Paired superfluidity in resonant atomic gases

Leo Radzihovsky

for details see: *Gurarie, L.R., Annals of Physics, 322, 2-119 (2007) Veillette, Sheehy, L.R., PRA 75, 043614 (2007)*

\$: NSF

Sheehy, L.R., Annals of Physics, 322, 1790 (2007) Nicolic, Sachdev, PRA 75, 033608 (2007) Giorgini, et al., RMP, 80, 885 (2008) Ketterle and Zwierlein, Varenna lectures (2006)

BSS2014, Boulder, CO, July 2014

Atomic physics (naïve view)

- atomic spectra
- collisions
- molecules
- laser-atom interaction

Dilute atomic gases

• density ~ $10^{12} \text{ cm}^{-3} \Leftrightarrow d \sim 10^4 \text{ Å, mfp} \sim 10 \text{ cm}$ (cf. density_{air} = $10^{19} \text{ cm}^{-3} \Leftrightarrow d_{air} \sim 10^2 \text{ Å}$)

• classically: \Rightarrow (boring) IDEAL GAS

Revolution in AMO physics

• degenerate Bose and Fermi atomic gases

Alkali atoms

• Li 6: $2S_{1/2}$ $|n=2,l=0,s=1/2,s_z>|i=1,i_z>$

• K40: $4S_{1/2}$ |n=4,1=0,s=1/2,s_z>|i=4,i_z>

Condensed matter with cold atomic gases?

need strong interactions

I. Bloch '98

• standing-wave of interfering laser beams (cf optical tweezers) ac-Stark effect

(red-detuned, attractive)

 $V(r) = E_g - \frac{\frac{1}{2}d^2I(r)}{E_{eg} - \omega_L}$

- Superfluid-Insulator transition of bosons (Doniach'81, Fisher, et al. '89)
- realization in cold atoms (M. Greiner, et al., '01, Jaksch, et a '98)

•...and much, much more

Feshbach resonance

Ketterle, '98

Feshbach resonances on youtube

"*Quantum decoupling transition in a one-dimensional* superfluid", Sheehy and Radzihovsky, PRL (2005)

l am writing a song a day.

(song by Jonathan Mann, 2009)

- scattering theory -> two-channel model
- two-channel resonant pairing model: narrow resonance
- one-channel model: broad resonance
- large-N Sp(2N) theory
- universality
- resonant bosonic superfluidity

S-wave Feshbach resonant scattering

• tunability (strength and sign) of interactions (sudden and adiabatic)

two-channel model:
("bare") detuning
$$\mathcal{H}_{2ch} = \psi_{\sigma}^{\dagger} \frac{\hat{p}^2}{2m} \psi_{\sigma} + \phi^{\dagger} \left(\frac{\hat{p}^2}{4m} + \epsilon_0\right) \phi - g\phi \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} + \text{h.c.}$$
atoms

(open channel)

molecules (closed channel)

atom – molecules interconversion

tate

0

nance

onance

state

Î

= 0

S-wave Feshbach resonant scattering • tunability (strength and sign) of interactions (sudden and adiabatic) closed channel atom atom diatomic open channel molecule $\mathcal{H}_{2ch} = \psi_{\sigma}^{\dagger} \frac{\hat{p}^2}{2m} \psi_{\sigma} + \phi^{\dagger} \left(\frac{\hat{p}^2}{4m} + \epsilon_0\right) \phi - g \phi \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} + \text{h.c.}$ $\longrightarrow f_s(k) = \frac{1}{-a^{-1} + \frac{r_0}{2}k^2 - ik}, \text{ with } a \sim -\frac{g^2}{\omega_0} \sim a_{bg} \frac{\Delta B}{B_0 - B}, \quad r_0 \sim -\frac{1}{g^2}$ $f_s(k) = \frac{1}{F(k^2) - ik}$ $\operatorname{Re} E = \operatorname{Re} \frac{p^2}{2}$ 3000 \boldsymbol{a} 2000 scattering length (a) $\Gamma \sim E^{1/2}$ 1000 1 $-a^{-1}$ В -100 -200 -300 -1000 molecular binding energy (kHz) $\overline{2|r_0|}$ -2000 Regal. et d -400 -3000 215 230 220225-500 Virtual Regal, et al. Resonance B (gauss) bound state 222 223 220 221 224onance B (gauss)

state

S-wave resonant fermionic superfluidity

• molecular BEC (Regal, Jin '03)

• BCS superfluid (Regal, Jin 04 Zwierlein, Ketterle '04)

• BCS-BEC crossover:

$$\mathcal{H}_{2ch} = \psi_{\sigma}^{\dagger} \left(\frac{\hat{p}^2}{2m} - \mu\right) \psi_{\sigma} + \phi^{\dagger} \left(\frac{\hat{p}^2}{4m} + \epsilon_0 - 2\mu\right) \phi - g\phi \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} + \text{h.c.}$$
$$(\phi = B + \delta\phi)$$

$$F(B,\mu) = -T \log[\operatorname{Tr}(e^{-H/T})]$$

gap equation: $\frac{\delta F}{\delta B} = 0,$
number equation: $-\frac{\delta F}{\delta \mu} = n = n_a + 2n_m$

$$\frac{\textbf{S-wave resonant superfluidity}}{H = \sum_{k} \left[(\frac{k^2}{2m} - \mu) a_{k\sigma}^{\dagger} a_{k\sigma} + (\frac{k^2}{4m} + \epsilon_0 - 2\mu) b_k^{\dagger} b_k - gBa_{-k\downarrow}^{\dagger} a_{k\uparrow}^{\dagger} \right]$$

exactly solvable g -> 0⁺ limit: *free Fermi- and molecular Bose gases in chemical equilbrium*

$$H^{g=0} = \sum_{k} \left(\frac{k^2}{2m} - \mu\right) n_k^a + (\epsilon_0 - 2\mu) n_0^m$$

$$n_a = \frac{(2m)^{3/2}}{3\pi^2} \mu^{3/2}, \text{ for } \mu > 0 \implies n_0^m = |B|^2 = \frac{n}{2} \left[1 - \left(\frac{\mu}{\epsilon_F}\right)^{3/2} \right]$$

 $\mu(\epsilon_0) = \epsilon_F$, for $\epsilon_0 > 2\epsilon_F \to \text{no molecules}$ = $\epsilon_0/2$, for $0 < \epsilon_0 < 2\epsilon_F \to \text{atomic Fermi sea \& molecular BEC}$

 $= \epsilon_0/2$, for $\epsilon_0 < 0 \rightarrow$ molecular BEC, no free atoms

 ϵ_F

T=0:

S-wave resonant fermionic superfluidity

• molecular BEC (Regal, Jin '03)

• BCS superfluid (Regal, Jin 04 Zwierlein, Ketterle '04)

• BCS-BEC crossover:

$$\mathcal{H}_{2ch} = \psi_{\sigma}^{\dagger} \big(\frac{\hat{p}^2}{2m} - \mu \big) \psi_{\sigma} + \phi^{\dagger} \big(\frac{\hat{p}^2}{4m} + \epsilon_0 - 2\mu \big) \phi - g \phi \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} + \text{h.c.}$$

S-wave resonant fermionic superfluidity

• scattering T-matrix relates λ to a:

γ >> 1 Broad resonance superfluidity: Large N

• no small parameter for $k_F a \sim n^{1/3} a >> 1 \rightarrow introduce 1/N$

$$\mathcal{H}_{1ch} \stackrel{Sp(2N)}{\longrightarrow} \mathcal{H}_{N} = \psi_{\sigma\alpha}^{\dagger} (\frac{p^{2}}{2m} - \mu_{\sigma})\psi_{\sigma\alpha} + \frac{\lambda}{N}\psi_{\uparrow\alpha}^{\dagger}\psi_{\downarrow\alpha}^{\dagger}\psi_{\downarrow\beta}\psi_{\uparrow\beta}$$

 $f^{(0)} = -\frac{|\Delta|^2}{\lambda} - \int_k \left(E_k - \xi_k\right) - \sum_{\sigma=\pm} \int_k \log\left[1 + e^{-\beta(E_k + \sigma h)}\right]$

Veillette, Sheehy, LR Nikolic, Sachdev also Nishida, Son *\varepsilon*

_{γ>>1} Broad resonance superfluidity: N->∞

$$f^{(0)} = -\frac{|\Delta|^2}{\lambda} - \int_k (E_k - \xi_k) - \sum_{\sigma = \pm} \int_k \log\left[1 + e^{-\beta(E_k + \sigma h)}\right]$$

• $E_{gs}(\Delta, \mu) = -\frac{m}{4\pi\hbar^2} \frac{|\Delta|^2}{a} - \sum_k (E_k - \varepsilon_k - \frac{1}{2\epsilon_k} |\Delta|^2)$
• $-\frac{m}{4\pi\hbar^2 a} = \frac{1}{2} \int_k \left[\frac{1}{\sqrt{(\epsilon_k - \mu)^2 + \Delta^2}} - \frac{1}{\epsilon_k}\right] \qquad n = \int_k \left[1 - \frac{\epsilon_k - \mu}{\sqrt{(\epsilon_k - \mu)^2 + \Delta^2}}\right]$

for a < 0 (BCS): $\Delta \sim \mu e^{\frac{\pi}{2k_F a} \sqrt{\frac{\mu}{\epsilon_F}}}$

for a > 0 (BEC): $\Delta \sim \epsilon_F \sqrt{\frac{1}{k_F a}}$

Summary s-wave

- Revolution in AMO physics
- Feshbach resonances as a road to strong interactions
- s-wave Feshbach resonant scattering
- s-wave Feshbach resonant paired superfluidity
 - 2-channel model (narrow resonance) small coupling
 - *1-channel model (broad resonance) large N theory*
 - o universality at unitary point

Questions of interest

- What are the big fundamental questions?
- Specific questions of current experimental interest:
 - Unitary Fermi gas (universality)
 - Feshbach resonant superfluidity in an optical lattice
 - Resonant Bose gas (beyond Beliaev)
 - Stability to 3-body collisions and other inelastic processes
 - Cooling and thermalization
 - Experimental probes (development and understanding)
 - Phases realizations (e.g., FFLO, p-wave SF, magnetism, ...,
 - Nonequilibrium quantum dynamics

Radio-frequency offset [kHz]

Supplementary material

• Feshbach resonances classic references

• Hyperfine structure of alkali

• Probes of Feshbach resonances

• Experimental realizations

• AMO experimental probes

Feshbach resonances

- O. K. Rice, JCP 1, 375 (1933) basic treatment of how a bound state autoionizes into a degenerate continuum
- U. Fano, Nuovo Cimento 12, 156 (1935) shows that quantum interference has opposite signs above and below the resonance, leading to asymmetric line profiles analogous to anomalous dispersion
- G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936) Basic formula developed for symmetric resonance profile when only the "bound part" of the reaction dominates
- H. Feshbach, Ann. Phys. 5, 357 (1958) and 19, 287 (1962) developed general projection operator formalism that cleanly separates "bound" and "continuum" subspaces and systematically treats their interaction
- U. Fano, Phys. Rev. 124, 1866 (1961) more elegant reformulation of his 1935 theory of asymmetric line profiles from discrete-continuum interactions
- P. Anderson, Phys. Rev. 124, 41 (1961) model of localized impurity state in a continuous band

Feshbach resonances

Feshbach resonances in neutron-sulfur scattering, from Blatt&Weisskopf, 1950s

FIG. 2.2. Total neutron cross section for sulfur; experimental data taken from Adair (49) and Peterson (50).

Hyperfine interaction in a B field

$$H_{HF} = \alpha_{HF}\vec{I}\cdot\vec{S} - (g_I\mu_N\vec{I} + g_S\mu_B\vec{S})\cdot\vec{B}$$

• Li 6: $2S_{1/2}$ |n=2, l=0, s = 1/2, s_z>|i=1, i_z> $\longrightarrow \frac{1}{2} \otimes 1 = \frac{3}{2} \oplus \frac{1}{2}$ |n=2, l=0, f, m_f> (B=0)

• K40: $4S_{1/2}$ $|n=4,l=0,s=1/2,s_z>|i=4,i_z>$ $\longrightarrow \frac{1}{2} \otimes 4 = \frac{9}{2} \oplus \frac{7}{2}$ $|n=4,l=0, f, m_f>$ (B=0)

Hyperfine states of Li6

Atomic Feshbach resonances

A magnetic-field tunable atomic scattering resonance

Channels are coupled by the hyperfine interaction

microscopics: project quantum chemistry short-scale calculation of V^{s/t}(r) onto hyperfine states at long scales *-> diagonalize 36 × 36 (e.g., for Li6)*

 $V_{\alpha\beta}(r) = \langle \alpha_1 \alpha_2 | \hat{V}_s + \hat{V}_t | \beta_1 \beta_2 \rangle$

• atom loss via enhanced three-body decay rate: $\Gamma_3 \sim \frac{\hbar^2}{-a^4 n^2}$

• bound state Rabi oscillations (Ramsey fringes):

<u>Rb85-Rb85 Feshbach resonance</u>

Li7-Li7 s-wave Feshbach resonance

Pollack, Dries, Junker, Chen, Corcovilos, Hulet, PRL 102, 090402 (2009)

K40-K40 s-wave Feshbach resonance

Kohl, Esslinger, et al. '05

Variety of experimental probes

• Time-of-flight density imaging

§ momentum distribution function
§ scattering length
§ temperature
§ noise → pairing correlations
§ interference → phase-fluctuations
§ vortices

