
Classical and Quantum Monte Carlo

Algorithms and Exact Diagonalization

Matthias Troyer, ETH Zürich

troyer@phys.ethz.ch

July 29, 2004

Contents

1 Introduction 1

2 Monte Carlo integration 1

2.1 Standard integration methods 1
2.2 Monte Carlo integrators . 2

2.2.1 Importance Sampling 2
2.3 Markov chains and the Metropolis algorithm 3
2.4 Autocorrelations, equilibration and Monte Carlo error estimates 5

2.4.1 Autocorrelation effects 5
2.4.2 The binning analysis 6
2.4.3 Jackknife analysis . 7
2.4.4 Equilibration . 8

3 Classical Monte Carlo simulations 8

3.1 The Ising model . 8
3.2 The single spin flip Metropolis algorithm 9
3.3 Systematic errors: boundary and finite size effects 10
3.4 Critical behavior of the Ising model 10
3.5 “Critical slowing down” and cluster Monte Carlo methods . . 12

3.5.1 Cluster updates . 12
3.5.2 The cluster algorithms for the Ising model 14
3.5.3 The Swendsen-Wang algorithm 14
3.5.4 The Wolff algorithm 15

3.6 Improved Estimators . 16
3.7 Generalizations of cluster algorithms 17

3.7.1 Potts models . 18
3.7.2 O(N) models . 18

4 The quantum Monte Carlo loop algorithm 18

4.1 Path-integral representation in terms of world lines 19
4.2 The loop algorithm . 20
4.3 The negative sign problem . 26

5 Exact diagonalization 27

5.1 Creating the basis set and matrix 27
5.2 The Lanczos algorithm . 29

5.2.1 Lanczos iterations . 30
5.2.2 Eigenvectors . 31
5.2.3 Roundoff errors and ghosts 31

i

1 Introduction

These lecture notes provide an introduction to classical and quantum Monte
Carlo simulations for magnetic models, with an emphasis on non-local up-
dates, as well as an introduction to exact diagonalization. These notes are
based in part on a course on algorithms for many-body problems taught at
ETH Zürich from 1999-2004. For details of these methods and for references
to the original literature I refer to the references in the review that will also
be handed out.

2 Monte Carlo integration

In thermodynamics, as in many other fields of physics, often very high dimen-
sional integrals have to be evaluated. Even in a classical N -body simulation
the phase space has dimension 6N , as there are three coordinates each for
the location and position of each particle. In a quantum mechanical problem
of N particles the phase space is even exponentially large as a function of N .

2.1 Standard integration methods

A Riemannian integral f(x) over an interval [a, b] can be evaluated by re-
placing it by a finite sum:

∫ b

a
f(x)dx =

N
∑

i=1

f(a + i∆x)∆x + O(∆x2), (1)

where ∆x = (a − b)/N . The discretization error decreases as 1/N for this
simple formula. Better approximations are the trapezoidal rule

∫ b

a
f(x)dx = ∆x

[

1

2
f(a) +

N−1
∑

i=1

f(a + i∆x) +
1

2
f(b)

]

+ O(∆x2), (2)

or the Simpson rule

∫ b

a
f(x)dx =

∆x

3

f(a) +
N/2
∑

i=1

4f(a + (2i − 1)∆x)

+
N/2−1
∑

i=1

2f(a + 2i∆x) + f(b)

+ O(∆x4), (3)

which scales like N−4.

1

For more elaborate schemes like the Romberg method or Gaussian inte-
gration we refer to textbooks.

In higher dimensions the convergence is much slower though. With N
points in d dimensions the linear distance between two points scales only
as N−1/d. Thus the Simpson rule in d dimensions converges only as N−4/d,
which is very slow for large d. The solution are Monte Carlo integrators.

2.2 Monte Carlo integrators

With randomly chosen points the convergence does not depend on dimension-
ality. Using N randomly chosen points xi the integral can be approximated
by

1

Ω

∫

f(x)dx ≈ f :=
1

N

N
∑

i=1

f(xi), (4)

where Ω :=
∫

dx is the integration volume. As we saw in the previous chapter
the errors of such a Monte Carlo estimate the errors scale as N−1/2. In d ≥ 9
dimensions Monte Carlo methods are thus preferable to a Simpson rule.

2.2.1 Importance Sampling

This simple Monte Carlo integration is however not the ideal method. The
reason is the variance of the function

Varf = Ω−1
∫

f(x)2dx −
[

Ω−1
∫

f(x)dx
]2

≈ N

N − 1
(f 2 − f

2
). (5)

The error of the Monte Carlo simulation is

∆ =

√

Varf

N
≈

√

√

√

√

f 2 − f
2

N − 1
. (6)

In phase space integrals the function is often strongly peaked in a small
region of phase space and has a large variance. The solution to this problem
is “importance sampling”, where the points xi are chosen not uniformly but
according to a probability distribution p(x) with

∫

p(x)dx = 1. (7)

Using these p-distributed random points the sampling is done according
to

〈f〉 = Ω−1
∫

A(x)dx = Ω−1
∫

f(x)

p(x)
p(x)dx ≈ 1

N

N
∑

i=1

f(xi)

p(xi)
(8)

2

and the error is

∆ =

√

Varf/p

N
. (9)

It is ideal to choose the distribution function p as similar to f as possible.
Then the ratio f/p is nearly constant and the variance small.

As an example, the function f(x) = exp(−x2) is much better integrated
using exponentially distributed random numbers with p(x) = exp(−λx) in-
stead of uniformly distributed random numbers.

A natural choice for the weighting function p is often given in the case
of phase space integrals or sums, where an observable A is averaged over all
configurations x in phase space where the probability of a configuration is
p(x). The phase space average 〈A〉 is:

〈A〉 =

∫

A(x)p(x)dx
∫

p(x)dx
. (10)

2.3 Markov chains and the Metropolis algorithm

In general problems with arbitrary distributions p it will not be possible to
create p-distributed configuration from scratch. Instead a Markov process
can be used.

Starting from an initial point x0 a Markov chain of states is generated:

x0 → x1 → x2 → . . . → xn → xn+1 → . . . (11)

A transition matrix Wxy gives the transition probabilities of going from state
x to state y in one step of the Markov process. As the sum of probabilities
of going from state x to any other state is one, the columns of the matrix W
are normalized:

∑

y

Wxy = 1 (12)

A consequence is that the Markov process conserves the total probability.
Another consequence is that the largest eigenvalue of the transition matrix
W is 1 and the corresponding eigenvector with only positive entries is the
equilibrium distribution which is reached after a large number of Markov
steps.

We want to determine the transition matrix W so that we asymptotically
reach the desired probability px for a configuration i. A set of sufficient
conditions is:

1. Ergodicity: It has to be possible to reach any configuration x from
any other configuration y in a finite number of Markov steps. This

3

means that for all x and y there exists a positive integer n < ∞ such
that (W n)xy 6= 0.

2. Detailed balance: The probability distribution p(n)
x

changes at each
step of the Markov process:

∑

x

p(n)
x

Wxy = p(n+1)
y

. (13)

but converges to the equilibrium distribution px. This equilibrium dis-
tribution px is an eigenvector with left eigenvalue 1 and the equilibrium
condition

∑

x

pxWxy = py (14)

must be fulfilled. It is easy to see that the detailed balance condition

Wxy

Wyx

=
py

px

(15)

is sufficient.

The simplest Monte Carlo algorithm is the Metropolis algorithm:

• Starting with a point xi choose randomly one of a fixed number N of
changes ∆x, and propose a new point x′ = xi + ∆x.

• Calculate the ratio os the probabilities P = px′/pxi
.

• If P > 1 the next point is xi+1 = x′

• If P < 1 then xi+1 = x′ with probability P , otherwise xi+1 = xi. We
do that by drawing a random number r uniformly distributed in the
interval [0, 1[and set xi+1 = x′ if r < P .

• Measure the quantity A at the new point xi+1.

The algorithm is ergodic if one ensures that the N possible random
changes allow all points in the integration domain to be reached in a fi-
nite number of steps. If additionally for each change ∆x there is also an
inverse change −∆x we also fulfill detailed balance:

Wij

Wji

=
1
N

min(1, p(j)/p(i))
1
N

min(1, p(i)/p(j))
=

p(j)

p(i)
. (16)

As an example let us consider summation over integers i. We choose N =
2 possible changes ∆i=±1 and fulfill both ergodicity and detailed balance as
long as p(i) is nonzero only over a finite contiguous subset of the integers.

4

To integrate a one-dimensional function we take the limit N → ∞ and
pick any change δ ∈ [−∆, ∆] with equal probability. The detailed balance
equation (16) is only modified in minor ways:

Wij

Wji
=

dδ
2∆

min(1, p(j)/p(i))
dδ
2∆

min(1, p(i)/p(j))
=

p(j)

p(i)
. (17)

Again, as long as p(x) is nonzero only on a finite interval detailed balance
and ergodicity are fulfilled.

2.4 Autocorrelations, equilibration and Monte Carlo

error estimates

2.4.1 Autocorrelation effects

In the determination of statistical errors of the Monte Carlo estimates we
have to take into account correlations between successive points xi in the
Markov chain. These correlations between configurations manifest them-
selves in correlations between the measurements of a quantity A measured in
the Monte Carlo process. Denote by A(t) the measurement of the observable
A evaluated at the t-th Monte Carlo point xt. The autocorrelations decay
exponentially for large time differences ∆:

〈AtAt+∆〉 − 〈A〉2 ∝ exp(−∆/τ
(exp)
A) (18)

Note that the autocorrelation time τA depends on the quantity A.
An alternative definition is the integrated autocorrelation time τ

(int)
A , de-

fined by

τ
(int)
A =

∑∞
∆=1 (〈AtAt+∆〉 − 〈A〉2)

〈A2〉 − 〈A〉2 (19)

As usual the expectation value of the quantity A can be estimated by the
mean:

A ≡ 1

N

∑

i

= 1NAi (20)

The error estimate

∆A =

√

VarA

N
(21)

has to be modified because consecutive measurements are correlated . The
error estimate (∆A)2 is calculates as the expectation value of the squared

5

difference between sample average and expectation value:

(∆A)2 = 〈(A − 〈A〉)2〉 = 〈
(

1

N

N
∑

t=1

A(t) − 〈A〉
)2

〉

=
1

N2

N
∑

i=1

(

〈A(t)2 − 〈A〉2 〉
)

+
2

N2

N
∑

t=1

N−t
∑

∆=1

(

〈A(t)A(t + ∆)〉 − 〈< A >2〉
)

≈ 1

N
VarA (1 + 2τ

(int)
A)

≈ 1

N − 1
〈A2 − A

2〉(1 + 2τ
(int)
A) (22)

In going from the second to third line we assumed τ
(int)
A � N and extended

the summation over ∆ to infinity. In the last line we replaced the variance by
an estimate obtained from the sample. We see that the number of statistical
uncorrelated samples is reduced from N to N/(1 + 2τ

(int)
A).

In many Monte Carlo simulations the error analysis is unfortunately not
done accurately. Thus we wish to discuss this topic here in more detail.

2.4.2 The binning analysis

The binning analysis is a reliable way to estimate the integrated autocor-
relation times. Starting from the original series of measurements A

(0)
i with

i = 1, . . . , N we iteratively create “binned” series by averaging over to con-
secutive entries:

A
(l)
i :=

1

2

(

A
(l−1)
2i−1 + A

(l−1)
2i

)

, i = 1, . . . , Nl ≡ N/2l. (23)

These bin averages A
(l)
i are less correlated than the original values A

(0)
i . The

mean value is still the same.
The errors ∆A(l), estimated incorrectly using equation (21)

∆A(l) =

√

VarA(l)

Nl − 1
≈ 1

Nl

√

√

√

√

Nl
∑

i=1

(

A
(l)
i − A(l)

)2
(24)

however increase as a function of bin size 2l. For 2l � τ
(int)
A the bins become

uncorrelated and the errors converge to the correct error estimate:

∆A = lim
l→∞

∆A(l). (25)

6

This binning analysis gives a reliable recipe for estimating errors and
autocorrelation times. One has to calculate the error estimates for different
bin sizes l and check if they converge to a limiting value. If convergence is
observed the limit ∆A is a reliable error estimate, and τ

(int)
A can be obtained

from equation (22) as

τ
(int)
A =

1

2

[

(

∆A

∆A(0)

)2

− 1

]

(26)

If however no convergence of the ∆A(l) is observed we know that τ
(int)
A

is longer than the simulation time and we have to perform much longer
simulations to obtain reliable error estimates.

To be really sure about convergence and autocorrelations it is very im-
portant to start simulations always on tiny systems and check convergence
carefully before simulating larger systems.

This binning analysis is implemented in the ALPS library which will be
used in the hands-on session.

2.4.3 Jackknife analysis

The binning procedure is a straightforward way to determine errors and
autocorrelation times for Monte Carlo measurements. For functions of mea-
surements like U = 〈A〉/〈B〉 it becomes difficult because of error propagation
and cross-correlations.

Then the jackknife procedure can be used. We again split the measure-
ments into M bins of size N/M � τ (int) that should be much larger than
any of the autocorrelation times.

We could now evaluate the complex quantity U in each of the M bins
and obtain an error estimate from the variance of these estimates. As each
of the bins contains only a rather small number of measurements N/M the
statistics will not be good. The jackknife procedure instead works with M +1
evaluations of U . U0 is the estimate using all bins, and Ui for i = 1, . . .M
is the value when all bins except the i-th bin are used. That way we always
work with a large data set and obtain good statistics.

The resulting estimate for U will be:

U = U0 − (M − 1)(U − U0) (27)

with a statistical error

∆U =
√

M − 1

(

1

M

M
∑

i=1

(Ui)
2 − (U)2

)1/2

, (28)

7

where

U =
1

M

M
∑

i=1

Ui, (29)

The jackknife analysis is implemented in the ALPS library which will be
used in the hands-on session.

2.4.4 Equilibration

Thermalization is as important as autocorrelations. The Markov chain con-
verges only asymptotically to the desired distribution. Consequently, Monte
Carlo measurements should be started only after a large number Neq of equi-
libration steps, when the distribution is sufficiently close to the asymptotic
distribution. Neq has to be much larger than the thermalization time which
is defined similar to the autocorrelation time as:

τ
(eq)
A =

∑∞
∆=1(〈A0A∆〉 − 〈A〉2)
〈A0〉〈A〉 − 〈A〉2 (30)

It can be shown that the thermalization time is the maximum of all au-
tocorrelation times for all observables and is related to the second largest
eigenvalue Λ2 of the Markov transition matrix W by τ (th) = −1/ ln Λ2. It is
recommended to thermalize the system for at least ten times the thermaliza-
tion time before starting measurements.

3 Classical Monte Carlo simulations

Before getting to algorithms for quantum systems we first review the corre-
sponding algorithms for classical systems, starting with the Ising model as
the simplest model.

3.1 The Ising model

The Ising model is the simplest model for a magnetic system and a prototype
statistical system. We will use it for our discussion of thermodynamic phase
transitions. It consists of an array of classical spins σi = ±1 that can point
either up (σi = +1) or down (σi = −1). The Hamiltonian is

H = −J
∑

〈i,j〉

σiσj , (31)

where the sum goes over nearest neighbor spin pairs.

8

Two parallel spins contribute an energy of −J while two antiparallel ones
contribute +J . In the ferromagnetic case the state of lowest energy is the
fully polarized state where all spins are aligned, either pointing up or down.

At finite temperatures the spins start to fluctuate and also states of higher
energy contribute to thermal averages. The average magnetization thus de-
creases from its full value at zero temperature. At a critical temperature Tc

there is a second order phase transition to a disordered phase. The Ising
model is the simplest magnetic model exhibiting such a phase transition and
is often used as a prototype model for magnetism.

The thermal average of a quantity A at a finite temperature T is given
by a sum over all states:

〈A〉 =
1

Z

∑

i

Ai exp(−βEi), (32)

where β = 1/kBT is the inverse temperature. Ai is the value of the quantity
A in the configuration i. Ei is the energy of that configuration.

The partition function

Z =
∑

i

exp(−βEi) (33)

normalizes the probabilities pi = exp(−βEi)/Z.
For small systems it is possible to evaluate these sums exactly. As the

number of states grows like 2N a straight-forward summation is possible
only for very small N . For large higher dimensional systems Monte Carlo
summation/integration is the method of choice.

3.2 The single spin flip Metropolis algorithm

As was discussed in connection with integration it is usually not efficient
to estimate the average (32) using simple sampling. The optimal method
is importance sampling, where the states i are not chosen uniformly but
with the correct probability pi, which we can again do using the Metropolis
algorithm.

The simplest Monte Carlo algorithm for the Ising model is the single spin
flip Metropolis algorithm which defines a Markov chain through phase space.

• Starting with a configuration ci propose to flip a single spin, leading to
a new configuration c′.

• Calculate the energy difference ∆E = E[c′]−E[ci] between the config-
urations c′ and ci.

9

• If ∆E < 0 the next configuration is ci+1 = c′

• If ∆E > 0 then ci+1 = c′ with probability exp(−β∆E), otherwise
ci+1 = ci. We do that by drawing a random number r uniformly dis-
tributed in the interval [0, 1[and set ci+1 = c′ if r < exp(−β∆E).

• Measure all the quantities of interest in the new configuration.

This algorithm is ergodic since any configuration can be reached from
any other in a finite number of spin flips. It also fulfills the detailed balance
condition.

3.3 Systematic errors: boundary and finite size effects

In addition to statistical errors due to the Monte Carlo sampling our simu-
lations suffer from systematic errors due to boundary effects and the finite
size of the system.

Unless one wants to study finite systems with open boundaries, boundary
effects can be avoided completely by using periodic boundary conditions. The
lattice is continued periodically, forming a torus. The left neighbor of the
leftmost spin is just the rightmost boundary spin, etc..

Although we can avoid boundary effects, finite size effects remain since
now all correlations are periodic with the linear system size as period. Here
is how we can treat them:

• Away from phase transitions the correlation length ξ is finite and finite
size effects are negligible if the linear system size L � ξ. Usually
L > 6ξ is sufficient, but this should be checked for each simulation.

• In the vicinity of continuous phase transitions we encounter a problem:
the correlation length ξ diverges. Finite size scaling can comes to the
rescue and can be used to obtain the critical behavior. A detailed
discussion of finite size scaling is beyond the scope of these notes.

3.4 Critical behavior of the Ising model

Close to the phase transition at Tc again scaling laws characterize the behav-
ior of all physical quantities. The average magnetization scales as

m(T) = 〈|M |/V 〉 ∝ (Tc − T)β, (34)

where M is the total magnetization and V the system volume (number of
spins).

10

The magnetic susceptibility χ = dm
dh
|h=0 can be calculated from magneti-

zation fluctuations and diverges with the exponent γ:

χ(T) =
〈M2/V 〉 − 〈|M |/V 〉2

T
∝ |Tc − T |−γ. (35)

The correlation length ξ is defined by the asymptotically exponential
decay of the two-spin correlations:

〈σ0σr〉 − 〈|m|〉2 ∝ exp(−r/ξ). (36)

It is best calculated from the structure factor S(q) , defined as the Fourier
transform of the correlation function. For small q the structure factor has a
Lorentzian shape:

S(q) =
1

1 + q2ξ2
+ O(q4). (37)

The correlation length diverges as

ξ(p) ∝ |T − Tc|−ν . (38)

At the critical point the correlation function itself follows a power law:

〈σ0σr〉 ∝ r−(d−2+η) (39)

where η = 2β/ν − d + 2.
The specific heat C(T) diverges logarithmically in two dimensions:

C(T) ∝ ln |T − Tc| ∝ |T − Tc|−α (40)

and the critical exponent α = 0.
A good estimate of Tc is obtained from the Binder cumulant

U = 1 − 〈M4〉
3〈M2〉2 , (41)

which has a universal value at pc, also the Binder cumulant has a universal
value at Tc. The curves of U(T) for different system sizes L all cross in one
point at Tc. This is a consequence of the finite size scaling ansatz:

〈M4〉 = (T − Tc)
4βu4((T − Tc)L

1/ν)

〈M2〉 = (T − Tc)
2βu2((T − Tc)L

1/ν). (42)

Thus

U(T, L) = 1 − u4((T − Tc)L
1/ν)

3u2((T − Tc)L1/ν)2
, (43)

11

which for T = Tc is universal and independent of system size L:

U(Tc, L) = 1 − u4(0)

3u2(0)2
(44)

High precision Monte Carlo simulations actually show that not all lines
cross exactly at the same point, but that due to higher order corrections to
finite size scaling the crossing point moves slightly, proportional to L−1/ν , al-
lowing a high precision estimate of Tc and ν. For details of the determination
of critical points and exponents see e.g. Ref [1, 2].

3.5 “Critical slowing down” and cluster Monte Carlo

methods

The importance of autocorrelation becomes clear when we wish to simulate
the Ising model at low temperatures. The mean magnetization 〈m〉 is zero
on any finite cluster, as there is a degeneracy between a configuration and its
spin reversed counterpart. If, however, we start at low temperatures with a
configuration with all spins aligned up it will take extremely long time for all
spins to be flipped by the single spin flip algorithm. This problem appears
as soon as we get close to the critical temperature, where it was observed
that the autocorrelation times diverge as

τ ∝ [min(ξ, L)]z. (45)

with a dynamical critical exponents z ≈ 2 for all local update methods like
the single spin flip algorithm.

The reason is that at low temperatures it is very unlikely that even one
spin gets flipped, and even more unlikely for a large cluster of spins to be
flipped. The solution to this problem in the form of cluster updates was
found in 1987 and 1989 by Swendsen and Wang [3] and by Wolff [4]. Instead
of flipping single spins they propose to flip big clusters of spins and choose
them in a clever way so that the probability of flipping these clusters is large.

3.5.1 Cluster updates

We use the Fortuin-Kastelyn representation of the Ising model, as generalized
by Kandel and Domany. The phase space of the Ising model is enlarged by
assigning a set G of possible “graphs” to each configuration C in the set of
configurations C. We write the partition function as

Z =
∑

C∈C

∑

G∈G

W (C, G) (46)

12

where the new weights W (C, G) > 0 are chosen such that Z is the partition
function of the original model by requiring

∑

G∈G

W (C, G) = W (C) := exp(−βE[C]), (47)

where E[C] is the energy of the configuration C.
The algorithm now proceeds as follows. First we assign a graph G ∈ G

to the configuration C, chosen with the correct probability

PC(G) = W (C, G)/W (C). (48)

Then we choose a new configuration C ′ with probability p[(C, G) → (C ′, G)],
keeping the graph G fixed; next a new graph G′ is chosen

C → (C, G) → (C ′, G) → C ′ → (C ′, G′) → . . . (49)

What about detailed balance? The procedure for choosing graphs with
probabilities PG obeys detailed balance trivially. The non-trivial part is
the probability of choosing a new configuration C ′. There detailed balance
requires:

W (C, G)p[(C, G) → (C ′, G)] = W (C ′, G)p[(C ′, G) → (C, G)], (50)

which can be fulfilled using either the heat bath algorithm

p[(C, G) → (C ′, G)] =
W (C ′, G)

W (C, G) + W (C ′, G)
(51)

or by again using the Metropolis algorithm:

p[(C, G) → (C ′, G)] = max(W (C ′, G)/W (C, G), 1) (52)

The algorithm simplifies a lot if we can find a graph mapping such that
the graph weights do not depend on the configuration whenever it is nonzero
in that configuration. This means, we want the graph weights to be

W (C, G) = ∆(C, G)V (G), (53)

where

∆(C, G) :=

{

1 if W (C, G) 6= 0,
0 otherwise.

. (54)

Then equation (51) simply becomes p = 1/2 and equation (52) reduces to
p = 1 for any configuration C ′ with W (C ′, G) 6= 0.

13

Table 1: Local bond weights for the Kandel-Domany representation of the
Ising model.

c =↑↑ c =↓↑ c =↑↓ c =↓↓ V(g)
∆(c, discon.) 1 1 1 1 e−βJ

∆(c, con.) 1 0 0 1 eβJ − e−βJ

w(c) exp(βJ) exp(−βJ) exp(−βJ) exp(βJ)

3.5.2 The cluster algorithms for the Ising model

Let us now show how this abstract and general algorithm can be applied to
the Ising model. Our graphs will be bond-percolation graphs on the lattice.
Spins pointing into the same direction can be connected or disconnected.
Spins pointing in opposite directions will always be disconnected. In the
Ising model we can write the weights W (C) and W (C, G) as products over
all bonds b:

W (C) =
∏

b

w(Cb) (55)

W (C, G) =
∏

b

w(Cb, Gb) =
∏

b

∆(Cb, Gb)V (Gb) (56)

where the local bond configurations Cb can be one of {↑↑, ↓↑, ↑↓, ↓↓}
and the local graphs can be “connected” or “disconnected”. The graph

selection can thus be done locally on each bond.
Table 1 shows the local bond weights w(c, g), w(c), ∆(c, g) and V (g). It

can easily be checked that the sum rule (47) is satisfied.
The probability of a connected bond is [exp(βJ)−exp(−βJ)]/ exp(βJ) =

1− exp(−2βJ) if two spins are aligned and zero otherwise. These connected
bonds group the spins into clusters of aligned spins.

A new configuration C ′ with the same graph G can differ from C only by
flipping clusters of connected spins. Thus the name “cluster algorithms”. The
clusters can be flipped independently, as the flipping probabilities p[(C, G) →
(C ′, G)] are configuration independent constants.

There are two variants of cluster algorithms that can be constructed using
the rules derived above.

3.5.3 The Swendsen-Wang algorithm

The Swendsen-Wang or multi-cluster algorithm proceeds as follows:

14

i) Each bond in the lattice is assigned a label “connected” or “discon-
nected” according to above rules. Two aligned spins are connected
with probability 1− exp(−2βJ). Two antiparallel spins are never con-
nected.

ii) Next a cluster labeling algorithm, like the Hoshen-Kopelman algorithm
is used to identify clusters of connected spins.

iii) Measurements are performed, using improved estimators discussed in
the next section.

iv) Each cluster of spins is flipped with probability 1/2.

3.5.4 The Wolff algorithm

The Swendsen Wang algorithm gets less efficient in dimensions higher than
two as the majority of the clusters will be very small ones, and only a few
large clusters exist. The Wolff algorithm is similar to the Swendsen-Wang
algorithm but builds only one cluster starting from a randomly chosen point.
As the probability of this point being on a cluster of size s is proportional
to s the Wolff algorithm builds preferebly larger clusters. It works in the
following way:

i) Choose a random spin as the initial cluster.

ii) If a neighboring spin is parallel to the initial spin it will be added to
the cluster with probability 1 − exp(−2βJ).

iii) Repeat step ii) for all points newly added to the cluster and repeat this
procedure until no new points can be added.

iv) Perform measurements using improved estimators.

v) Flip all spins in the cluster.

We will see in the next section that the linear cluster size diverges with the
correlation length ξ and that the average number of spins in a cluster is just
χT . Thus the algorithm adapts optimally to the physics of the system and
the dynamical exponent z ≈ 0, thus solving the problem of critical slowing
down. Close to criticality these algorithms are many orders of magnitudes
(a factor L2) better than the local update methods.

15

3.6 Improved Estimators

In this section we present a neat trick that can be used in conjunction with
cluster algorithms to reduce the variance, and thus the statistical error of
Monte Carlo measurements. Not only do these “improved estimators” reduce
the variance. They are also much easier to calculate than the usual “simple
estimators”.

To derive them we consider the Swendsen-Wang algorithm. This algo-
rithm divides the lattice into Nc clusters, where all spins within a cluster are
aligned. The next possible configuration is any of the 2Nc configurations that
can be reached by flipping any subset of the clusters. The idea behind the
“improved estimators” is to measure not only in the new configuration but
in all equally probable 2Nc configurations.

As simplest example we consider the average magnetization 〈m〉. We can
measure it as the expectation value 〈σ~i〉 of a single spin. As the cluster to
which the spin belongs can be freely flipped, and the flipped cluster has the
same probability as the original one, the improved estimator is

〈m〉 = 〈1
2
(σ~i − σ~i)〉 = 0. (57)

This result is obvious because of symmetry, but we saw that at low temper-
atures a single spin flip algorithm will fail to give this correct result since
it takes an enormous time to flip all spins. Thus it is encouraging that the
cluster algorithms automatically give the exact result in this case.

Correlation functions are not much harder to measure:

〈σ~iσ~j〉 =

{

1 if ~i und ~j are on the same cluster
0 otherwise

(58)

To derive this result consider the two cases and write down the improved
estimators by considering all possible cluster flips.

Using this simple result for the correlation functions the mean square of
the magnetization is

〈m2〉 =
1

N2

∑

~i,~j

〈σ~iσ~j〉 =
1

N2
〈
∑

cluster

S(cluster)2〉, (59)

where S(cluster) is the number of spins in a cluster. The susceptibility above
Tc is simply given by β〈m2〉 and can also easily be calculated by above sum
over the squares of the cluster sizes.

In the Wolff algorithm only a single cluster is built. Above sum (59) can
be rewritten to be useful also in case of the Wolff algorithm:

〈m2〉 =
1

N2
〈
∑

cluster

S(cluster)2〉

16

=
1

N2

∑

~i

1

S~i

S2
~i

=
1

N2

∑

~i

S~i =
1

N
〈S(cluster)〉, (60)

where S~i is the size of the cluster containing the initial site~i. The expectation
value for m2 is thus simply the mean cluster size. In this derivation we
replaced the sum over all clusters by a sum over all sites and had to divide
the contribution of each cluster by the number of sites in the cluster. Next
we can replace the average over all lattice sites by the expectation value for
the cluster on a randomly chosen site, which in the Wolff algorithm will be
just the one Wolff cluster we build.

Generalizations to other quantities, like the structure factor S(~q) are
straightforward. While the calculation of S(~q) by Fourier transform needs at
least O(N ln N) steps, it can be done much faster using improved estimators,
here derived for the Wolff algorithm:

〈S(~q)〉 =
1

N2

∑

~r,~r′

σ~rσ~r′ exp(i~q(~r − ~r′))

=
1

NS(cluster)

∑

~r,~r′∈cluster

σ~rσ~r′ exp(i~q(~r − ~r′))

=
1

NS(cluster)

∣

∣

∣

∣

∣

∣

∑

~r∈cluster

exp(i~q~r)

∣

∣

∣

∣

∣

∣

2

, (61)

This needs only O(S(cluster)) operations and can be measured directly when
constructing the cluster.

Care must be taken for higher order correlation functions. Improved
estimators for quantities like m4 which need at least two clusters and cannot
be measured in an improved way using the Wolff algorithm.

3.7 Generalizations of cluster algorithms

Cluster algorithms can be used not only for the Ising model but for a large
class of classical, and even quantum spin models. The quantum version is
the “loop algorithm”, which will be discussed later in the course. In this
section we discuss generalizations to other classical spin models.

Before discussing specific models we remark that generalizations to mod-
els with different coupling constants on different bonds, or even random cou-
plings are straightforward. All decisions are done locally, individually for
each spin or bond, and the couplings can thus be different at each bond.

17

3.7.1 Potts models

q-state Potts models are the generalization of the Ising model to more than
two states. The Hamilton function is

H = −J
∑

〈i,j〉

δsi,sj
, (62)

where the states si can take any integer value in the range 1, . . . , q. The
2-state Potts model is just the Ising model with some trivial rescaling.

The cluster algorithms for the Potts models connect spins with probability
1− e−βJ if the spins have the same value. The clusters are then “flipped” to
any arbitrarily chosen value in the range 1, . . . , q.

3.7.2 O(N) models

Another, even more important generalization are the O(N) models. Well
known examples are the XY -model with N = 2 and the Heisenberg model
with N = 3. In contrast to the Ising model the spins can point into any
arbitrary direction on the N -sphere. The spins in the XY model can point
into any direction in the plane and can be characterized by a phase. The
spins in the Heisenberg model point into any direction on a sphere.

The Hamilton function is:

H = −J
∑

〈i,j〉

~Si
~Sj, (63)

where the states ~Si are SO(N) vectors.
Cluster algorithms are constructed by projecting all spins onto a random

direction ~e ∈ SO(N). The cluster algorithm for the Ising model can then be

used for this projection. Two spins ~Si and ~Sj are connected with probability

1 − exp
(

min[0,−2βJ(~e · ~Si)(~e · ~Sj)]
)

. (64)

The spins are flipped by inverting the projection onto the ~e-direction:

~Si → ~Si − 2(~e · ~Si)~e. (65)

In the next update step a new direction ~e is chosen.

4 The quantum Monte Carlo loop algorithm

The “loop-algorithm” is a generalization of the classical Swendsen-Wang clus-
ter algorithms to quantum lattice models. I will discuss it here in a path-
integral representation. A slightly modified version will be discussed later in
the context of the SSE representation.

18

4.1 Path-integral representation in terms of world lines

I will discuss the loop algorithm for a spin-1/2 quantum XXZ model with
the Hamiltonian

H = −
∑

〈i,j〉

(

JzS
z
i S

z
j + Jxy(S

x
i Sx

j + Sy
i Sy

j)
)

= −
∑

〈i,j〉

(

JzS
z
i S

z
j +

Jxy

2
(S+

i S−
j + S−

i S+
j)
)

. (66)

For J ≡ Jz = Jxy we have the Heisenberg model (J > 0 is ferromagnetic,
J < 0 antiferromagnetic). Jxy = 0 is the (classical) Ising model and Jz = 0
the quantum XY model.

In the quantum Monte Carlo simulation we want to evaluate thermody-
namic averages such as

〈A〉 =
TrAe−βH

Tre−βH
. (67)

The main problem is the calculation of the exponential e−βH . The straight-
forward calculation would require a complete diagonalization, which is just
what we want to avoid. We thus discretize the imaginary time (inverse tem-
perature) direction1 and subdivide β = M∆τ :

e−βH =
(

e−∆τH
)M

= (1 − ∆τH)M + O(∆τ) (68)

In the limit M → ∞ (∆τ → 0) this becomes exact. We will take the limit
later, but stay at finite ∆τ for now.

The next step is to insert the identity matrix, represented by a sum over
all basis states 1 =

∑

i |i〉〈i| between all operators (1 − ∆τH):

Z = Tre−βH = Tr (1 − ∆τH)M + O(∆τ)

=
∑

i1,...,iM

〈i1|1 − ∆τH|i2〉〈i2|1 − ∆τH|i3〉 · · · 〈iM |1 − ∆τH|i1〉 + O(∆τ)

=: Pi1,...,iM (69)

and similarly for the measurement, obtaining

〈A〉 =
∑

i1,...,iM

〈i1|A(1 − ∆τH)|i2〉
〈i1|1 − ∆τH|i2〉

Pi1,...,iM + O(∆τ). (70)

1Time evolution in quantum mechanics is e−itH . The Boltzman factor e−βH thus

corresponds to an evolution in imaginary time t = −iβ

19

space
im

ag
in

ar
y

tim
e

0

β

Figure 1: Example of a world line configuration for a spin-1/2 quantum
Heisenberg model. Drawn are the world lines for up-spins only. Down spin
world lines occupy the rest of the configuration.

If we choose the basis states |i〉 to be eigenstates of the local Sz operators
we end up with an Ising-like spin system in one higher dimension. Each choice
i1, . . . , iM corresponds to one of the possible configurations of this classical
spin system. The trace is mapped to periodic boundary conditions in the
imaginary time direction of this classical spin system. The probabilities are
given by matrix elements 〈in|1−∆τH|in+1〉. We can now sample this classical
system using classical Monte Carlo methods.

However, most of the matrix elements 〈in|1 − ∆τH|in+1〉 are zero, and
thus nearly all configurations have vanishing weight. The only non-zero con-
figurations are those where neighboring states |in〉 and |in+1〉 are either equal
or differ by one of the off-diagonal matrix elements in H , which are nearest
neighbor exchanges by two opposite spins. We can thus uniquely connect
spins on neighboring “time slices” and end up with world lines of the spins,
sketched in Fig. 1. Instead of sampling over all configurations of local spins
we thus have to sample only over all world line configurations (the others
have vanishing weight). Our update moves are not allowed to break world
lines but have to lead to new valid world line configurations.

4.2 The loop algorithm

Until 1993 only local updates were used, which suffered from a slowing down
like in the classical case. The solution came as a generalization of the cluster
algorithms to quantum systems [5, 6].

This algorithm is best described by first taking the continuous time limit

20

Table 2: The six local configurations for an XXZ model and their weights.

configuration weight

Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

, Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

1 + Jz

4
dτ

Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

, Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

1 − Jz

4
dτ

Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

, Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

Jxy

2
dτ

a) , b) , c) , d)

Figure 2: The four local graphs: a) vertical, b) horizontal c) crossing and d)
freezing (connects all four corners).

M → ∞ (∆τ → dτ) and by working with infinitesimals. Similar to the Ising
model we look at two spins on neigboring sites i and j at two neighboring
times τ and τ + dτ , as sketched in Table 2. There are a total of six possible
configurations, having three different probabilities. The total probabilities
are the products of all local probabilities, like in the classical case. This is
obvious for different time slices. For the same time slice it is also true since,
denoting by Hij the term in the Hamiltonian H acting on the bond between
sites i and j we have

∏

〈i,j〉(1 − dτHij) = 1 − dτ
∑

〈i,j〉 Hij = 1− dτH . In the
following we focus only on such local four-spin plaquettes. Next we again
use the Kandel-Domany framework and assign graphs. As the updates are
not allowed to break world lines only four graphs, sketched in Fig. 2 are
allowed. Finally we have to find ∆ functions and graph weights that give
the correct probabilities. The solution for the XY -model, ferromagnetic and
antiferromagnetic Heisenberg model and the Ising model is shown in Tables
3 - 6.

Let us first look at the special case of the Ising model. As the exchange
term is absent in the Ising model all world lines run straight and can be
replaced by classical spins. The only non-trivial graph is the “freezing”,
connecting two neighboring world lines. Integrating the probability that two
neighboring sites are nowhere connected along the time direction we obtain:

21

Table 3: The graph weights for the quantum-XY model and the ∆ function
specifying whether the graph is allowed. The dash – denotes a graph that is
not possible for a configuration because of spin conservation and has to be
zero.

G ∆(, G) ∆(, G) ∆(, G)

= ∆(, G) = ∆(, G) = ∆(, G) graph weight

1 1 – 1 − Jxy

4
dτ

– 1 1 Jxy

4
dτ

1 – 1 Jxy

4
dτ

0 0 0 0

total weight 1 1 Jxy

2
dτ

Table 4: The graph weights for the ferromagnetic quantum Heisenberg model
and the ∆ function specifying whether the graph is allowed. The dash –
denotes a graph that is not possible for a configuration because of spin con-
servation and has to be zero.

G ∆(, G) ∆(, G) ∆(, G)

= ∆(, G) = ∆(, G) = ∆(, G) graph weight

1 1 – 1 − J
4
dτ

– 0 0 0

1 – 1 J
2
dτ

0 0 0 0

total weight 1 + J
4
dτ 1 − J

4
dτ J

2
dτ

22

Table 5: The graph weights for the antiferromagnetic quantum Heisenberg
model and the ∆ function specifying whether the graph is allowed. The
dash – denotes a graph that is not possible for a configuration because of
spin conservation and has to be zero. To avoid the sign problem (see next
subsection) we change the sign of Jxy, which is allowed only on bipartite
lattices.

G ∆(, G) ∆(, G) ∆(, G)

= ∆(, G) = ∆(, G) = ∆(, G) graph weight

1 1 – 1 − |J |
4

dτ

– 1 1 |J |
2

dτ

0 – 0 0

0 0 0 0

total weight 1 − |J |
4

dτ 1 + |J |
4

dτ |J |
2

dτ

23

Table 6: The graph weights for the ferromagnetic Ising model and the ∆
function specifying whether the graph is allowed. The dash – denotes a
graph that is not possible for a configuration because of spin conservation
and has to be zero.

G ∆(, G) ∆(, G) ∆(, G)

= ∆(, G) = ∆(, G) = ∆(, G) graph weight

1 1 – 1 − Jz

4
dτ

– 0 0 0

0 – 0 0

1 0 0 Jz

2
dτ

total weight 1 + Jz

4
dτ 1 − Jz

4
dτ 0

times:
β
∏

τ=0

(1 − dτJ/2) = lim
M→∞

(1 − ∆τJ/2)M = exp(−βJ/2) (71)

Taking into account that the spin is S = 1/2 and the corresponding classical
coupling Jcl = S2J = J/4 we find for the probability that two spins are
connected: 1 − exp(−2βJcl). We end up exactly with the cluster algorithm
for the classical Ising model!

The other cases are special. Here each graph connects two spins. As each
of these spins is again connected to only one other, all spins connected by a
cluster form a closed loop, hence the name “loop algorithm”. Only one issue
remains to be explained: how do we assign a horizontal or crossing graph with
infinitesimal probability, such as (J/2)dτ . This is easily done by comparing
the assignment process with radioactive decay. For each segment the graph
runs vertical, except for occasional decay processes occuring with probability
(J/2)dτ . Instead of asking at every infinitesimal time step whether a decay
occurs we simply calculate an exponentially distributed decay time t using an
exponential distribution with decay constant J/2. Looking up the equation
in the lecture notes of the winter semester we have t = −(2/J) ln(1 − u)
where u is a uniformly distributed random number.

24

world lines world lines +
decay graphs

world lines
after flips of some
loop clusters

Figure 3: Example of a loop update. In a first step decay paths are inserted
where possible at positions drawn randomly according to an exponential
distribution and graphs are assigned to all exchange terms (hoppings of world
lines). In a second stage (not shown) the loop clusters are identified. Finally
each loop cluster is flipped with probability 1/2 and one ends up with a new
configuration.

The algorithm now proceeds as follows (see Fig. 3): for each bond we
start at time 0 and calculate a decay time. If the spins at that time are
oriented properly and an exchange graph is possible we insert one. Next
we advance by another randomly chosen decay time along the same bond
and repeat the procedure until we have reached the extent β. This assigns
graphs to all infinitesimal time steps where spins do not change. Next we
assign a graph to all of the (finite number of) time steps where two spins are
exchanged. In the case of the Heisenberg models there is always only one
possible graph to assign and this is very easy. In the next step we identify
the loop-clusters and then flip them each with probability 1/2. Alternatively
a Wolff-like algorithm can be constructed that only builds one loop-cluster.

Improved estimators for measurements can be constructed like in classical
models. The derivation is similar to the classical models. I will just men-
tion two simple ones for the ferromagnetic Heisenberg model. The spin-spin
corelation is

Sz
i (τ)Sz

j (τ
′) =

{

1 if (i, τ) und (j, τ ′) are on the same cluster
0 otherwise

(72)

and the uniform susceptibilty is

χ =
1

Nβ

∑

c

S(c)2, (73)

25

where the sum goes over all loop clusters and S(c) is the length of all the
loop segments in the loop cluster c.

For further information on the loop algorithm I refer to the recent review
by Evertz [7].

4.3 The negative sign problem

Now that we have algorithms with no critical slowing down we could think
that we have completely solved the problem of quantum many body prob-
lems.

There is however the negative sign problem which destroys our dreams.
We need to interpret the matrix elements 〈in|1−∆τH|in+1〉 as probablities,
which requires them to be positive. However all off-diagonal positive matrix
elements of H arising from Fermi statistics give rise to a negative probability
in fermionic systems and in frustrated quantum magnets.

The simplest example is the exchange term −(Jxy/2)(S+
i S−

j + S−
i S+

j) in
the Hamiltonian (66) in the case of an antiferromagnet with Jxy < 0. For
any bipartite lattice, such as chains, square lattices or cubic lattices with
there is always an even number of such exchanges and we get rescued once
more. For non-bipartite lattices (such as a triangular lattice), on which the
antiferromagnetic order is frustrated there is no way around the sign problem.
Similarly a minus sign occurs in all configurations where two fermions are
exchanged.

Even when there is a sign problem we can still do a simulation. Instead
of sampling

〈A〉p :=

∫

A(x)p(x)dx
∫

p(x)dx
(74)

we rewrite this equation as [8]

〈A〉p =

∫

A(x)sign(p(x))|p(x)|dx
∫

|p(x)|dx
∫

sign(p(x))|p(x)|dx
∫

|p(x)|dx

=
〈A · signp〉|p|
〈signp〉|p|

. (75)

We sample with the absolute values |p| and include the sign in the observ-
able. The “sign problem” is the fact that the errors get blown up by an
additional factor 1/〈signp〉|p|, which grows exponentially with volume and
inverse temperature β, as 〈signp〉|p| ∝ exp(−const × βN). Then we are un-
fortunately back to exponential scaling. Many people have tried to solve the
sign problem using basis changes or clever reformulations, but – except for
special cases – nobody has succeeded yet. In fact we could show that in some
cases the sign problem is NP-hard and a solution thus all but impossible [9].

26

If you want you can try your luck: the person who finds a general solution
to the sign problem will surely get a Nobel prize!

5 Exact diagonalization

5.1 Creating the basis set and matrix

The most accurate method for quantum lattice models is exact diagonaliza-
tion of the Hamiltonian matrix using the Lanczos algorithm. The size of the
Hilbert space of an N -site system [4N for a Hubbard model , 3N for a t-J
model and (2S + 1)N for a spin-S model] can be reduced by making use of
symmetries. Translational symmetries can be employed by using Bloch waves
with fixed momentum as basis states. Conservation of particle number and
spin allows to restrict a calculation to subspaces of fixed particle number and
magnetization.

As an example I will sketch how to implement exact diagonalization for a
simple one-dimensional spinless fermion model with nearest neighbor hopping
t and nearest neighbor repulsion V :

H = −t
L−1
∑

i=1

(c†ici+1 + H.c.) + V
L−1
∑

i

nini+1. (76)

The first step is to construct a basis set. We describe a basis state as
an unsigned integer where bit i set to one corresponds to an occupied site
i. As the Hamiltonian conserves the total particle number we thus want to
construct a basis of all states with N particles on L sites (or N bits set to
one in L bits). The function state(i) returns the state corresponding to
the i-th basis state, and the function index(s) returns the number of a basis
state s.

#include <vector>

#include <alps/bitops.h>

class FermionBasis {

public:

typedef unsigned int state_type;

typedef unsigned int index_type;

FermionBasis (int L, int N);

state_type state(index_type i) const {return states_[i];}

index_type index(state_type s) const {return index_[s];}

27

unsigned int dimension() const { return states_.size();}

private:

std::vector<state_type> states_;

std::vector<index_type> index_;

};

FermionBasis::FermionBasis(int L, int N)

{

index_.resize(1<<L); // 2^L entries

for (state_type s=0;s<index_.size();++s)

if(alps::popcnt(s)==N) {

// correct number of particles

states_.push_back(s);

index_[s]=states_.size()-1;

}

else

// invalid state

index_[s]=std::numeric_limits<index_type>::max();

}

Next we have to implement a matrix-vector multiplication v = Hw for
the Hamiltonian:

class HamiltonianMatrix : public FermionBasis {

public:

HamiltonianMultiplier(int L, int N, double t, double V)

: FermionBasis(L,N), t_(t), V_(V), L_(L) {}

void multiply(std::valarray<double>& v, const std::valarray<double>& w);

private:

double t_, V_;

int L_;

}

void HamiltonianMatrix::multiply(std::valarray<double>& v,

const std::valarray<double>& w)

{

// do the V-term

28

for (int i=0;i<dimension();++i)

{

state_type s = state(i);

// count number of neighboring fermion pairs

v[i]=w[i]*V_*alps::popcnt(s&(s>>1));

}

// do the t-term

for (int i=0;i<dimension();++i)

{

state_type s = state(i);

for (int r=0;r<L_-1;++r) {

state_type shop = s^(3<<r); // exchange two particles

index_type idx = index(shop); // get the index

if(idx!=std::numeric_limits<index_type>::max())

v[idx]+=w[i]*t;

}

}

}

This class can now be used together with the Lanczos algorithm to cal-
culate the energies and wave functions of the low lying states of the Hamil-
tonian.

5.2 The Lanczos algorithm

Sparse matrices with only O(N) non-zero elements are very common in scien-
tific simulations. We have already encountered them in the winter semester
when we discretized partial differential equations. Now we have reduced the
transfer matrix of the Ising model to a sparse matrix product. We will later
see that also the quantum mechanical Hamilton operators in lattice models
are sparse.

The importance of sparsity becomes obvious when considering the cost
of matrix operations as listed in table 7. For large N the sparsity leads to
memory and time savings of several orders of magnitude.

Here we will discuss the iterative calculation of a few of the extreme
eigenvalues of a matrix by the Lanczos algorithm. Similar methods can be
used to solve sparse linear systems of equations.

To motivate the Lanczos algorithms we will first take a look at the power
method for a matrix A. Starting from a random initial vector u1 we calculate

29

Table 7: Time and memory complexity for operations on sparse and dense
N × N matrices
operation time memory
storage
dense matrix — N2

sparse matrix — O(N)
matrix-vector multiplication
dense matrix O(N2) O(N2)
sparse matrix O(N) O(N)
matrix-matrix multiplication
dense matrix O(N log 7/ log 2) O(N2)
sparse matrix O(N) . . .O(N2) O(N) . . .O(N2)
all eigen values and vectors
dense matrix O(N3) O(N2)
sparse matrix (iterative) O(N2) O(N2)
some eigen values and vectors
dense matrix (iterative) O(N2) O(N2)
sparse matrix (iterative) O(N) O(N)

the sequence

un+1 =
Aun

||Aun||
, (77)

which converges to the eigenvector of the largest eigenvalue of the matrix A.
The Lanczos algorithm optimizes this crude power method.

5.2.1 Lanczos iterations

The Lanczos algorithm builds a basis {v1, v2, . . . , vM} for the Krylov-subspace
KM = span{u1, u2, . . . , uM}, which is constructed by M iterations of equa-
tion (77). This is done by the following iterations:

βn+1vn+1 = Avn − αnvn − βnvn−1, (78)

where
αn = v†

nAvn, βn = |v†
nAvn−1|. (79)

As the orthogonality condition

v†
i vj = δij (80)

does not determine the phases of the basis vectors, the βi can be chosen to
be real and positive. As can be seen, we only need to keep three vectors of

30

size N in memory, which makes the Lanczos algorithm very efficient, when
compared to dense matrix eigensolvers which require storage of order N2.

In the Krylov basis the matrix A is tridiagonal

T (n) :=

α1 β2 0 · · · 0

β2 α2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βn

0 · · · 0 βn αn

. (81)

The eigenvalues {τ1, . . . , τM} of T are good approximations of the eigen-
values of A. The extreme eigenvalues converge very fast. Thus M � N
iterations are sufficient to obtain the extreme eigenvalues.

5.2.2 Eigenvectors

It is no problem to compute the eigenvectors of T . They are however given in
the Krylov basis {v1, v2, . . . , vM}. To obtain the eigenvectors in the original
basis we need to perform a basis transformation.

Due to memory constraints we usually do not store all the vi, but only
the last three vectors. To transform the eigenvector to the original basis we
have to do the Lanczos iterations a second time. Starting from the same
initial vector v1 we construct the vectors vi iteratively and perform the basis
transformation as we go along.

5.2.3 Roundoff errors and ghosts

In exact arithmetic the vectors {vi} are orthogonal and the Lanczos iterations
stop after at most N − 1 steps. The eigenvalues of T are then the exact
eigenvalues of A.

Roundoff errors in finite precision cause a loss of orthogonality. There are
two ways to deal with that:

• Reorthogonalization of the vectors after every step. This requires stor-
ing all of the vectors {vi} and is memory intensive.

• Control of the effects of roundoff.

We will discuss the second solution as it is faster and needs less memory.
The main effect of roundoff errors is that the matrix T contains extra spurious
eigenvalues, called “ghosts”. These ghosts are not real eigenvalues of A.
However they converge towards real eigenvalues of A over time and increase
their multiplicities.

31

A simple criterion distinguishes ghosts from real eigenvalues. Ghosts are
caused by roundoff errors. Thus they do not depend on on the starting vector
v1. As a consequence these ghosts are also eigenvalues of the matrix T̃ , which
can be obtained from T by deleting the first row and column:

T̃ (n) :=

α2 β3 0 · · · 0

β3 α3
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βn

0 · · · 0 βn αn

. (82)

From these arguments we derive the following heuristic criterion to dis-
tinguish ghosts from real eigenvalues:

• All multiple eigenvalues are real, but their multiplicities might be too
large.

• All single eigenvalues of T which are not eigenvalues of T̃ are also real.

Numerically stable and efficient implementations of the Lanczos algo-
rithm can be obtained from netlib. As usual, do not start coding your own
algorithm but use existing optimal implementations.

References

[1] A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44 5081 (1991).

[2] K. Chen, A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 48 3249
(1993).

[3] R.H. Swendsen and J-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

[4] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

[5] H. G. Evertz et al., Phys. Rev. Lett. 70, 875 (1993).

[6] B. B. Beard and U.-J. Wiese, Phys. Rev. Lett. 77, 5130 (1996).

[7] H.G. Evertz, Adv. Phys. 52, 1 (2003).

[8] J. E. Hirsch, R. L. Sugar, D. J. Scalapino and R. Blankenbecler,
Phys. Rev. B 26, 5033 (1982).

[9] M. Troyer and U.-J. Wiese, preprint.

32

