Lecture 2

Hopping magnetoresistance

Topics:

1. Asymptotic behavior of the impurity wave function in magnetic field

2. Anomalous tunneling in magnetic field

3. Interference effects in hopping magnetoresistance

4. Spin-orbit effects in hopping magnetoresistance

5. Interplay of interference and orbital effects in hopping magnetoresistance
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Fig. 7.1. Solid lines represent the inverse
temperature dependences of the longitudinal
resistivity Ay in an n-InSb sample with
Np=6x10"cm~? ([7.6], sample A9) for
different values of the magnetic field. The
transverse resistivity p, for H=10kOe is
shown by a dashed line
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Anomalous tunneling:

Variable-range hopping conductivity in a strong magnetic Tunnel decay of the donor
field wave function across the
B. I. Shklovskii magnetic field slows down
A. F. Ioffe Physicotechnical Institute, Academy af Sciences uf the USSR, Leningrad due to the under-barrier
(Submitted 7 June 1982) scattering
Wj‘? Pis’'ma Zh. Eksp. Teor. Fiz. 36, No. 2, 43—46 (20 July 1982)
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and the most probable optimum tunneling path to the point r in the plane of the film will consist of
n~r/R “steps,” each with a length of order R (Fig. 2). For each step we have
V,;<exp{ — R */44?) and thus

Yy = ﬂxp{—ﬂﬂlfﬂlﬁﬂxp{—r!b}a m/\

where & = 54 2R ~ ', and 5 is a numerical factor. In the case rs R we obviously have

wirs¥tir.



Tunnel transparency of disordered systems in a magnetic field
B.|. Shklovskii and A. L. Efros

A. F. Ioffe Physicotechnical Institute, USSR Academy of Sciences
(Submitted 19 August 1982)

Zh. Eksp. Teor. Fiz. 84, 811-822 (February 1983)

It is shown that multiple nonresonant scattering in a magnetic field alters substantially the char-
acter of the decay (the argument of the exponential) of the wave function of a tunneling electron.
For example, the wave function in a strong magnetic field is proportional to exp{ — x?/24 ?)
without allowance for scattering, but when scattering is taken into account it takes the form
exp( — |x|/b ), where x is the coordinate in the direction perpendicular to the magnetic field, A is
the magnetic length, b =A /|In B |, and B is a parameter that describes the scattering. The mean
square modulus of the Green's function with negative energy in a magnetic field is calculated for
scattering by a random Gaussian potential. It is shown that in semiconductor solid solutions this
quantity can be used to describe the tunnel transparency of films in a magnetic field parallel to the
surface, as well as the magnetoresistance of bulk samples in the region of hopping conduction.
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Localization and hopping conductivity in the quantum Hall regime

Qin Li and D. J. Thouless
Department of Physics (FM-13), University of Washington, Seattle, Washingron 98195
(Received 8 May 1989)

The long-range asymptotic behavior of the two-particle Green function of a two-dimensional
electronic system in the presence of a strong magnetic field and a Gaussian white-noise potential is
studied. Away from the center of the Landau level we can show that weak disorder leads to an ex-
ponential tail of the Green function, 1.e., G ~e ale=rl The rate of the exponential decay is found
when a is large to be a=(|InW|/2)'", where W parametrizes the strength of the disorder. At
shorter distances the Gaussian behavior of the unperturbed system predominates, and so there is a
crossover between the two. The hopping conductivity in the quantum Hall devices is also discussed,
and it is shown that the temperature dependence of the exponent in the conductance is not a simple
power law, although it approaches the usual Mott T law as T"—0,
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Exponential decay of the wave functions away from the center of the Landau level
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Anomalous tunneling in a strong magnetic field and a smooth potential
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Interference of real directed

TS 4 T i e In disordered metals negative magnetoresistance is

hopping regime cause negative due to interference of two counterpropagating paths:
magnetoresistance
Aaronov-Bohm oscillations with normal and /\
superconducting flux quanta in hopping conductivity
V. L. Nguyen, B. Z. Spivak, and B. |. Shkiovskil ®
A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad O
(Submitted 27 November 1984) P

Pis’'ma Zh. Eksp. Teor. Fiz. 41, No. 1, 35-38 (10 January 1985)
® o
no coherent backscattering in the hopping regime

Scatterers with energies outside the Mott energy strip

fra)
s [ or<2

----- Contributions of different tunneling paths
to the net amplitude have random signs

VOLUME 60, NUMBER 15 PHYSICAL REVIEW LETTERS 11 APRIL 1988

L T— B | Orbital Magnetoconductance in the Variable-Range -Hopping Regime
U. Sivan and O. Entin-Wohlman

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

Y. Imry
Department of Nuclear Physics, Weizmann Institute, Rehovot 76100, Israel,



Tunnel hopping in disordered systems

V.L. Nguen, B. Z. Spivak, and B. |. Shklovskil All multiple-scattering paths

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad have the same length

(Submitted 21 May 1985) .
Zh. Eksp. Teor. Fiz. 89, 1770-1784 (November 19835) e et
Random energy LT
) =(1— —W)+zb(e—W/A : L LT
g(e) =(1-2)d(e—W)+ab(e, ) denominators N '

take two values

-pr |VJ Al
1=V =V — J
LT A5 R
Aharonov-Bohm phases SR i UL
L] L L] : - -
=21l V=V exp(igy) Qu=(e/2hc)H[r;, 1] T
ir}y dirk . ¥ .

FIG. 1. Lattice used in the simulation of the quantity J. Sites 1 and 2 are
the source and observation point. The arrow shows one of the oriented
paths between these sites. The square at the center of the lattice is used in
Section 3 tosimulate an aperture in which a solenoid is placed. The dashed
line is a *‘cut” on which the phase changes discontinuously.

FIG. 7. The quantity L + {In|J(H)/J(0)|*) as a function of the dimen-
sionless magnetic field / /H for the three-dimensional case and various
valuesof dand x: 1 —x=0;2—A =8, x =0.001; 3—A =2, x = 0.5, 4—
A=20, x=001; 5—4= -8, x=001; 6—d= —1, x=0.1; T—
A=20, x=01;, 8—4= -8, x=002; 9—4=8, x=01; 10—
A = —1,x=0.5. Shown separately in the inset is the region of very weak
fields, H<0.01H4.

) —~ negative magnetoresistance




Contributions to hopping conductivity from disorder configurations
where virtual amplitudes almost cancel each other

are most sensitive to a weak magnetic field
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“Phase volume” of configurations sensitive to magnetic field B

is proportional to B =) linear NMR



PHYSICAL REVIEW B VOLUME 47, NUMBER 23

15 JUNE 1993-1
Single-scattering-path approach to the negative magnetoresistance

(B-Sﬂ} in the variable-range-hopping regime for two-dimensional electron systems
¥, =2m : )
do Single-scattering . ..
paths
H R(B)—R(0) B .
o —KiA }E Sl
h

»a Linear NMR M
small fields=~ & | \'
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FIG. 3. The behavior of the relative magnetoresistance as a

2 function of the normalized magnetic field for various values of
§InR = — = fﬂ:dq&l 1+ Gog) normalized scattering strength A [Eq. (3.18)]. (1) A4 =0.07, (2)
Slﬂlq:' A=0.,13,(3) A=0.26, and (4) the strong-scattering limit.

With orbital effect taken
into account

Glp)=mg [d’r —?,:—an[ﬂlir}—-q:r]l oy

Viv=V,.,exp|— Sars

linear NMR is due to the paths for which direct
and scattered amplitudes cancel each other




Negative magnetoresistance and oscillations of the hopping conductanc
of a short n-type channel in a GaAs field-effect transistor

aRiR(D)  J-

E.l. Laiko,A.O. Orlov, A K. Savchenko, E.A. Ilichev, and E. A. Poltoratskil a1k 7 i
Tnstiticte o Rodio Engineering and Elecironics, Academy aof Sciences af the USSR, Moscow
{Submitted 6 May 1957} 7
Zh. Eksp. Teor. Fiz. 93, 22042218 ( December 1987
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- FIG. 5. Transverse magnetoresistance of a channel of sample Hb6 with
a . b Ny = 1.8} 10" cm ™ *at T = 4.2 K recorded for different values of ¥, and
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FIG, 2. a) Section through a structure: 1) conducting channel in GaAs; Fl:lg E:I [ﬂ' 1]
2} depletion regions; 3) semiinsulating GaAlAs layer; 4) conducting sub- -5
strate. b) Energy diagram of the channel. ¢) View of the structure from L b
above. " FIG. 3. a) Temperature dependences of the chan-
ARGDIRG) 3 AW 4, nel conductance (sample H1, N, = 1.0x10"
U R c¢m ~*) obtained for different values of the gate vol-
. tage — F, (V):1)0;2) 1;3) 1.95;4) 2.04; 5) 2.17;
6) 2.27; 7) 2.34; 8) 2.395. b) Curves 3-5 replotted
- using the coordinates log G and T '

anisotropy increases

FIG. 6. Channel magnetoresistance (of sample H6) obtained for three 4 S0 60 70 80
orientations of the magnetic field: the continuous curves correspond to - ~Ify 2 =My
H, : the black dots (®) correspond to M, , and the open circles () corre- T 7135 K
spond to H . The curves were obtained for different values of ¥, and R ;

(H=0):a) 224V, 160 k0; b) 2.38 V. 270 k1}; c) 2.61 V, 7.0 M11 (the

curves are shifted along the y axis),
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Magnetoconductance in the variable-range-hopping regime
due to a quantum-interference mechanism

0. Faran and Z. Ovadyahu
Racah I'nstitute of Physics, The Hebrew University of Jerusalem, Givat Ram, 91 904 Jerusalem, Israel
(Received 31 December 1987)

Results of systematic magnetoconductance measurements on highly disordered In,0,_, films are
described. Measurements were performed as a function of magnetic field, electric field, tempera-
ture, system dimensionality, and amount of static disorder. It is shown that in the hopping regime, —
the low-field magnetoconductance is always positive, and anisotropic in sufficiently thin films. The
latter feature is suggestive of a nonlocal (orbital) mechanism. We demonstrate that the spatial range

of phase coherence, involved in the phenomenon, scales with the hopping length. This length may t .
be controlled by either the temperature or the electric field. It is further shown that several aspects =
of the experimental results support the basic ideas of a newly proposed quantum-interference mech- 15 L @ |
anism. An intuitive physical description of the reason for the positive magnetoconductance is dis- °
cussed based on the percolation model for the hopping transport. i o
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RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 45, NUMBER 16 15 APRIL 1992-11

Youzhu Zhang, Peihua Dai, and M. P. Sarachik
City College of the City University of New York, New York, New York 1003/
{(Received 3 February 1992)

A magnetoconductance is observed for weakly insulating n-type CdSe which, depending on the tem-
perature of the measurement, is quadratic or approximately linear with field in small magnetic fields,
and exhibits saturation as the field is increased. The crossovers from guadratic to linear behavior and
to saturation occur at magnetic fields which are consistent with theoretical expectations for the eflect
of quantum interference in the hopping regime.

TIK)

MAGNETIC FIELD (T ) ] 0.1 1

{] 2 4 6 g 10 FIG. 1. The magnetoconductance of compensated n-type B L
d — T T~ 1 ¢ wilh nel In dopant concentration /¥ =LUp — Wyl =I. 20
CdSs ith In dop i No=N N4)=225
[ GdSe In 2 012K 7 = 10" em ™ (sample 4), where Np and N, are the donor and
100 l- ; giﬁ | acceptor concentrations, respectively: {a) magnetic fields to 10
* 1K T: (b} magnetic fields to 0.8 T. To demonstrate the quadratic
A 16K behavior at higher temperatures, the inset in {(b) shows the same
50 ; izﬁﬁK j duta plotted us a function of A*. The list of symbols and corre-
r EK sponding temperatures refers to both (a) and (b). The straight

lines represent least-mean-square fits to the data and the curves
are drawn Lo guide the eye.
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MAGHNETIC FIELD (T )

FI1G. 2. The magnetoconductance Aafo of sample 4 vs mag-
netic field plotted on a log-log scale. The symbols denote the
following: O, 0.1 K; <, 0012 K; <, 03 K;m 0.5 Ko =, 1.0 K. 4,
1.2 K: &, 1.6 K;: 275 K; +. 6.0 K. The straight lines are
least-mean-sguare fits to the data, and their slopes give the ex-
ponent s of Ag/ao H*. The inset shows the slope 5 as a function

of the logarithm of the temperature for samples 1 (<), 2 (a), 4
MAGNETIC FIELD (T) (0). and 5 (x ).
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In the presence of spin-orbit scattering

VoOLUME 73, NUMBER 10} PHYSICAL REVIEW LETTERS 5 SEPTEMBER 1994

Low-Field Anomaly in 2D Hopping Magnetoresistance Caused by Spin-Orbit Term
in the Energy Spectrum

With SO scattering the hopping
amplitude is an operator

m
sy Al = Ay + ATl A1l — 4l
A = Gg(rz) + GU(PJJ]QGD{FH}EEF(EW'B b)- 4 s A A‘

Dy o .
distribution function
. oy - 2plel
tunnellr_19 probablllti/ 5;3?} _ —f.-:ir Fo(r) ln(l . 4«; 5 - _|I_ ;.2)
w = |All2 + |Al)2 0
in a weak magnetic field: r = AN(0)/AT — interference parameter
In[R(B)/R(0)] = 8R(B)/R(0). A = ll/g" — strength of SO scattering

Major contribution to the integral comes
from small zero-field amplitudes
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RO) szsm}(JP/t o2 m)

SO scattering turns linear NMR into quadratic



SO coupling in the bare Hamiltonian instead of SO scattering

H, =an-(oxk)
normal to the 2D plane
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for Dresselhaus mechanism @ = M:{E}

For AlGaAs/GaAs heterostructure with width = 50A° we get g =2x10"%eV ecm

B, =0.18T



Phys. Status Solidi C 9, No. 2, 183-186 (2012)

Electrical transport properties
in a single-walled carbon nanotube
network

Karim Snnussim, :‘-‘lﬁumin Vakhshnuriz, Har1u;a Dkimotn3, Taishi Takq:gobuﬂ Yoshihiro Iwasaﬁ,
Shigeo Maruyama , Katsushi Hashimoto ™, and Yoshiro Hirayama™

! JIST-ERATO Nuclear Spin Electronics Project. 980-0845 Sendai. Japan

’ Department of Physics, Tohoku University. 980-8578 Sendai. Japan

3 Department of Polymer Science and Engineering. Yamagata University. 980-8577 Yamagata. Japan
4 Department of Applied Physics. Waseda University. 169-8555 Tokyo. Japan

> School of Engineering. Tokyo University. 113-8656 Hongo, Japan

¢ Department of Mechanical Engineering. Tokyo University, 113-8656 Hongo. Japan

ks To=3/N(Ep) &*d GO I
where /p 1s Boltzmann constant, Ty 1s the degree of disor- o™ & /’4
der [6] equal to the slope determined in Fig. 2(b). N(Eg) 1s &1 L
the density of states at the Fermu level Er and d is the ,?"
thickness of the SWCNT network, we can extract the lo- e L7
calisation length & N(Ep) has been reported to be ~ 10 - 12 ,,o"
10% eV em™ [10]. With our sample thickness d equal to i s
200 nm. & is evaluated to be between 3.6 nm and 11 nm. 2 " . . | .
indicating that our SWCNT sample forms a 3D network. o5 _— B“-&( ) o8 o0

Figure 2 (a) The resistance of the SWCNT network within the
temperature T range 0.5 K-249 K depends strongly on the tem-

Figure 1 Scanning electron mucroscopy mmage of the SWCNT perature. The mset shows the linear I-V characteristics of the

network. The black scale bar represents 1 pm.

SWCNT network at 7= 0.3, 0.6, 0.7. 0.8 and 0.9 K. The corre-
sponding values of the resistance are also displayed. (b) The plot
shows the linear relationship between In R and 7.
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Figure 3 (a) The natural logarithm of ratio R(B)/R(0) versus B at
T'=1.16.43.5 7and 10K B,;, values are indicated for T'= 1
K and 10 K (b) B,;, is proportional to the temperature. The inset
shows a schematic drawing of alternative tunnelling paths for
strongly localised hopping electrons. Applying a B-field destroys
the quantum interference process between the paths. (c) Tempera-
ture dependence of the negative slope of the magnetoresistance

curves when B 1s close to 0 T.
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Negative Hopping Magnetoresistance of Two-Dimensional Electron Gas in a Smooth
Random Potential

saddle-point potential between two lakes

2 + 2

electron gas breaks up into lakes
each lake accommodating many electrons

U(x,y)=Uo —

y *L.(%,y)ucsmmw}. | ﬂ §
iy o] (005 ]

4/2 a2 _/ transmission of barrier as a function of y

tunnel matrix element between two lakes

d :
lﬁ(— 509 | ocsin(ky — x.),
v A= (2o frma})!? | Loy~ ‘exp[—n(Uy — E}fﬁm,] dy

AN L e

 exp(— 2% 2 ¥4 - rr)

AN O

-d/2-D, d/2+D;,

Fig. 1. (a) Two electronic lakes separated by a saddle point.
(b) The schematic potential profile in the cross-section y = ().



In a zero magnetic field
suppression due to mismatch of momenta
tp ~ exp[—n(Up —~ E)/fho,] /
x {cos( — x:) exp[—(p — k)* 2%/4]

—cos(ja + %) exp[—(p + k)*4%/4]}. o

Po= by + DI

In a weak magnetic field

d
Y (—‘-—i,y) and qf/i(-E,J?)

acquire the gauge phase factors

B?
tip(B]' = tlp':u]' €xp ( = ﬁ)

b [mh£+i‘tan{x1+ x,}mhﬂi:l
1 1

lake sizes @,
/ B, = 2"
o SN DDk
7yl 27yBD exponential growt
AP ol 2
0

o (u,{m) - (%:)

The physical meaning of the negative magneto-

resistance is that the phase factors acquired by 1
the wavefunctions in a magnetic field effectively » = - — .
compensate the difference in their wave num- cosh* B/B, + tan*(y; — x,) sinh* B/B,

bers in the y-direction and, therefore, lead to an

increase of the coupling. exponential fall off

r—l-



Small- field expansion: in a smooth potential

3R(B) _ ( 1 ) " R>>

R(0) \B} Bicos*(n-x)/
and it is negative for any x, and x, if By > B,. The
ratio By/B; =)k —p]A/¥2 can be estimated as
(Ep/h$2)'2, where Ep is the Fermi energy of an
electron in a lake and £2 = w?/w,. This ratio is
large in the semiclassical regime. Hence, in the
small field region the resistance decreases as
SR(B)/R(0) ~ — B?/B%, the characteristic value B,
being of the order of &,/S, where S ~ D ~ D? is of
the order of the area of the lake. The resist-
ance falls off exponentially with B in the
region B,>» B> B,, where the crossover field is
B, = Bj/B,. After reaching a minimum at B B,,
the resistance rises sharply at higher fields. Note
however that at B= B, the cyclotron frequency

becomes of the order of A2 so that the effect of
magnetic held on the eigenstates 1 the lakes cannot

be reduced to the phase factors only.

while the temperature dependence is weak
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Fle (K2

FIG. 1. (Color online) Magnetoresistance measured from A to C
across diagonal 1 at different top gate voltages at 7=90 mK. com-
mensurability peaks around 1 and 4 antidots are marked. Inset:
AFM-micrograph of the antidot lattice and the enclosing cavity.
Bright regions are oxidized and correspond to depletion in the un-
derlying two-dimensional electron system.
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FIG. 5. (Color online) (a) Conductance as a function of top gate
voltage and magnetic field 1n the Coulomb blockade regime at T
=00 mK_ A clear positive magnetoconductance for mdividual Cou-
lomb peaks 1s observed. (b) Averaged magnetoconductance between
=534 and —70 mV in steps of 0.02 mV. Dashed lines mark a flux
quantum through the unit cell (290 mT) and a fit using Eq. (4). (c)
Conductance as a function of top gate voltage and magnetic field in
the open regime. (d) Averaged magnetoconductance between 30 and
0 mV in steps of 0.25 mV. Dashed lines mark a flux quantum
through the unit cell (290 mT).
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_ _ _ 01 task 07 / orbital shrinkage of the donor
weak-field qegatlve-hopplng 0 3 ﬂ wave functions
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interference of tunneling paths -01} .
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FIG. 2. Sheet resistance (R) vs reciprocal temperature for

FIG. 8. Relative magnetoresistance AR (B)/R (0) as function layers contributing to the transport. The solid line models the
of the magnetic field for the three configurations at various tem-  transport on the basis of excitation to the band edge and
peratures. The thin solid lines at low field indicate that the nearest-neighbor hopping (I\EI:IH)' Variable-range hopping
AR /R is linear in the B field. (VRH) dominates above 0.2 K ',
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FIG. 1.
the NNH regime (4.2 K in Ref. 8) to low temperatures where
VRH applies. Note that AR (B)/R (0) exceeds 50% and is non-
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GaAs/Al, Ga, ,As MBE-grown heterostructure
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FIG. 2. Hall resistance and the longitudinal resistance as a
function of the magnetic field (sample A).
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Magnetic-Field-Induced Metal-Insulator Transition in Two Dimensions
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GaAs/Al, ,Ga, ,As heterostructure
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B(T) FIG. 3. The magnetoresistance curves py,(B) for sample B.
FIG. 1. Both px (left axis) and px, (right axis) as a function From the upper insulating curve to the lower insulating curve
of magnetic field B for sample A. Plotted are three tempera- (ie., B <Bc), the temperatures are 75 mK, 200 mK, 400 mK,

tures: 6.1, 4.2, and 1.9 K. 600 mK, 1.0K, 1.5K, and 2.18 K.
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It is shown that the localization preblem in the theory of the quantized Hall elfect is governed
by the zero-component grassmannian U(2m) non-linear o-model with a §-term, a two-dimensional
analogue of the ¢-vacuum in Yang-Mills theory. In this case, # is to be inlerpreted as the “bare”
value for the Hall conductivity, determined by an underlying non-critical theory. A detailed
derivation is presented starting [rom the replica method and a delta funciion distribution for the

impurities.
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experimentally, levitation is not strong

mT<< ] ®T>> ] ON

transition sequence

1 I A hole gas in Ge/SiGe strained quantum well
- ' = 053252510
25 IS resolved
BH = 4BL 1 1 1 T L] 1
. 20 40 T T T R : 31} -
& b) Vy=2.85V, T:30-350mK | I o o Insulator
£ 30 % - e = |
ﬂ 29} lE % o ]
% o ¢
= 10 1 =28 o “ )
§ >UI oA v 1 <
= 27F a2 % %
at T=120mK b | A % o
. 20 22 26F & 42% -
| o03a v
5 6 7 8 9'\10 25 © & ¥ 7
0 BT o 2 4 6 8 10 12

BIT]

FIG. 1. py, and p,, versus magnetic field (B) for V, = 2.5V FIG. 2. p,, vs B traces for two V, values. The insets show
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FIG. 4. The experimental phase diagram for 2DHG in our
strained Ge quantum well. Different symbols denote different

at 7 =40, 130. 230. and 330 mK. B. (1.56 T) denotes the traces of p,, at 120 mK and magnified views of the crossing tansitions: (L)) low-B insulator to QHE transition. (A) 1 = 3
critical magnetic field at which the transition from an insulator points. (a) V, = 2.72 V and T = 30, 120, 240, and 320 mK. to » — 2 QHE transition. (V) » = 2 to » — | QHE transition,

to QHE occurs. The top-left inset shows the IQHE portion of () V, =285 Vand T = 30, 120, 250, and 350 mK.
the theoretical phase diagram suggested by KLZ. The arrow

indicates a possible trajectory for a sample. The bottom-right

inset shows a magnified view around the transition.
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QUANTUM HALL EFFECT AND ADDITIONAL OSCILLATIONS OF CONDUCTIVITY
IN WEAK MAGNETIC FIELDS

D.E. KHMELNITSKII
L.D. Landau Institute for Theoretical Physics, Chernogolovka, Moscow District 142432, USSR

Received 23 July 1984

In the framework of the scaling hypothesis for localization of 2D electrons in a magnetic ficld 2 it is shown that nt
T = () the conductivity O has maxima at Bgﬁ) = (mefeh) {EF;(zn +1) £ { [EFf(zn +1)]2 - (F1/7)? }1’2 } Le. besides
oscillations of the Shubnikov type with maxima at B,f,l) A (mcjeﬂ)EF/(n + 1/2) there is the same number of additional
oscillations at B}?) ~ (mw'e}(ﬁ/EFrZ](ﬂ + 1/2). The Hall conductivity ¢_, = (¢2/2nf)n at Bgl) <h<B {1)1 and ad .Bﬁ?l
<B< B,(E) gives the number of delocalized states at £ < Ey with energies £, described by the interp ola’tri?ig relation ﬁr .
=HQ (+1/2)[1+ (1) 7). At B < By, when ryy > [ (ryy is the magnetic length, 7 is the mean free path), all states with

E< EF are localized.
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Magnetic-field-induced crossover from Mott variable-range hopping to weakly insulating
behavior

Jonathan R. Friedman, Youzhu Zhang * Peihua Dai.” and M. P. Sarachik
Physics Department, City College of the City University of New York, New York, New Jork 10031
{Feceived 1 November 1005)

In three-dimensional n-CdSe samples that obey Moft variable-range hopping. p= pgexp(T,/T'™, in the
absence of a magnetic field, we report a field-induced crossover at low temperatures to a resistivity that
exhibits a weak power-law divergence, p=pgl “. with an exponent « that decreases slowly with increasing

field.
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scale for three insulating, n-type CdSe:In samples with dopant den- == = ' ’ ' ’ ’
sities 0.57n, (sample A), 043n, (sample B). and 0.36n, (sample 0 4 4 & 8 10 TRy
C) (based on a critical concentration n,=2.8x 107 cm™?). The MAGMETIC FIELD (Tesla)

resistivity obeys Mott variable-range hopping p= pgexp[(Tp/ DM
with Tp~7400, 8400, and 8400 K. and pg=0.037, 0.083. and
0.300) cm for samples 4. B, and C. respectively.
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