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Abstract. We review the development of update schemes for quantuicdatiodels simulated us-
ing world line quantum Monte Carlo algorithms. Startingrfrthe Suzuki-Trotter mapping we dis-
cuss limitations of local update algorithms and highligiiet tnain developments beyond Metropolis-
style local updates: the development of cluster algorithithesr generalization to continuous time,
the worm and directed-loop algorithms and finally a geneaitbn of the flat histogram method of
Wang and Landau to quantum systems.

QUANTUM MONTE CARLO WORLD LINE ALGORITHMS

Suzuki’s realization in 1976 [1] that the partition funetiof ad-dimensional quantum
spin-1/2 system can be mapped onto that ¢éla- 1)-dimensional classical Ising model
with special interactions enabled the straightforwardusation of arbitrary quantum
lattice models, overcoming the restrictions of Handscamiethod [2]. Quantum spins
get mapped onto classical world lines and the Metropolisréitlym [3] can be employed
to perform local updates of the configurations.

Just like classical algorithms the local update quantumtgl@arlo algorithm suffers
from the problem of critical slowing down at second order ggh&ransitions and the
problem of tunneling out of metastable states at first ordhexsp transitions. Here we
review the development of non-local update algorithmsteg beyond local update
Metropolis schemes:

» 1993: the loop algorithm [4], a generalization of the cleakcluster algorithms to
guantum systems allows efficient simulations at secondr qiigse transitions.

» 1996: continuous time versions of the loop algorithm [5] déimel local update al-
gorithms [6] remove the need for an extrapolation in thereigctime step of the
original algorithms (an approximation-free power-seseheme had been intro-
duced for the S=1/2 Heisenberg model already in [2], andatae] more general
method with local updates was presented in [7]).

» from 1998: the worm algorithm [8], the loop-operator [9, X0jd the directed
loop algorithms [11] remove the requirement of spin-iniarsor particle-hole
symmetry.

«+ 2003: flat histogram methods for quantum systems [12] allffizient tunneling
between metastable states at first order phase transitions.
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WORLD LINES AND LOCAL UPDATE ALGORITHMS

The Suzuki-Trotter decomposition

In classical simulations the Boltzmann weight of a configjorac at an inverse
temperaturegl = 1/kgT is easily calculated from its enerdy as exg—LE;). Hence
the thermal average of a quantiy

(A)classica= ZAceXF(—B Ec)/ Z exp(—BE) (1)

can be directly estimated in a Monte Carlo simulation. Theg®@blem for a quantum
Monte Carlo simulation is that the simple exponentials ofrgies get replaced by
exponentials of the Hamilton operatidr

(A) =Tr[Aexp(—BH)] /Tr [exp(—BH)] (2)

The seminal idea of Suzuki [1], using a generalization otfers formula [13], was
to splitH into two or more term#l = $N H; so that the exponentials of each of the terms
exp(—BH;) is easy to calculate. Although tiip do not commute, the error in estimating
the exponential
exp(—eH) ~ [ exp(—eHi) + O(€?) (3)
|

is small for small prefactors and better formulas of arbitrarily high order can be derived
[14]. Applying this approximation to the partition functiove get Suzuki’'s famous
mapping, here shown for the simplest case of two tdi#mnandH,

Z = Trlexp(—BH)] = Tr[exp(—AT(Hy+Hy)V
— Trlexp(—ATH1) exp(—ATH)M + 0(AT?) (4)
= Y (igUsfiz)(iz|Uzfis) - - - (izm—1|U]izm) (izm[Uz]iz) + 0(Ar?),

i1,...,I2M

where the time step &1 = [3/M, theliyx) each are complete orthonormal sets of basis
states, and the transfer matrices Bke= exp(—AtH;). The evaluation of the matrix
elementgi|U1]i’) is straightforward since thid; are chosen to be easily diagonalized.

The World Line Representation

As an example we consider a one-dimensional chain with seasighbor interac-
tions. The Hamiltoniam is split into odd and even bondif andHy, as shown in Fig.
la). Since the bond terms in each of these sums commute, lthgat@n of the expo-
nential is easy. Equation (4) can be interpreted as an evnlutimaginary time (inverse
temperature) of the statg) by the “time evolution” operatord, andU,. Within each
time intervalAt the operatort); and andJ, are each applied once. This leads to the fa-
mous “checkerboard decomposition”, a graphical represient of the sum on a square
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FIGURE 1. The “checkerboard decomposition”: a) the Hamiltonian ikt $pto odd and even bond
terms. b) A graphical representation of Suzuki’'s mappin@ afne-dimensional quantum system to a
two-dimensional classical one, where an example worlddm#iguration is shown.

lattice, where the applications of the operatdrare marked by shaded squares (see Fig.
1b). The configuration along each time slice correspondsiéoad the statefiy) in the
sum (4).

This establishes the mapping of a one-dimensional quantuantivo-dimensional
classical model where the four classical states at the toofeeach plaquette interact
with a four-site Ising-like interaction. For Hamiltoniawith particle number (or magne-
tization) conservation we can take the mapping one stepdur§ince the conservation
law applies locally on each shaded plaquette, particleseaghboring time slices can
be connected and we get a representation of the configurgiign in terms of world
lines. The sum over all configuratiogdy)} with non-zero weightsix|U|ix;1) corre-
sponds to the sum over all possible world line configuratiomgig. 1b) we show such
aworld line configuration for a model with one type of paei¢.g. a spin-1/2, hardcore
boson or spinless fermion model). For models with more tyfigarticles there will be
more kinds of world lines representing different particdfesy. spin-up and spin-down
fermions).

Local Updates

The world line representation can be used as a starting pbiatquantum Monte
Carlo algorithm [15]. Since particle number conservatioshbits the breaking of world
lines, the local updates need to move world lines insteadstfghanging local states as
in a classical model.

As an example we consider a one-dimensional tight bindindethwith Hamiltonian

H=-ty (ciTci+1+ciT+1ci) ; (5)
|
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FIGURE 2. Examples of the two types of local moves used to update th&woe configuration in

a tight-binding model with two states per site and HamilonEq. (5): a) plaquette weight&|U |ik: 1)

of the six possible local world line configurations in a tiggitiding model; b) the two types of updates in
discrete time and c) in continuous time.

WhereciT creates a particle (spinless fermion or hardcore bosorijedt &ig. 2a shows

the plaquette weightsiy|U |ix;1) for each of the six world line configurations on a
shaded plaquette in this model.

The local updates are quite simple and move a world line acioshite plaquette
[15, 16], as shown in Fig. 2b). Slightly more complicateddlomoves are needed for
higher-dimensional models [17}J models [18, 19] and Kondo lattice models [19].

Since these local updates cannot change global propestiel, as the number of
world lines or their spatial winding, they need to be compated with global updates
if the grandcanonical ensemble should be simulated [18.rbblem of exponentially
low acceptance rate of such moves was remedied only muclilatiee non-local update
algorithms discussed below.

The Continuous Time Limit

The systematic error arising from the finite time sfapwas originally controlled by
an extrapolation to the continuous time limit — O from simulations with different
values of the time stefit. It required a fresh look at quantum Monte Carlo algorithms
by a Russian group [6] in 1996 to realize that, for a discrei@ndgum lattice model, this
limit can already be taken during the construction of theatgm and simulations can
be performed directly a1 — 0, corresponding to an infinite Trotter numBbér= .

In this limit the Suzuki-Trotter formula Eq. (4) becomes palent to a time-
dependent perturbation theory in imaginary time [6, 8]:

Z = Trexp(—BH)=Tr [exp(—BHo)ﬂexp/OBdTV(r)}, (6)

= Tr {exp(—BHo) (1—/03dTV(T)dT+%/OBdT1 TBdTZV(Tl)V(Tz)-l-...)},

where the symbol.s denotes time-ordering of the exponential. The Hamilto-
nian H = Hp +V is split into a diagonal termHy and an offdiagonal pertur-
bation V. The time-dependent perturbation in the interaction rsgm&tion is
V(1) = exp(tHp)V exp(—THp). In the case of the tight-binding model the hopping
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termt is part of the perturbatiol, while additional diagonal potential or interaction
terms would be a part dflp.

To implement a continuous time algorithm the first changehim algorithm is to
keep only a list of times at which the configuration changesteiad of storing the
configuration at each of theM2time slices in the limitM — c. Since the probability
for a jump of a world line [see Fig. 2a)] and hence a changeefdbal configuration is
sinh(Att) O At O 1/M the number of such changes remains finite in the livhit> .
The representation is thus well defined, and, equivalentlyg. (6) only a finite number
of terms contributes in a finite system.

The second change concerns the updates, since the probtditihe insertion of a
pair of jumps in the world line [the upper move in Fig. 2b)] i&res as

Pnsert jump= sint?(Att) / costf(Att) DAT? 01/M?2 — 0 )

in the continuous time limit. To counter this vanishing pabbity, one proposes to insert
a pair of jJumps not at a specific location artywhereinside a finite time interval [6].
The integrated probability then remains finite in the lidhit — 0. Similarly instead of
shifting a jump byAT [the lower move in Figs. 2b,c)] we move it by a finite time inalr
in the continuous time algorithm.

Stochastic Series Expansion

An alternative Monte Carlo algorithm, which also does ndfesufrom time dis-
cretization, is the stochastic series expansion (SSEYitigo[7], a generalization of
Handscomb’s algorithm [2] for the Heisenberg model. Ittsténom a Taylor expansion
of the partition function in orders @:

o n
B—Tr

zZ = Trexp(—BH):;nI (—H)"
) n;ﬁ{ilzin}{blrzbn}al‘ ~ Ho[i2){i2] = Hp[ig) - (in = Hoy i1) - (8)

where in the second line we decomposed the HamiltoHiamto a sum of single-bond
termsH = S, Hp, and again inserted complete sets of basis states. We endtlup w
a similar representation as Eq. (4) and a related world{iceure with very similar
update schemes. For more details of the SSE method we refke tcontribution of
A.W. Sandvik in this proceedings volume.

The SSE representation can be formally related to the woredrepresentation by
observing that Eq. (8) is obtained from Eg. (6) by settifag= 0,V = H and integrating
over all times (compare also Fig. 3)[20]. This mapping also shows the advantages
and disadvantages of the two representations. The SSEsegpa¢ion corresponds to a
perturbation expansion in all terms of the Hamiltonian, vélas world line algorithms
treat the diagonal terms iHy exactly and perturb only in the offdiagonal terivisof
the Hamiltonian. World line algorithms hence need only feteems in the expansion,
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FIGURE 3. A comparison of a) world lines in discrete time, b) in conting time and c) a similar
configuration in the SSE representation. In the SSE reptatsem the continuous time index is replaced
by an integer order index of the operators, at the cost oftadail diagonal terms (the dashed lines).

but pay for it by having to deal with imaginary times The SSE representation is thus
preferred except for models with large diagonal terms (@gonic Hubbard models) or
for models with time-dependent actions (e.g. dissipativengum systems [21]).

THE LOOP ALGORITHM

While the local update world line and SSE algorithms endidestmulation of quantum
systems they suffer from critical slowing down at seconceogghase transitions. Even
worse, changing the spatial and temporal winding numbessahaexponentially small
acceptance rate. While the restriction to zero spatial ingndan be viewed as a bound-
ary effect, changing the temporal winding number and thesthgnetization or particle
number is essential for simulations in the grand canonitsémble.

The solution to these problems came with the loop algorithjrapd its continuous
time version [5]. These algorithms, generalizations of ¢lassical cluster algorithms
[22] to quantum systems, not only solve the problem of aitgtowing down, but also
updates the winding numbers efficiently for those systemehich it can be applied.

Since there is an extensive recent review of the loop algorif23], we will only
mention the main idea behind the loop algorithm here. In tlassical Swendsen-
Wang cluster algorithm each bond in the lattice is consuleaed with a probability
depending on the local configuration two neighboring spmesegther “connected” or
left “disconnected”, as shown in Fig. 4a). “Connected” spiorm a cluster and must
be flipped together. Since the average extent of these clissiast the correlation

L O EX X

FIGURE 4. a)in the cluster algorithms for classical spins two sitesaither be connected (thick line)
or disconnected (thin line). b) in the loop algorithm for gtiam spins two or fours spins on a shaded
plaguette must be connected.
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FIGURE 5. A loop cluster update: a) world line configuration before tipelate, where the world line
of a particle (or up-spin in a magnetic model) is drawn as ekthine and that of a hole (down-spin) as a
thin line; b) world line configuration and a loop cluster (gtme); c) the world line configurations after
all spins along the loop have been flipped.

length of the system, updates are performed on physicdiyast length scales and
autocorrelation times are substantially reduced.

Upon applying the same idea to world lines in QMC we have te tako account
that (in systems with particle number or magnetization eoretion) the world lines
may not be broken. This implies that a single spin on a pldagquzannot be flipped
by itself, but at least two, or all four spins must be flippedomder to create valid
updates of the world line configurations. Instead of the tessibilities “connected” or
“disconnected”, four connections are possible on a plaguas shown in Fig. 4b): either
horizontal neighbors, vertical neighbors, diagonal neayk or all four spins might be
flipped together. The specific choices and probabilitieseddp like in the classical
algorithm, on details of the model and the world line confegiom. Since each spin
is connected to two (or four) other spins, the cluster hasop-like shape (or a set of
connected loops), which is the origin of the name “loop athon” and is illustrated in
Fig. 5.

While the loop algorithm was originally developed only fax-sertex and spin-1/2
models [4] it has been generalized to higher spin models g#¥otropic spin models
[25], Hubbard [26] and-J models [27].

Applications of the loop algorithm

Out of the large number of applications of the loop algorithewant to mention only
a few which highlight the advances made possible by the dpuweént of this algorithm
and refer to Ref. [23] for a more complete overview.

» The first application of the discrete and continuous timelatgorithms [28, 5]
were high accuracy simulations of the ground state parasseté the square lattice
Heisenberg antiferromagnet, establishing beyond any tdebexistence of Néel
order even for spils=1/2.

+ The exponential divergence of the correlation length instume system could be
studied on much larger systems with up to one million spi®s 89, 31] and with
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much higher accuracy than in previous simulations [17]estigating not only the
leading exponential behavior but also higher order cooast

« For quantum phase transitions in two-dimensional quant@msethberg antiferro-
magnets, simulations using local updates had been resttictsmall systems with
up to 200 spins at not too low temperatures and had givenaaiotmg results
regarding the universality class of the phase transiti@2s 83]. The loop algo-
rithm enabled simulations on up to one hundred times larggtems at ten times
lower temperatures, allowing the accurate determinatfagheocritical behavior at
guantum phase transitions [34, 35].

« Similarly, in the two-dimensional quantuXY model the loop algorithm allowed
accurate simulations of the Kosterlitz-Thouless phasesttian [36], again improv-
ing on results obtained using local updates [37].

« In SU(4) square lattice antiferromagnets, the loop algaritould clarify that a
spin liquid state thought to be present based on data obtaisiag local update
algorithms on small lattices [38] is actually Néel order8f][

+ A generalization, which allows to study infinite systems e tabsence of long
range order, was invented [40].

« The meron cluster algorithm, an algorithm based on the légqrithm, solves the
negative sign problem in some special systems [41].

WORM AND DIRECTED LOOP ALGORITHMS

Problems of the loop algorithm in a magnetic field

As successful as the loop algorithm is, it is restricted -hasclassical cluster algo-
rithms — to models with spin inversion symmetry (or partictde symmetry). Terms in
the Hamiltonian which break this spin-inversion symmetrsueh as a magnetic field
in a spin model or a chemical potential in a particle modele-raot taken into account
during loop construction. Instead they enter through tlepiance rate of the loop flip,
which can be exponentially small at low temperatures.

As an example consider tw®= 1/2 quantum spins in a magnetic field:

H=18%—h(S+ ) 9)

In a fieldh = J the singlet state &/2(] 1]) —| 1)) with energy—3/4J is degenerate
with the triplet statel 11) with energy ¥4J —h = —3/4J, but he loop algorithm is
exponentially inefficient at low temperatures. As illustichin Fig. 6a), we start from the
triplet state| 1) and propose a loop shown in Fig. 6b). The loop constructidesru
which do not take into account the magnetic field, proposeipodihe of the spins
and go to the intermediate configuratipfi]) with energy—1/4J shown in Fig. 6c).
This move costs potential enerdy2 and thus has aexponentially small acceptance
rate exp(—BJ/2). Once we accept this move, immediately many small loops aite b
exchanging the spins on the two sites, and gaining exchareggyl/2 by going to the
spin singlet state. A typical world line configuration foetkinglet is shown in Fig. 6d).
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FIGURE6. A loop update for two antiferromagnetically coupled spima magnetic field witd = h. a)
Starting from the triplet configuratidri 1), b) a loop is constructed, proposing to go to c), the inteiated
configuration 1), which has an exponentially small acceptance rate, andyfimé configurations like

d) which represent the singlet statévi2(] 71) — | | 1)). As in the previous figure a thick line denotes an
up-spin and a thin line a down-spin.

The reverse move has the same exponentially small protyakilice the probability to
reach a world line configuration without any exchange terig.[6c)] from a spin singlet
configuration [Fig. 6d)] is exponentially small.

This example clearly illustrates the reason for the exptiakslowdown: in a first
step welose all potential energybeforegaining it back in exchange energk faster
algorithm could thus be built if, instead of doing the tradeone big step, we could
trade potential with exchange energy in small pieces, wisigxactly what the worm
algorithm does.

The Worm Algorithm

The worm algorithm [8] works in an extended configurationcgpavhere in addition
to closed world line configurations one open world line fragn(the “worm”) is
allowed. Formally this is done by adding a source term to thenHtonian which for

a spin model is
Hworm:H—rIZ(SL"‘ST)- (10)

This source term allows world lines to be broken with a magiement proportional to

n. The worm algorithm now proceeds as follows: a worm (i.e. daviine fragment) is
created by inserting a pai§", §") of operators at nearby times, as shown in Fig. 7a,b).
The ends of this worm are then moved randomly in space andfime7c)], using local
Metropolis or heat bath updates until the two ends of the woreet again as in Fig.
7d). Then an update which removes the worm is proposed, autépted we are back
in a configuration with closed world lines only, as shown ig.Ffe). This algorithm

is straightforward, consisting just of local updates of @&m ends in the extended
configuration space but it can perform nonlocal changes. Awend can wind around
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FIGURE 7. A worm update for two antiferromagnetically coupled spimaimagnetic field witld = h.

a) starting from the triplet configuratidri 1) a worm is constructed in b) by inserting a pairSfandS-
operators. c) these “worm end” operators are then movedday igpdates until d) they meet again, when
a move to remove them is proposed, which leads to the closéd liree configuration e). As in the two
previous figures a thick line denotes an up-spin and a thindidown-spin.

the lattice in the temporal or spatial direction and that wlagnge the magnetization and
winding number.

In contrast to the loop algorithm in a magnetic field, wheeetthde between potential
and exchange energy is done by first losing all of the poteatiargy, before gaining
back the exchange energy, the worm algorithm performs thgetin small pieces,
never suffering from an exponentially small acceptanceébaldity. While not being
as efficient as the loop algorithm in zero magnetic field (tleervmovement follows
a random walk while the loop algorithm can be interpreted aslfavoiding random
walk), the big advantage of the worm algorithm is that it reme&fficient in the presence
of a magnetic field.

A similar algorithm was already proposed more than a decadiee[42]. Instead of
a random walk using fulfilling detailed balance at every mo¥the worm head in this
earlier algorithm just performed a random walk. Td@osterioriacceptance rates are
then often very small and the algorithm is not efficient, psthe small acceptance rates
for loop updates in magnetic fields make the loop algorithetficient. This highlights
the importance of having the cluster-building rules of a-tmral update algorithm
closely tied to the physics of the problem.

The Directed Loop Algorithm

Algorithms with a similar basic idea are the operator-lopplate [9, 10] in the SSE
formulation and the directed-loop algorithms [11] whicmdae formulated in both
an SSE and a world-line representation. Like the worm dllgorj these algorithms
create two world line discontinuities, and move them arobgdocal updates. The
main difference to the worm algorithm is that here these mmrgs do not follow an
unbiased random walk but have a preferred direction, alirgirsg to move away from
the last change. The directed loop algorithms might thusdre refficient than the worm
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algorithm but no direct comparison has been performed s&amore details see the
contribution of A.W. Sandvik in this volume.

Applications

Just as the loop algorithm enabled a break-through in thelation of quantum mag-
nets in zero magnetic field, the worm and directed loop allgas allowed simulations
of bosonic systems with better efficiency and accuracy. Adeamples include:

» Simulations of quantum phase transitions in soft-core bigssystems, both for
uniform models [8] and in magnetic traps [43].

« By being able to simulate substantially larger lattticemntlvy local updates [44]
the existence of supersolids in hard-core boson models Veaied [45] and
the ground-state [45, 46] and finite-temperature phaserahag [47] of two-
dimensional hard-core boson models have been determined.

« Magnetization curves of quantum magnets have been caciLiié8].

FLAT HISTOGRAMS AND FIRST ORDER PHASE TRANSITIONS

The main problem during the simulation of a first order phasedition is the exponen-
tially slow tunneling time between the two coexisting plsageor classical simulations
the multi-canonical algorithm [49] and recently the Wargadau algorithm [50] eases
this tunneling by reweighting configurations such as to edhia “flat histogram” in
energy space. In a canonical simulation the probabilityisting an energy levek is
p(E)p(E) O p(E)exp(—BE) where the density of statggE) is the number of states
with energyE. While the multi-canonical algorithm [49] changes the aainal distri-
bution p(E) by reweighting it in an energy-dependent way, the algorithyntwWang and
Landau discards the notion of temperature and directly theedensity of states to set
p(E) O1/p(E), which gives a constant probability in energy spa¢g)p(E) = const.
The unknown quantity(E) is determined self-consistently in an iterative way anahthe
allows to directly calculate the free energy

F= —kBTIan(E)exp(—BE) (11)

and other thermodynamic quantities at any temperaturenigie change to a simulation
program using a canonical distribution is to replace theonaral probabilityp(E) =
exp(—BE) by the inverse density of state$E) = 1/p(E).

This algorithm cannot be straightforwardly used for quamtsystems, since the
density of statep(E) is not directly accessible for those. Instead we recentippsed
[12] to start from the SSE formulation of the partition fuioct Eq. (8):

F = —ksTInTrexp(—BH) = —kgTIn iﬁ—?Tr(—H)”
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The coefficieng(n) of then-th order term in an expansion in the inverse tempergBure
now plays the role of the density of stajg&E) in the classical algorithm. Similar to the
classical algorithm, by using/tj(n) as the probability of a configuration instead of the
usual SSE weight, a flat histogram in the ordef the series is achieved. Alternatively
instead of such a high-temperature expansion a finite-teatyre perturbation series
can be formulated [12].

This algorithm was shown to be effective at first order phasesitions in quantum
systems and promises to be effective also for the simulatiggmantum spin glasses.

WHICH ALGORITHM IS THE BEST?

Since there is no “best algorithm” suitable for all problenesconclude with a guide on
how to pick the best algorithm for a particular problem.

« For models with particle-hole or spin-inversion symmetryoap algorithm is
optimal [4, 5, 9]. Usually an SSE representation [9] will befprred unless the
action is time-dependent (such as long-range in time iotenas in a dissipative
guantum system) or there are large diagonal terms, in whisle @ world line
representation is better.

« For models without particle hole symmetry a worm or diredtmsup algorithm is
the best choice:

— if the Hamiltonian is diagonally dominant use a worm [8] aredited loop [11]
algorithm in a world line representation.
— otherwise ause directed-loop algorithm in an SSE reprasent [9, 10, 11].

« At first order phase transition a generalization of Wangdansampling to quan-
tum systems should be used [12].

The source code for some of these algorithms is availabldennternet. Sandvik
has published a FORTRAN version of an SSE algorithm for quantagnets [51].
The ALPS @Algorithms and. ibaries forPhysicsSimulations) project is an open-source
effort to provide libraries and application frameworks &assical and quantum lattice
models as well as C++ implementations of the loop, worm arettid-loop algorithms
[52].
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