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Lecture 1

Topics:

1. Impurity states in semiconductors

2. Basic experimental facts

3. Impurity band structure

4. Electron transition between two localized states

5. Mott’s law

6. Miller-Abrahams random resistor network

7. Percolation treatment

8. Spin relaxation in the hopping regime



Impurity levels inside a forbidden gap

bottom of conduction band

% energy spectrum of conduction band
shallow donor 6 e’ ()
D e —c E)(iV) = & |F; () = EF;(
shallow acceptorg—) ——— — —— —____ Y
E‘“ binding energy
envelope of the’donor
wave function T
top of the valence band a;, =hje‘m
P binding energy in the units of E, = A*/2m,a/} ! fe‘m,
. ] ;7 asymptotic behavior of the envelope
for anisotropic spectrum: N Exact value at large distances
2 2 a
£ = 2 toy ps NG
2m, 2m, g b exp ] 5-F
- XP| —P-
2Dl F(F) o [dp——L2
Material E\s, [meV] E;,,, [meV] e | E I 4+ E( |_j)
Si (theor) 31.27 11.51 0 0z 7 M T I oy
Si (P) 45.5 339 326 11.45
Si (As) 537 326  31.2 11.49 v =m,/m,
Si (Sh) 42.7 32.9 30.6 11.52
Ge (theor) 9.81 4.74
Ge (P) 129 9.9 4.75 2| E | 1/2
Ge (As) 1417 100 475 () oc exp| — —(m z? +mx® +m yz)
Ge (Sb) 1032 10.0 4.74 # ' t t
Table 1.2. Donor ionization energies in Ge and Si. Theoretical values were calculated in the effec-

tive-mass approximation, Experimental values correspond to the impurities indicated in paren-
theses, Energies of all s-state levels, split due to the chemical shift, are listed separately
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Fic. 8. Resistivily measurements of p-type germanium with large concentrations of gallium.

The resistivity
can be described approximately by the equation!?

1/p=Ce kT4 (e eal*T

with ;= 11072 ev and e=2X10"" ev.

“_10 =T =10K =>%=2
T T

exp[— %J dominates

Z-50 O =2K = F=10

exp[— %} dominates

The explanation of these observations due to Hung,

who assumed that thelocalized impurity states interact

and form a conduction band, seems plausible for the

following reasons. The width of the impurity band
should drastically decrease with increasing separation
between the impurity atoms. Therefore one would
expect the mobility of the charge carriers in the impurity
band to decrease rapidly with decreasing concentration
of impurities. This effect is demonstrated by the
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FIG. 1. Temperature dependence of the planar re-
sistance for films deposited at and above 300°K. Geygg-
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sample No. 1, d=5.8 uym, oy =600 2 cm; Ge

sample No. 1, d=3.5 pm, ppr=1500 2 em; Ge sample
No. 9, d=2.86 pm, ppp=600 O cm.
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Mott-Anderson Localization in the Two-Dimensional Band Tail of Si Inversion Layers
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Experimental evidence for a transition from localized to extended states in a two-dimen-
sional band tail is obtained by measuring the conductivity in n- and p-type inversion lay-
ers in Si as a function of electron density and temperature (4.2 to 0.4°K). A transition
from metallic to thermally activated conductivity is observed as a function of electron
density, while the temperature dependence at electron densities below the transition shows
both thermally activated nearest-neighbor hopping and variable-range hopping as pro-

posed by Mott.
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FIG. 2. Inp versus (1/T)V% at n,=6.4x 1011 /em®, The
slope of the solid line gives the parameter T;=177°K.
The inset shows the activation energy W as a function

of ng.

In Fig. 2, the data for
n,=6.4x10"/cm? are replotted on a Inp-versus-
(1/T)Y® scale. It is clear that p follows the
exp[ (T,/T)"*] dependence on T for T <1°K. How-
ever, the temperature range is much too limited
to determine unambiguously the correct power of
1/T.

The parameter T, deduced from our data is
500K for n,=5.2x10'/cm? and 180°K for n,=6.4

x10"/em?®.  According to Mott’s argument, T,
~27a®/mkn in the case of a 2D system. Here k
is the Boltzmann constant and a”! is the range

of the localized state. Our data yield a"'~110 A
for n,=5.2x10"/em? and ~ 180 A for n,=6.4
x10'"/em?, We can also estimate o' from?

a(E ) ~[2m*(E_ ~ E)/R?)"2. Using m*=0.2m,
and E=n_/n, we obtain o *~80 A for n =5.2
x10"/cm? and o'~ 100 A for n .= 6.4 x 101 /cm?




Lightly doped

Empty donors

N,a’ <<1

-

__— ~ Weak overlap of the impurity wave functions
Neutral occupied donors
/"" - .-

Negatively charged N ,
acceptors K =

Fermilevel — ¥~ .o « —

Low degree of compensation

<<1

D
lLl Is determined from the condition that K percent of donors
with energies E; > Ll areempty

Acceptors shift the level up Empty donors shift the level down

2 aAce | don | —py

E,-=-f? S >,

7 ri—re| - i =il
L




Typically, an empty donor is the nearest neighbor of an acceptor

aiE!

R . - N
Some acceptors empty two donors

Some acceptors do not have a donor
in the neighborhood- 0 complex

in their neighborhood- 2 complex

Neutrality condition:

7 A ¥

® O— ®
Positive energy shift by acceptor overweighs N 0 (,u) =N 2 (,u)
negative energy shift by second donor %

increases decreases



For 0-comlex to exist there must be no donors in a sphere

with radius r, = e*/kn around a fixed acceptor

ifs
4w € "Np Shift by acceptor Shift by donor
3

2-comlexes ﬂ ﬂ

Nolu) = N exp [—

e? e’ 7 A 4
€] J{rl'] — m @ e leil Kll'l_'l'gl
NE} (.Ur} -NANE}IC!I'] f ﬂ'l’j H‘[ﬂ(l’hrz}_}i] E‘[ez(r,,r;)—ﬂ]
=

probability that two donors are the nearest neighbors of the acceptor

al

Pﬁ-’; —N,;Nﬂfdn fﬂ'rgc:ﬁp —Tﬁﬂrz @In{[‘hl‘]] —u ] E"[-Eg{h..n]—#]

FySry

No () =Ny (1) =) = 0.61ep = 0.99 e2N

0-comlexes constitute 1.3% of the acceptor concentration



Temperature dependence of the nearest-donor hopping conductivity

2nN11/3
exp(—ﬁjzexp - 0.99e"Ng
T KT

probability thatat T << g adonor is empty

. 3
condition Npa®™ <<1 ensures that -I:> impurity band is narrow

Width of the density-of-states peak

3 Is determined by long-range fluctuations
Z
- —_ — v = 23/2r = (Nord) 2 = 0.26¢p (V. /Np) /4

ro = 0.58 Ng72 )6

These figures may tempt one to think that in the first approximation both

0- and 2-complexes can be ignored. However, this would be incorrect. If

- - - every acceptor produced a I-complex, such complexes would include
configurations where the nearest donor is far from its acceptor. The site
energy e for such a donor is almost zero. But this donor must be ionized,
since we are dealing with a 1-complex, and hence we would have u=0 rather
than 0.61ep. Thus it is not permissible to negleet the 0- and 2-complexes in

calculating the Fermi level.




| l I. Close pairs of donors:

dN =47N_R%dR

£ \
0 I dN

N 9(s) = ——

g de
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| 3 e ;
z 8 ="2-=Np [ gldde=n
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I1. Long-range fluctuations:

Fluctuation of number of donors in a cube with side '

-

1
A EINEH €n

kT B _g)3

2

H=— |7

| 3

I’ isdetermined by the condition: /

3\1/2 yields the same result
(Nor)

3 ~n=N,(1-K) for -

excess concentration of charges
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At T=0 electrons tend to occupy states of lowest energy. Therefore they
will move into regions with a positive impurity charge. If the excess impurity
density ANV is lower than the average electron density n, then the fluctuations
will be completely neutralized by a small variation in the electron density. If,
on the other hand, AN>>n, the fluctuations cannot be neutralized by
electrons at all. Indeed, even if all electrons moved from negative regions,
their density in the positive regions would only double, still remaining small
compared to the impurity charge.

activation into / ;
conduction band =™ l
E:
s E -—
4 -.-lf'f__ H‘ﬁ""a‘__ N #’:_l
v[-' ’;‘ . = : e —— -'Z'.-_ e
— P -,_-‘-_
3
ey Y ' A \ Local density of states

actlvation encrgy due to donor pairs

for hopping

Fig. 3.5, Energy diagram of a highly compensated semiconductor, taking the long-range potential
relief into account. Meandering lines (solid and dashed) represent the bottom of the conduction
band and the impurity ground-state energy, both following the behavior of the potential energy
V(r) = —e@. The straight solid line on the top and dashed line correspond io these unperturbed
energies. The Fermi level is shown by a solid line at the bottom. Also shown is the local density of
slﬂln;s al some point in space. The region of cccupied states is shaded. The dash-dotted lines corre-
spond to the percolation levels (Sect. 5.2); g, and &, are the activation energies {Sect. 8.2)



Phonon-assisted transition between two sites:

phonon wave vector

Golden rule sound velocity
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E.=|E,—E,|forE,-E, <0

~

E, =max{E, E,}forE,-E, >0

and |EL[ES[>>T

R, =Ry exp

Resistance corresponding to a single hop

.12 ;”(Elz){l (=+3)

El_EZ
V12 = V21 €XP T

j v v
) :7/21f(E2 +Ej|:1_ f(El_Ej}
in equilibrium \/ =Q I:> l, =1,

at finite MV << T vV

l=1,-1, =—
12 21
R

12

where

21, 4 |E1|+|E2|+|E1_ E2|
a 2T



Mott’s law

constant density of states
within the strip

EJl

e
S p &, & —ui< &

Z/
: : - : — £y i i
" . e % concentration of sites
- i % L _

within the strip

Transport resulting from energy

levels within the strip N (&) =29(u)s,

P _ exXp 1 L0 |_ oy . 1 L & T3’4
pO N ((90)1/38. T (ggo)llsa T g T 80 (T) — 1/ 4

,{ (eo(T))} j — rU—[geo(T)]”S—a[Tj

Lo

typical hopping distance increases with decreasing |

1

TO - 3 - -
g(r)a variable-range hopping




Numerical factor in log-resistance from percolation theory
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tunneling dominates over activation

1 E
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r e*Nz/°
a N2/ *a

KT

R S

Thesiteswith [l << . are connected INR.. = — 4

! ' = a

Infinite cluster appears when

average number of A 3
neighboring donors Bc — N Drc —

inside a sphere with r = r,



Numerical factor in log-resistance from percolation theory: Variable-range hopping

Bonding criterion

dimensionless distance dimensionless energy

I-..
Sij =] Si — S; |= - Ay =

" 74

Si; +Aij <1

Zlad+Ta1+1a, -4,

Dimensionless concentration of sites within energy strip JATST

s gTa’
A

n(é:) — 2g‘c"maxrmax o 54

Infinite cluster appears at n(g) =N, = 5.

14 1/3

Mott’s law with
numerical factor




NG @A) TR g,

A <1
'So far we have been dealing with an example of a very complicated > > R
is . -ellinsoi ; [ XS + Yo y4e
amisotropy, namely that of a four-ellipsoid donor state. Another example o 5 _2 ij i, i)
an anisotropic wave function whose shape is provided by donor states is S i a2 b2

germanium subjected to a large uniaxial stress. It is well known [6.17] that

under uniaxial compression in the {111} direction, the energy of one of the

conduction band minima goes down, while that of the other three minima

goes up. At pressures of order 10® dyne/em? this splitting becomes so large N J'd f—’g(f — & ) = B,
that the electron ground state on a donor is no longer associated with all Tour D 4

cllipsoids as it is in the absence of pressure, but with one ellipsoid only.
Further increases in pressure essentially produce no new change in the wave
function. Therefore the value of order 10% dyne/em?® can be called the
limiting or "maximal" pressure. At the "maximal® pressure only one term
corresponding to a selected ellipsoid remains in the expressions (6.2.1),
(6.2.2), and (6.2.7). As a result we obtain an expression of the form (6.2.10)
with E".f E,j'l."{:l'l b}'




Random resistor network Near the percolation threshold

T

critical exponent

hopping length v, =— v3;=0.9

Resistance of the sample is dominated by infinite cluster with (g — &, ) ~1

“Unit cell” of the current-carrying network _




Hopping transport in amorphous film of a thickness d

Yz,
l[gd]a®

d <<aé, =T 2DMottslaw with Ty =

d >> T Fig. 9.4. The relation of bulk

and film infinite clusiers.
Dashed lines show the film
No thickness dependence if d exceeds boundaries, solid lines the

parts of the bulk infinite
cluster lying within the film.
L is the correlation radius, d
the film thickness

i?

E

g Fig. 9.3. Temperature depen- r
= dences of the resistivities in N I )

= amorphous carbon films of gcd - §C 1 -+ d

varying thickness o, The
values of d are (in A): (1) 150,
(2) 200, (3) 170, (£) 225, (5)
250, 300, {6) 275, (71 400, (&)
373, (9) 1200, Point 10 corre-

sponds to d = 6890 A [9.33 -
< o p(d ) _ D TO r
/s N N N A | p(OO) T d

|
1§ azg 324
T—r.f.?!K —Jr'sj
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Dyakonov-Perel spin relaxation in diffusive regime

Over the mean free path | = VT

electron spin rotates by a random angle 5§0 <<

Initial spin orientation is forgotten after N steps: [N (5@)2 ~ 71 random walk

Spin relaxation time: Spin diffusion length:
I
— Nr — 4 | =Nz =—
Z'S = T = > S 5
(Sp) v
. : : . d § = — H" L ﬁ -~
Relaxation due to spin-orbit coupling: W = Q) X S<— so — 8250 " O
1 V
Sp =Q 7 o= |, =——
@ >0 25,7 P
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Dyakonov-Perel spin relaxation near the metal-insulator transition and in hopping transport

B. I. Shklovskii
Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, USA

for free electrons in conduction band A m Qio
- 2
/ ne
1 1
relation Cs— O2 can be cast in the form — = Ao
. 2 x

S

ne‘r

Relation " holds O — —

in the hopping regime m
Electron rotates its spin only during time Drude conductivity
intervals when it tunnels between the sites

waliting time f
|Ttun | fhfop . 1 z-hop

(5¢) |Ttun | QSO |Ttun | |Ttun |

tunrﬁng time

—1

S hop




For localized electron the dominant mechanism of spin relaxation is interaction
with random hyperfine field created by nuclei inside the donor orbit

- - unlike SO-coupling, electron spin precesses
while electron waits for the hop

spin rotation is dominated by most resistive hops

o ~ag, v om=((@h ) rexn(e) =21

the initial spin orientation is “forgotten” at distances lessthan L, — a&y™*

If op, << 1 initial spin orientation will be “forgotten” at the diffusion stage

. spin diffusion length
| = LC ~ LC exp( 50) contains correlation

N . o
c @ T, radius of infinite
cluster
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