

determine the average conductance



Tunnel transparency of disordered systems

I. M. Lifshitz and V. Ya. Kirpichenkov
energy interval where
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electrons with broadly distributed = L
. . y _ o(2) (e —g5)* + 4I'3 ch? 2z/a’
energies are incident on a barrier
with randomly positioned impurities impurity level position  istance from the center
for a chain of N impurities

. ) —Ayocexp(— L/Na), increases with N
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resonant tunneling through a probability of formation | = N = ( ) |
chain of four localized states of a chain a In(1/nvy)
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unlike tunnel conductivity ocexp(—%)

I ; . Y
rigorous calculation yields Yo =a"L



Hopping conductivity of R., = 1 ex (2“'1 mis] + 513) er=3le 4 lesl + le; — e,
an amorphous film 12 = P a T 12=3(leq| + ez + &g — &)
resistance of one hop
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Applicability: In(e) 1< [TO )1,/1—:) . 1 solutior’ of equation

We assumed that the chains are nearly straight:
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Hopping transport in systems of finite thickness or length
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Sample of a finite area

N

Since the distances between punctures are exponentially large,
the situation may occur when no optimal puncture is present
in a sample

Then the conductivity of a typical sample will be determined
by a few punctures of highest transmittance present

in the sample
conductivity will
strongly depend on
conductivity will strongly the sample area
fluctuate from sample
to sample

Ensemble of samples should be characterized
by the distribution function



Peak position of the distribution function

Areal density of punctures
Cross section of transmission of a puncture / '

A= A, exp(—u) p(u) = }1_{{‘10 = Z;: o(u — u;),

For punctures with anomalously high transmission area of the sample

1
plu) = S exp[—Q(u)] <= Q(U) decreases with increasing U
0

characteristic puncture area

Sample-averaged conductivity

j oo o0
{oy=A, j du e “plu)= Ao J’ du exp[—u— Q(u)]

0 S‘D 0

The integrand has a sharp maximum at  #=#et suchthat  Q'(u,,)+1=0.



In {g)=In (% <H>) = =g — 2(thop)

0

Applies when the number of optimal punctures within the sample area is large  Sp(u,,) & 1

Since  [In(Sgp(tiap))| = Qo) =1 the condition of applicability reducesto y= 1

_ In(S/So)

ﬂ(unpt)
For v<1 the conductivity of a typical sample will be dominated by

v

a few punctures with highest transmission present in the sample

this condition defines u = ug > u,,, such that Sp{uf]' ~ 1 I:> Qug) = vE(Ugpy)

U: defines the lower limitin

ln(% g(v}) = — VEUypy ) — tig(v)<—maximum of the distribution function
0



Width of the distribution function

variance

1 .
{(80)*> =<o*) —o)*= A_% J du p(u)e 2 — from Poisson’s statistics

> e (n)=()* =¢n)

The integrand has a sharp maximumat @ =uq suchthat Q'(u,)+2=0
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(B0)?) ~ & exp[=2uq = Qfug)] g < oy
_ _ punctures responsible for variance are
determines the width of the exponentially more sparse than
the distribution function if :
SP(Hd} > 1 punctures responsible for average

V> V4 where Vg isthesolutionof @(vg)=2

_ definition of the function @ -
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The width of the distribution functionof In g for V= Vg

Ao~ (K(80)* )2/ ) ~ expuop: + (1 = 3V)Rope) —, Ua — 22(ua)]

I IS 1 I 1/2
for ¥ < Vg the width is inversely proportional to §

1 A?.. o0 1/2 A
A~ = o (SS'::-;. L: du exp[—2u — Q{u}]) . S, ;121') exp [—ue(v) — vQ(uop) ]

Integration only over punctures present in a typical sample

l <v<vy —=>a(v) = <o) 4 ~ exp[—ug (v) + Uopt T (1— P}Q{Hﬂpt)]

for y <€ 1 uncertainty in Ug determines the width of the distribution function

Sp(ug) ~ 1-2 = Ol ~MSPWII™" =5 A4 ~ Sug ~ 1/0p(v) > 1
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evolution of the width of the
distribution function with area
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Analytical expression for the distribution function

B exp(—#;) _, each type of punctures
—q Z n; exp(—u;) p(n;) = n ! M is Poisson-distributed
-

sum over the types
of puncture%lVy \\ \
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ﬂ Fourier transform of the § function
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For V> Vg4 the distribution function is gaussian 4 =1In ¢ —In {o)

exp(— A4%/243)
(2n)'2 4,

A, distribution function of Inoc

f(n g) =

1 < v < v4 non- gaussian but the peak position is still determined by optimal punctures
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y < ] the peak position is determined by punctures with u = ug > 1y,
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025 (a) For y = 1 thevariance

[l ew=05  D=((In o)~ <In o)
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longer tail towards large conductivities

Aoty F Asymptotic form for small area, v < 1
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Is it possible to measure the distribution function experimentally?

Asingle sample of a smallarea v << 1 inexternal field

Ino | / regular component ou=— ufﬁF,-'rFﬂ

. with random component &y’ ~ g, 12
I Fo [ f€(ug) ]

/ transmissions of two most transparent punctures within
a given sample have different rate of change with F

mYy

-

NFC

the difference in log-transmissions exceeds the width of the distribution function at

OF ~ Fo[BR(ug) 1" lug(v) = F, ) “individuality” of the sample is forgotten

distribution function of mesoscopic fluctuations of conductivity of a given sample
yields the distribution functions over samples
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Hopping Conductivity in One Dimension

Juhani Kurkijarvi
Laboratory of Solid State Physics and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14830
(Received 31 August 1972)

Mott’s lawin1D Ino=— (IE)/T)UE*. To = 1/ga.

(D)
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(R M R R R
H=EF-Ei

0

resistance of 1D sample
a break in a one-dimensional chain



€A
Mm+uT L (b)
For a given resistance of a break g et
y its area is the smallest if it is rhombus-shaped
— with the diagonals @Y and 2yT
o — TN 2
the resistances between two sites
arranged symmetrically on the opposite
pouT sides of the rhombus are the same
Any decrease of the rhombus area

>y

au/2 X results in the decrease of its resistance

il -

the are of the rhombus 4 = 1 2 o .
A=3zaTu Contribution of breaks to the resistance

R(u) oc exp(u) exp(—gaTu?/2)
the product is maximal for

u=(gTa) ' =T/T —) In {(R) = Ty/2T. muchbigger than (In R>=G—°jﬂz
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Conductance in Restricted-Dimensionality Accumulation Layers

A, B. Fowler, A. Hartstein, and R. A. Webb
IBM Thomas J. Watson Research Centev, Vovklown Heights, New Vovk 10508
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FIG. 1. The upper part shows an idealized plan of
a sample, The two 2 regilons are the source and drain.
The p* regions are the control electrodes. In this case
the n-type substrate was 10={ -cm 8i. The width be-
tween the controls was 1-2 pm. The length of the con-
m shows a section through
the device aiung the dotted lines. The diffusions were
about 1 pm deep and the oxide was 300 A thick, Poten-
tial lines are sketched for a positive gate voltage,

R.A. Webb
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FIG. 2. Conductance as a function of gate voltage for
three temperatures,
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Origin of the Peaked Structure in the Conductance of One-Dimensional Silicon
Accumulation Layers

R. A. Webb, A, Hartstein, J. J. Wainer, and A. B. Fowler
IBM Thomas J, Waison Research Center, Yorkiown Heights, New York 10598
{Received 6 February 1985)
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FIG. 1. Conductance as a function of gate voltage on an
expanded gate voltage scale for selecled temperatures. Only

P the large peak is displayed for the 65- and 36-mK curves.
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Nonmonotonic Variations of the Conductance with Electron Density

in —70-nm-Wide Inversion Layers

R. F. Kwasnick, ‘*> M, A. Kastner,‘?’ J, Melngailis, and P. A, Lee'®’
Reseavch Labovatory of Electvonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
{(Received 18 August 1983)

The conductance of metal-oxide-silicon field-effect transistors with ~ 70-nm-wide in-
version layers exhibits nonmonotonic variations with electron density below 15 K. The
variations are largest at low electron concentrations and are the result of variations of
the activation energy E ,. When E , is largest the current is found to be limited by spa-
tial barriers which contain tunneling channels at discrete energies, as in the model of
Azbel.

mean width is ~ 70 nm.

| 5i0s2
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‘\ijﬁ.

FIG. 1, Left: Schematic top view of the narrow-gate
MOSFET, The resistivity of the p-type 5i substrate
is 3 Q-cm. Right: Cross section through the device
along the dotted line in the left figure, Shown are the
narrow inversion layer situated under the narrow gate
and the boundary of the depletion region,

a—

The narrow
gate is created by first reactive-ion etching a
50-nm step down into the 100-nm-thick gate oxide
using photoresist as the mask, and then evaporat-
ing Al into the step at a glancing angle to the sur-
face.

As sketched

in Fig. 1, wide gates overlap the n" regions so
that electrical contact to the narrow inversion
layer is made through ~1-mm-wide inversion
layers.

T=42K
Vp=0.5mVy

CURRENT (nA)

0.4r0 }

0.2}~ expanded
0.0 l ek, | |

2.3 2.5 2.7 2.9 21
GATE VOLTAGE (W
FIG. 2. Current vs gate voltage. The arrow indicates
the gate voltage (2,585 V) of the deep minimum explored
in this Letter.
In Fig. 2 we show
an expanded version of the structure near thresh-
old. When V is increased beyond the first few
maxima the conductance decreases by as much
as three orders of magnitude at 2 K with a gate-
voltage change of 0.05 V. Note that the inversion
laver containg only 10°~10* electrons because it
is so narrow, and the large decrease in the con-
ductance is achieved with an increase of V; cor-

responding to the addition of only ~ 200 electrons
to the inversion layer.
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Variable-Range Hopping in Finite One-Dimensional Wires

Patrick A. Lee

Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 15 June 1984)

o =0.02 —05<E, <05

In(Ry/y) =2elx;— x;| + (1/2kD) (| E, — p| + | E; — | + | E;— E}])

dependence of the resistance between two sites on the gate voltage

percolation simulation in 1D

current flows when resistors with R; <R, are switched on
at low temperatures plateaus are absent

| l | in experiment
o * Ne=20 »“1  the sample length ~10zm

B x = / .
- e =60 | exceeds ~20-70 times
~ 12 X 1
’9_2 /-/ the localization length

Average log-resistance obeys a 1D

- 7
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T
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FIG. 1. In(R/y) vs chemical potential u for several T
temperatures. The chain length N = 1000 corresponds to

20 localization lengths. \ FIG. 2. (In(R/y)) vs T-Y2 for different chain

lengths. . . .
No =20 over Fermi level positions To increases with wire length




Qualitative picture of mesoscopic fluctuations: switching of most resistive breaks

1 ( (3) " internal {b:l
internal
Ho +28uc / N /\
A\ / |
3 x\v/f (ﬂ

- Ba Mo +28pe o

Fig. 15.(a) Schematic of internal and mutual break switching in a one-dimensional chain with
variation of the Fermi level; (b) Fluctuations of the chain In ¢ with variation of the Fermi level.
gx‘p(_ I U— #nl / T) The dashed lines specify the variation of the resistances of individual breaks.

rhombus resistance will fall off as

absence of plateaus: sites on opposite sides of the Fermi level never determine the resistance
Quantitative description

In(Lv'?/a) 2T [ Ly'/?
— —ow Q) =3gTau* = Tu*/2T, e =" In
pu)=gTue 0 Quyy) T a

v<1 Lp(uf)\f“-* 1 Mott’s law

R(v) _ _ﬂv“"*T;;, T, L{T . L\Y?])2
ln(QTG)—uf(v)— T {2 ln[ (Tﬂln ) ]}

typical Iog-resistance/




function () for 1D hopping Width of the distribution function:

Ho +28uc

H2

@(v) = v‘”g Q' (ug(v))

1 T, \'* LT L\
Y72 (ZT) i P

A T 1

(InR) ; Tov - 5 In{ L [T J“Z}::) strong fluctuations

a

0

“Period “of mesoscopic fluctuations

For a general [ the resistance is dominated by two breaks shifted in
in energy by 2611, their log-resistances differ by ~ Sz, /T

/NN / On the other hand, this difference shouldbe ~ A

( : x ﬂ L(T\? L T
sy e[ () e (2) ]~



PHYSICAL REVIEW B VOLUME 33, NUMBER 12 15 JUNE 1986

New aspects of variable-range hopping in finite one-dimensional wires

R. A. Serota, R. K. Kalia,* and P. A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

= ((Inp— (Inp))?) (Received 16 August 1985)
It is evident that the distributions are asymmetric with
@ (o) longer high-resistance tails, which is a characteristic of all
=49 | the systems. These distributions also become narrower
with the increase in length of the systems.
| ‘ |
.'1
D)= __( )I:I> o =0.5
o A 1
- -4
z
200+
100
8.27 !n Q 26.3312.1 Il‘l Q 28.23
FIG. 1. Distributions of Inp for chains of N =2000 sites (3! '

ensembles) and N =9000 sites (36 ensembles), respectively -8
Note the high-resistance tails, and that the distribution of the
longer chain is narrower.
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Fig. 21. Mesoscopic fluctuations in the conductance of MOSFET with variation of gate voltage
(Laiko et al. 1987) for different temperatures.
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Fig. 20. (a) Cross-section of MOSFET (Orlov et al. 1986, Laiko et al. 1987): 1, conducting channel
in GaAs; 2, depletion region; 3, semi-insulating GaAlAs layer; 4, conducting substrate; (b) Band
diagram of the structure.
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Statistical properties of mesoscopic conductivity fluctuations in a short-channel
GaAs field-effect transistor

A.O. Orlov, M.R., I.M. Ruzin, A.K. Savchenko

Institute of Radio Engineering and Electronics, USSR Academy of Scie -

(Submitted 15 June 1989) 1.6

Zh. Eksp. Teor. Fiz. 96, 2172-2184 ( December 1989) s c
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FIG. 1. Conductivity fluctuations in the channel of a GaAs FET at var- 1951 - 2010 -4 =2 -t 0 1 G(Vg)
ious temperatures T:1.5; 2.0; 2.5; 3.0; 3.5; 4.2; 6.0; 8.0 K (curves 1-8). mﬁﬂ"('v-}

FIG. 3. Histogram of the distribution of the log conductivity of the experi-
mental dependences for the three temperatures 1.5 (a), 4.2 (b) and 8 K
(c) (curves 1,6 and 8 of Fig. 1) after subtracting the monotonic part from
them. The smooth curves show the corresponding approximating func-
tions.
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FIG. 4. Histogram resulting from averaging over the data reduced to
T = 1.5 K for eight temperatures, and the corresponding theoretical dis-
tribution function of the log conductivity.

the experimental histograms

for all eight temperatures are approximated by the same
function (11), in which the parameter w(T) is determined
each time by minimizing the mean-square deviation of the
theoretical curve from the experimental histogram.

F1G. 5. Temperature dependence of the channel conductivity for various
values of |F, |: 1—1.105; 2—1.117; 3—1.148; 4—1.157; 5—1.195; 6—
1.200: and 7—1.241 V (curves 1-6 are arbitrarily shifted along the ordi-
nate axis).



as the temperature is increased a transi-
tion should occur from the regime of chainlike conduction to
a regime where the sample conductivity is determined by a
— 2 = rather small number of regions having the form of branched
ﬂu clusters.

16
_I FIG. 6. Temperature dependence of the experimental value of the width w
of the distribution function and the calculated parameters w and {, for
two values of the frequency 5" 10" sec™' (curve 1) and 10'? sec '
—12 {curve 2).
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Distribution-function analysis of mesoscopic hopping conductance fluctuations

R. J. F. Hughes
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom
and Minerva Center, Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics,
Bar-Ilan Universitv, Ramart-Gan 52900, Israel
A K. Savchenko
Department af Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

J.E. F. Frost, E. H. Linfield, J. T. Nicholls, and M. Pepper
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom
E. Kogan and M. Kaveh
Minerva Center, Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics, Bar-Ilan University,
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; FIG. 2. (a) Part of the experimental characteristic on a loganth-
oolat o ) R ) mic conductance scale from a 19.4x 0.6 um 1D S1 MOSFET. Dot-
InG {arbilrary units) G = -InF (arbilrary units) ted lines demarcate gate-voltage intervals used for averaging.



Distribution Functions
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FIG. 3. Conductance fluctuations from a 1,802 pm 1D GaAs
device and experimental DF’s obtained from five adjacent gate-
voltage intervals spanming the characteristic. At low gate voltages,
the distribution is no longer exponentially wide while at high gate
voltages the conductance becomes too small to measure. In between
is a region where good fits to the theoretical 1D DF (solid curves)
can be obtained.

FIG. 8. (a) DE’s obtained from a 2X 100 um Si MOSFET as a
function of magnetic field and their fits to the 2D theory. (b) The
average magnetoconductance obtained by the direct and fitting

methods is negative. (c) The standard deviation of the distribution
obtained by the two methods increases slightly.
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FIG. 5. Temperature dependence of the fluctuations from a
194> 0.6 pm 51 MOSFET. (a) Experimental DFs fit by the 1D
theoretical form. (b) Fit to Eq. (1) of the average of In obtained
both directly (hollow circles) and from the position A, of the fitted
DF’s (filled circles). (c) Temperature dependence of the fluctuation
amplitude 5 both measured by the standard deviation of the data
points (hollow circles) and calculated from the fits to the 1D DEF's
(filled circles). The gradient of the latter vields a T"% power law.
(d) Fitting the fluctuation amplitude to a T''* power law yields the
prefactor 0.35.



FIG. 4. Distnbution functions obtained from three S1 MOS-
FET s fabnicated on the same chip showing the characteristic 1D
and 2D asymmetnies. Lithographic channel dimensions are (length
X width): (a) 2 X100 pm fit by 2D DF, (b) 52 pum fit by 1D DF,
and (c) 1.5 100 pum fit by a Gaussian. Inset are the regions of the
charactenistic from whach the histograms were obtained.
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Conductance fluctuations in large metal-oxide-semiconductor structures
in the variable-range hopping regime

Dragana Popovic*
Department of Physics, Brown University, Providence, Rhode Island 02912

A. B. Fowler and S. Washburn
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

P. J. Stiles
Department of Physics, Brown University, Providence, Rhode Island 02912

Conductance fluctuations due to variable-range hopping have been studied in 8-mm-wide silicon
inversion layers of large area (3.2 mm?. The temperature dependence of the average logarithm of
conductance {InG ) varies with the carrier density N, from nearly activated to very weak. Fluctua-
tions of InG with the chemical potential u occur on two different scales. The distribution function
of the fluctuations in InG is also analyzed, and the results are consistent with the model of conduc-
tion via exponentially rare, highly conducting, quasi-one-dimensional chains of hops.

on much larger samples with length L =0.4 mm

and width W =8 mm. Several features of our data are
consistent with the model of conduction via quasi-1D
chains (punctures).

G (s)

FIG. 1. Conductance vs gate voltage at (a) T =0.555 K, (b)

S T T T=0.420 K, (c) T=0.330 K, (d T=0.090 K. Inset: The
n 04 0.3 0.0 .7 0.8 “best” exponent n for different gate voltages. The dashed line is
a guide to the eye.
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FIG. 2. (a) Fluctuations in the conductance logarithm with
the gate voltage at T =330 mK. (b) Histograms of the distribu-
tion of the conductance logarithm for 0.40 V=V,=0.42 V at
two temperatures.
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