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I. TWO-BODY INTERACTION
A. Relative coordinates

The general Hamiltonian for two-body interactions is given as follows,

H = —h—2V2 - h—QVZ + V(r; — ). (1)
2M, Tt 2My, ™2
If we define the center-of-mass coordinates R and the relative coordinates r as
:M7 r=r; —r, (2)
My + M,
the Hamiltonian can be transformed into
2 2
H= _;WV%‘ — S—Mvi +V(r), (3)

where M = M; + M, is the total mass, and pu = M;Ms/(M; + Ms) is the reduced mass. In

this way, we can express the wave function of the two particles as

w(rlv r2) = ¢com(R>¢rel(r)~ (4)

Notice that the two-body interaction term only affects 1. (r), so we reduce the two-body

problem to an effective one-body problem in relative coordinates.

B. Partial wave expansion

The two-body Schrodinger equation in the relative coordinates is given as follows,
2

@(VZ +E)Y(r) = V(r)(r), ()

where k% = 2uF /h?, and for simplicity we assume V (r) is a central and finite-range potential
which is non-zero in the regime r < ry. Using the partial wave expansion, we can expand

the wave function ¢ (r) as

(1) = 3 B (1) Vi (6, 6). (6)



Plugging Eq. (6) into Eq. (5) outside the range of the potential (r > ry), we get the
following differential equation for the radial part of the wave function,

li(ﬁd}ﬂ) 4 <k2_ l(Hl))le:o. (7)

rZdr dr r2

The general solution of Eq. (7) is given by
Ry (r) = Aimji(kr) + B (kr), (8)

where j;(r) and n;(r) are the spherical Bessel functions. The asymptotic behavior of Ry,,(r)

for kr — oo is given by
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Ry (1) — . {Alm sin (k‘r — 5) — By, cos (k‘r — 3)} o o sin (kzr — 5 + (51) (9)

where ¢; is defined as the scattering phase shift of the [-partial wave, which depends on the

finite range potential V(7). In terms of phase shift ¢;, we can rewrite Ry, (r) as follows,
Ry (1) = Cingi(kr) — tan oy ny(kr)] (1 > 7). (10)

In the following discussions, we called the wave function in the regime r > ry as ¥~ (r).

II. HUANG-YANG PSEUDOPOTENTIAL
A. Derivation of pseudopotential

The idea of Huang-Yang pseudopotential is to replace the potential V' (r) by a contact
potential V,s(r), which acts only at r = 0 and gives the same wave function v~ (r) outside
the range of the potential at the low-energy threshold (k — 0). Notice that the asymptotic

behavior of Ry, (r) for kr — 0 is given by

Ry (kr) — Cip [ (kr)’ + tan 51@] ’ (11)

20+ 1)1 (k)1

the Huang-Yang pseudopotential V,,,(r) can be constructed as
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Using the fact that

V3(r!) = r, (13)
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we have
h? (20 + 1)!T6(r)
‘/ps(r>w><r) - _@ Zolm tan 6lwmiflm(e7¢)a (15>
lm
where §(r) = 47r?0(r). Based on Eq. (11), we can also express Cj,, as follows,
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Plugging Eq. (16) into Eq. (15), we have
R2a2 (20 4+ 1)1 6(r) N L .
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where we define the scattering length for the [-partial wave as
o4l .. tand
CLZ = —k_r>r[1) W (18)
B. Pseudopotential in momentum space
Consider the plane wave basis,
(rlk) = e (19)
rlkk) = —e"™7",
VvV

and



we have
h? 2l+1 (2l+ 1)”
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Using the fact that
o = dm Y il ju(kr) Yoy, (k) Yon (7), (22)
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which gives
SR> L e .
(k[Vis|K') = v @' (k) K'Y (K) Yo (F) (25)
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Recall the addition theorem for spherical harmonics,
A~ A 41 ~ ~
where P(z) is the Legendre polynomial, we have
/ 2h°T A+ GNP (1. 1)
(k|ValK') = == > (20 + 1)ai ™ (K)'K Pulk - ). (27)
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For s-wave (I = 0), we have
, 2h%T

(Vi) = = (28)

For p-wave (I = 1), we have
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III. MANY-BODY HAMILTONIAN

It’s convenient to express the many-body Hamiltonian for identical particles (u = m/2)

in the second quantized form as follows,

H=Hy,+ H;,
Hy = Z/d?’er [ Vz] Ya(r), (30)
z [ iy )0 r2) G 1~ ra) () ),

in which V%% (r;—r5) is the pseudopotential for two-body interaction, e, 3 denote the internal
levels of the particles, and we use aqg (b55) to denote the s-wave scattering length (p-wave

scattering volume) between particles in internal level « and f.

In momentum space, the field operator can be expressed as

1 ik-r
Yo(r) = N zk:e ko, (31)

so the interaction term can be written as
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where R = (r; + r2)/2, and r = r; —rs.
For s-wave interaction, plug in Eq. (28), we have
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For p-wave interaction, plug in Eq. (29), we have
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In the derivation of s-wave and p-wave interaction above, we implicitly assume the field
operators 1,(r) and 9] (r) have regular spatial profile, so we do not need to include the
regularization operators.

Now we use the two-component Fermi gas (internal levels |g),|e)) as an example to
illustrate the s-wave and p-wave interaction. Since the total wave function for two fermionic
atoms is antisymmetric, the spatial wave function related to spin state (|ge) — |eg))/v/2 is
symmetric (s-wave interaction with scattering length a.,), while the spatial wave functions
related to spin states |gg), (|ge) + |eg))/v/2, |ee) are antisymmetric (p-wave interaction with
scattering volume b3 , b3 b3 respectively). So the two-body interaction term H; takes the

gg’ “eg’ “ee

following form,

=1 [ e e )
3whb3 (35)
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