Corrected Huang-Yang pseudopotential for partial waves

Anjun Chu

(Dated: May 5, 2021)

I. TWO-BODY INTERACTION

A. Relative coordinates

The general Hamiltonian for two-body interactions is given as follows,

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 M_{1}} \nabla_{\mathbf{r}_{1}}^{2}-\frac{\hbar^{2}}{2 M_{2}} \nabla_{\mathbf{r}_{2}}^{2}+V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \tag{1}
\end{equation*}
$$

If we define the center-of-mass coordinates \mathbf{R} and the relative coordinates \mathbf{r} as

$$
\begin{equation*}
\mathbf{R}=\frac{M_{1} \mathbf{r}_{1}+M_{2} \mathbf{r}_{2}}{M_{1}+M_{2}}, \quad \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}, \tag{2}
\end{equation*}
$$

the Hamiltonian can be transformed into

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+V(\mathbf{r}) \tag{3}
\end{equation*}
$$

where $M=M_{1}+M_{2}$ is the total mass, and $\mu=M_{1} M_{2} /\left(M_{1}+M_{2}\right)$ is the reduced mass. In this way, we can express the wave function of the two particles as

$$
\begin{equation*}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{\mathrm{com}}(\mathbf{R}) \psi_{\mathrm{rel}}(\mathbf{r}) . \tag{4}
\end{equation*}
$$

Notice that the two-body interaction term only affects $\psi_{\text {rel }}(\mathbf{r})$, so we reduce the two-body problem to an effective one-body problem in relative coordinates.

B. Partial wave expansion

The two-body Schrödinger equation in the relative coordinates is given as follows,

$$
\begin{equation*}
\frac{\hbar^{2}}{2 \mu}\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{r})=V(r) \psi(\mathbf{r}) \tag{5}
\end{equation*}
$$

where $k^{2}=2 \mu E / \hbar^{2}$, and for simplicity we assume $V(r)$ is a central and finite-range potential which is non-zero in the regime $r<r_{0}$. Using the partial wave expansion, we can expand the wave function $\psi(\mathbf{r})$ as

$$
\begin{equation*}
\psi(\mathbf{r})=\sum_{l m} R_{l m}(r) Y_{l m}(\theta, \phi) \tag{6}
\end{equation*}
$$

Plugging Eq. (6) into Eq. (5) outside the range of the potential $\left(r>r_{0}\right)$, we get the following differential equation for the radial part of the wave function,

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} R_{l m}}{\mathrm{~d} r}\right)+\left(k^{2}-\frac{l(l+1)}{r^{2}}\right) R_{l m}=0 . \tag{7}
\end{equation*}
$$

The general solution of Eq. (7) is given by

$$
\begin{equation*}
R_{l m}(r)=A_{l m} j_{l}(k r)+B_{l m} n_{l}(k r), \tag{8}
\end{equation*}
$$

where $j_{l}(r)$ and $n_{l}(r)$ are the spherical Bessel functions. The asymptotic behavior of $R_{l m}(r)$ for $k r \rightarrow \infty$ is given by

$$
\begin{equation*}
R_{l m}(r) \rightarrow \frac{1}{k r}\left[A_{l m} \sin \left(k r-\frac{l \pi}{2}\right)-B_{l m} \cos \left(k r-\frac{l \pi}{2}\right)\right] \propto \frac{1}{k r} \sin \left(k r-\frac{l \pi}{2}+\delta_{l}\right) \tag{9}
\end{equation*}
$$

where δ_{l} is defined as the scattering phase shift of the l-partial wave, which depends on the finite range potential $V(r)$. In terms of phase shift δ_{l}, we can rewrite $R_{l m}(r)$ as follows,

$$
\begin{equation*}
R_{l m}(r)=C_{l m}\left[j_{l}(k r)-\tan \delta_{l} n_{l}(k r)\right] \quad\left(r>r_{0}\right) \tag{10}
\end{equation*}
$$

In the following discussions, we called the wave function in the regime $r>r_{0}$ as $\psi_{>}(\mathbf{r})$.

II. HUANG-YANG PSEUDOPOTENTIAL

A. Derivation of pseudopotential

The idea of Huang-Yang pseudopotential is to replace the potential $V(r)$ by a contact potential $V_{p s}(\mathbf{r})$, which acts only at $\mathbf{r}=0$ and gives the same wave function $\psi_{>}(\mathbf{r})$ outside the range of the potential at the low-energy threshold $(k \rightarrow 0)$. Notice that the asymptotic behavior of $R_{l m}(r)$ for $k r \rightarrow 0$ is given by

$$
\begin{equation*}
R_{l m}(k r) \rightarrow C_{l m}\left[\frac{(k r)^{l}}{(2 l+1)!!}+\tan \delta_{l} \frac{(2 l-1)!!}{(k r)^{l+1}}\right] \tag{11}
\end{equation*}
$$

the Huang-Yang pseudopotential $V_{p s}(\mathbf{r})$ can be constructed as

$$
\begin{align*}
V_{p s}(\mathbf{r}) \psi_{>}(\mathbf{r}) & =\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi_{>}(k r \rightarrow 0) \\
& =\frac{\hbar^{2}}{2 \mu} \sum_{l m} C_{l m} Y_{l m}(\theta, \phi)\left(\nabla^{2}-\frac{l(l+1)}{r^{2}}\right)\left[\frac{(k r)^{l}}{(2 l+1)!!}+\tan \delta_{l} \frac{(2 l-1)!!}{(k r)^{l+1}}\right] . \tag{12}
\end{align*}
$$

Using the fact that

$$
\begin{align*}
& \nabla^{2}\left(r^{l}\right)=\frac{l(l+1)}{r^{2}} r^{l}, \tag{13}\\
&\left(\nabla^{2}-\frac{l(l+1)}{r^{2}}\right) \frac{1}{r^{l+1}}=\frac{1}{r^{l}}\left[r^{l} \nabla^{2}\left(\frac{1}{r^{l+1}}\right)-\frac{1}{r^{l+1}} \nabla^{2}\left(r^{l}\right)\right] \\
&=\frac{1}{r^{l}} \nabla \cdot\left[r^{l} \nabla\left(\frac{1}{r^{l+1}}\right)-\frac{1}{r^{l+1}} \nabla\left(r^{l}\right)\right] \tag{14}\\
&=-\frac{2 l+1}{r^{l}} \nabla \cdot\left(\frac{\hat{r}}{r^{2}}\right) \\
&=-\frac{2 l+1}{r^{l}} 4 \pi \delta(\mathbf{r}),
\end{align*}
$$

we have

$$
\begin{equation*}
V_{p s}(\mathbf{r}) \psi_{>}(\mathbf{r})=-\frac{\hbar^{2}}{2 \mu} \sum_{l m} C_{l m} \tan \delta_{l} \frac{(2 l+1)!!}{k^{l+1}} \frac{\delta(r)}{r^{l+2}} Y_{l m}(\theta, \phi), \tag{15}
\end{equation*}
$$

where $\delta(r)=4 \pi r^{2} \delta(\mathbf{r})$. Based on Eq. (11), we can also express $C_{l m}$ as follows,

$$
\begin{align*}
C_{l m} & =\left.\frac{1}{k^{l}(2 l)!!}\left[\left(\frac{\mathrm{d}}{\mathrm{~d} r}\right)^{2 l+1} r^{l+1} R_{l m}(k r)\right]\right|_{r=0} \\
& =\left.\frac{1}{k^{l}(2 l)!!}\left[\left(\frac{\partial}{\partial r}\right)^{2 l+1} r^{l+1} \int \mathrm{~d} \Omega Y_{l m}^{*}(\Omega) \psi_{>}(\mathbf{r})\right]\right|_{r=0} \tag{16}
\end{align*}
$$

Plugging Eq. (16) into Eq. (15), we have

$$
\begin{equation*}
V_{p s}(\mathbf{r}) \psi_{>}(\mathbf{r})=\left.\sum_{l m} \frac{\hbar^{2} a_{l}^{2 l+1}}{2 \mu} \frac{(2 l+1)!!}{(2 l)!!} \frac{\delta(r)}{r^{l+2}} Y_{l m}(\theta, \phi)\left[\left(\frac{\partial}{\partial r}\right)^{2 l+1} r^{l+1} \int \mathrm{~d} \Omega Y_{l m}^{*}(\Omega) \psi_{>}(\mathbf{r})\right]\right|_{r=0}, \tag{17}
\end{equation*}
$$

where we define the scattering length for the l-partial wave as

$$
\begin{equation*}
a_{l}^{2 l+1}=-\lim _{k \rightarrow 0} \frac{\tan \delta_{l}}{k^{2 l+1}} \tag{18}
\end{equation*}
$$

B. Pseudopotential in momentum space

Consider the plane wave basis,

$$
\begin{equation*}
\langle\mathbf{r} \mid \mathbf{k}\rangle=\frac{1}{\sqrt{V}} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\mathbf{k}| V_{p s}\left|\mathbf{k}^{\prime}\right\rangle=\frac{1}{V} \int \mathrm{~d}^{3} \mathbf{r} \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} V_{p s}(\mathbf{r}) \mathrm{e}^{i \mathbf{k}^{\prime} \cdot \mathbf{r}} \tag{20}
\end{equation*}
$$

we have

$$
\begin{align*}
\langle\mathbf{k}| V_{p s}\left|\mathbf{k}^{\prime}\right\rangle & =\sum_{l m} \frac{\hbar^{2} a_{l}^{2 l+1}}{2 \mu V} \frac{(2 l+1)!!}{(2 l)!!}\left[\int \mathrm{d}^{3} \mathbf{r} \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} \frac{\delta(r)}{r^{l+2}} Y_{l m}(\theta, \phi)\right] \tag{21}\\
& \times\left.\left[\left(\frac{\partial}{\partial r}\right)^{2 l+1} r^{l+1} \int \mathrm{~d} \Omega Y_{l m}^{*}(\Omega) \mathrm{e}^{i \mathbf{k}^{\prime} \cdot \mathbf{r}}\right]\right|_{r=0} .
\end{align*}
$$

Using the fact that

$$
\begin{equation*}
\mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}}=4 \pi \sum_{l m} i^{l} j_{l}(k r) Y_{l m}^{*}(\hat{k}) Y_{l m}(\hat{r}), \tag{22}
\end{equation*}
$$

we have

$$
\begin{align*}
\int \mathrm{d}^{3} \mathbf{r} \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} \frac{\delta(r)}{r^{l+2}} Y_{l m}(\theta, \phi) & =4 \pi \sum_{l^{\prime} m^{\prime}}(-i)^{l^{\prime}} Y_{l^{\prime} m^{\prime}}(\hat{k}) \int r^{2} \mathrm{~d} r j_{l^{\prime}}(k r) \frac{\delta(r)}{r^{l+2}} \cdot \int \mathrm{~d} \Omega Y_{l^{\prime} m^{\prime}}^{*} Y_{l m} \\
& =4 \pi(-i)^{l} Y_{l m}(\hat{k}) \int r^{2} \mathrm{~d} r j_{l}(k r) \frac{\delta(r)}{r^{l+2}} \tag{23}\\
& =\frac{4 \pi(-i)^{l} Y_{l m}(\hat{k}) k^{l}}{(2 l+1)!!}
\end{align*}
$$

$$
\begin{align*}
{\left.\left[\left(\frac{\partial}{\partial r}\right)^{2 l+1} r^{l+1} \int \mathrm{~d} \Omega Y_{l m}^{*}(\Omega) \mathrm{e}^{i \mathbf{k}^{\prime} \cdot \mathbf{r}}\right]\right|_{r=0} } & =\left.4 \pi \sum_{l^{\prime} m^{\prime}} i^{l^{\prime}} Y_{l^{\prime} m^{\prime}}^{*}\left(\hat{k}^{\prime}\right)\left[\left(\frac{\partial}{\partial r}\right)^{2 l+1} r^{l+1} j_{l^{\prime}}\left(k^{\prime} r\right) \int \mathrm{d} \Omega Y_{l m}^{*} Y_{l^{\prime} m^{\prime}}\right]\right|_{r=0} \\
& =\left.4 \pi i^{l} Y_{l m}^{*}\left(\hat{k}^{\prime}\right)\left[\left(\frac{\partial}{\partial r}\right)^{2 l+1} r^{l+1} j_{l}\left(k^{\prime} r\right)\right]\right|_{r=0} \\
& =4 \pi i^{l} Y_{l m}^{*}\left(\hat{k}^{\prime}\right)\left(k^{\prime}\right)^{l}(2 l)!! \tag{24}
\end{align*}
$$

which gives

$$
\begin{equation*}
\langle\mathbf{k}| V_{p s}\left|\mathbf{k}^{\prime}\right\rangle=\frac{8 \hbar^{2} \pi^{2}}{\mu V} \sum_{l m} a_{l}^{2 l+1}\left(k^{\prime}\right)^{l} k^{l} Y_{l m}^{*}\left(\hat{k}^{\prime}\right) Y_{l m}(\hat{k}) . \tag{25}
\end{equation*}
$$

Recall the addition theorem for spherical harmonics,

$$
\begin{equation*}
P_{l}\left(\hat{k} \cdot \hat{k}^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m} Y_{l m}(\hat{k}) Y_{l m}^{*}\left(\hat{k}^{\prime}\right), \tag{26}
\end{equation*}
$$

where $P_{l}(x)$ is the Legendre polynomial, we have

$$
\begin{equation*}
\langle\mathbf{k}| V_{p s}\left|\mathbf{k}^{\prime}\right\rangle=\frac{2 \hbar^{2} \pi}{\mu V} \sum_{l}(2 l+1) a_{l}^{2 l+1}\left(k^{\prime}\right)^{l} k^{l} P_{l}\left(\hat{k} \cdot \hat{k}^{\prime}\right) . \tag{27}
\end{equation*}
$$

For s-wave $(l=0)$, we have

$$
\begin{equation*}
\langle\mathbf{k}| V_{p s}\left|\mathbf{k}^{\prime}\right\rangle=\frac{2 \hbar^{2} \pi}{\mu V} a_{0} \tag{28}
\end{equation*}
$$

For p -wave $(l=1)$, we have

$$
\begin{equation*}
\langle\mathbf{k}| V_{p s}\left|\mathbf{k}^{\prime}\right\rangle=\frac{6 \hbar^{2} \pi}{\mu V} a_{1}^{3}\left(\mathbf{k} \cdot \mathbf{k}^{\prime}\right) \tag{29}
\end{equation*}
$$

III. MANY-BODY HAMILTONIAN

It's convenient to express the many-body Hamiltonian for identical particles ($\mu=m / 2$) in the second quantized form as follows,

$$
\begin{gather*}
H=H_{0}+H_{1} \\
H_{0}=\sum_{\alpha} \int \mathrm{d}^{3} \mathbf{r} \psi_{\alpha}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}\right] \psi_{\alpha}(\mathbf{r}), \tag{30}\\
H_{1}=\frac{1}{2} \sum_{\alpha \beta} \int \mathrm{d}^{3} \mathbf{r}_{1} \mathrm{~d}^{3} \mathbf{r}_{2} \psi_{\alpha}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{\beta}^{\dagger}\left(\mathbf{r}_{2}\right) V_{p s}^{\alpha \beta}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{\beta}\left(\mathbf{r}_{2}\right) \psi_{\alpha}\left(\mathbf{r}_{1}\right),
\end{gather*}
$$

in which $V_{p s}^{\alpha \beta}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)$ is the pseudopotential for two-body interaction, α, β denote the internal levels of the particles, and we use $a_{\alpha \beta}\left(b_{\alpha \beta}^{3}\right)$ to denote the s-wave scattering length (p-wave scattering volume) between particles in internal level α and β.

In momentum space, the field operator can be expressed as

$$
\begin{equation*}
\psi_{\alpha}(\mathbf{r})=\frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} a_{\mathbf{k} \alpha} \tag{31}
\end{equation*}
$$

so the interaction term can be written as

$$
\begin{align*}
H_{1} & =\frac{1}{2 V^{2}} \sum_{\alpha \beta} \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} a_{\mathbf{k}_{1} \alpha}^{\dagger} a_{\mathbf{k}_{2} \beta}^{\dagger} a_{\mathbf{k}_{3} \beta} a_{\mathbf{k}_{4} \alpha} \int \mathrm{~d}^{3} \mathbf{r}_{1} \mathrm{~d}^{3} \mathbf{r}_{2} \mathrm{e}^{-i \mathbf{k}_{1} \cdot \mathbf{r}_{1}} \mathrm{e}^{-i \mathbf{k}_{2} \cdot \mathbf{r}_{2}} V_{p s}^{\alpha \beta}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \mathrm{e}^{i \mathbf{k}_{3} \cdot \mathbf{r}_{2}} \mathrm{e}^{i \mathbf{k}_{4} \cdot \mathbf{r}_{1}} \\
& =\frac{1}{2 V^{2}} \sum_{\alpha \beta} \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} a_{\mathbf{k}_{1} \alpha}^{\dagger} a_{\mathbf{k}_{2} \beta}^{\dagger} a_{\mathbf{k}_{3} \beta} a_{\mathbf{k}_{4} \alpha} \int \mathrm{~d}^{3} \mathbf{R} \mathrm{e}^{-i\left(\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3}-\mathbf{k}_{4}\right) \cdot \mathbf{R}} \int \mathrm{d}^{3} \mathbf{r} \mathrm{e}^{-i \frac{\mathbf{k}_{1}-\mathbf{k}_{2}}{2} \cdot \mathbf{r}} V_{p s}^{\alpha \beta}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \mathrm{e}^{i \frac{\mathbf{k}_{4}-\mathbf{k}_{3}}{2} \cdot \mathbf{r}} \\
& =\frac{1}{2} \sum_{\alpha \beta} \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} a_{\mathbf{k}_{1} \alpha}^{\dagger} a_{\mathbf{k}_{2} \beta}^{\dagger} a_{\mathbf{k}_{3} \beta} a_{\mathbf{k}_{4} \alpha}\left\langle\frac{\mathbf{k}_{1}-\mathbf{k}_{2}}{2}\right| V_{p s}^{\alpha \beta}\left|\frac{\mathbf{k}_{4}-\mathbf{k}_{3}}{2}\right\rangle \delta_{\mathbf{k}_{1}+\mathbf{k}_{2}, \mathbf{k}_{3}+\mathbf{k}_{4}}, \tag{32}
\end{align*}
$$

where $\mathbf{R}=\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right) / 2$, and $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$.
For s-wave interaction, plug in Eq. (28), we have

$$
\begin{align*}
H_{1} & =\frac{1}{2} \sum_{\alpha \beta} \frac{4 \pi \hbar^{2} a_{\alpha \beta}}{m V} \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} a_{\mathbf{k}_{1} \alpha}^{\dagger} a_{\mathbf{k}_{2} \beta}^{\dagger} a_{\mathbf{k}_{3} \beta} a_{\mathbf{k}_{4} \alpha} \delta_{\mathbf{k}_{1}+\mathbf{k}_{2}, \mathbf{k}_{3}+\mathbf{k}_{4}} \\
& =\frac{1}{2} \sum_{\alpha \beta} \frac{4 \pi \hbar^{2} a_{\alpha \beta}}{m V^{2}} \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} a_{\mathbf{k}_{1} \alpha}^{\dagger} a_{\mathbf{k}_{2} \beta}^{\dagger} a_{\mathbf{k}_{3} \beta} a_{\mathbf{k}_{4} \alpha} \int \mathrm{~d}^{3} \mathbf{r} \mathrm{e}^{-i\left(\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3}-\mathbf{k}_{4}\right) \cdot \mathbf{r}} \tag{33}\\
& =\frac{1}{2} \sum_{\alpha \beta} \frac{4 \pi \hbar^{2} a_{\alpha \beta}}{m} \int \mathrm{~d}^{3} \mathbf{r} \psi_{\alpha}^{\dagger}(\mathbf{r}) \psi_{\beta}^{\dagger}(\mathbf{r}) \psi_{\beta}(\mathbf{r}) \psi_{\alpha}(\mathbf{r})
\end{align*}
$$

For p-wave interaction, plug in Eq. (29), we have

$$
\begin{align*}
H_{1} & =\frac{1}{2} \sum_{\alpha \beta} \frac{3 \pi \hbar^{2} b_{\alpha \beta}^{3}}{m V} \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} a_{\mathbf{k}_{1} \alpha}^{\dagger} a_{\mathbf{k}_{2} \beta}^{\dagger} a_{\mathbf{k}_{3} \beta} a_{\mathbf{k}_{4} \alpha}\left[\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) \cdot\left(\mathbf{k}_{4}-\mathbf{k}_{3}\right)\right] \delta_{\mathbf{k}_{1}+\mathbf{k}_{2}, \mathbf{k}_{3}+\mathbf{k}_{4}} \\
& =\frac{1}{2} \sum_{\alpha \beta} \frac{3 \pi \hbar^{2} b_{\alpha \beta}^{3}}{m V^{2}} \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} a_{\mathbf{k}_{1} \alpha}^{\dagger} a_{\mathbf{k}_{2} \beta}^{\dagger} a_{\mathbf{k}_{3} \beta} a_{\mathbf{k}_{4} \alpha} \int \mathrm{~d}^{3} \mathbf{r}\left[\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) \cdot\left(\mathbf{k}_{4}-\mathbf{k}_{3}\right)\right] \mathrm{e}^{-i\left(\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3}-\mathbf{k}_{4}\right) \cdot \mathbf{r}} \\
& =\frac{1}{2} \sum_{\alpha \beta} \frac{3 \pi \hbar^{2} b_{\alpha \beta}^{3}}{m} \int \mathrm{~d}^{3} \mathbf{r}\left[\left(\nabla \psi_{\alpha}^{\dagger}\right) \psi_{\beta}^{\dagger}-\psi_{\alpha}^{\dagger}\left(\nabla \psi_{\beta}^{\dagger}\right)\right] \cdot\left[\psi_{\beta}\left(\nabla \psi_{\alpha}\right)-\left(\nabla \psi_{\beta}\right) \psi_{\alpha}\right] \tag{34}
\end{align*}
$$

In the derivation of s-wave and p-wave interaction above, we implicitly assume the field operators $\psi_{\alpha}(\mathbf{r})$ and $\psi_{\alpha}^{\dagger}(\mathbf{r})$ have regular spatial profile, so we do not need to include the regularization operators.

Now we use the two-component Fermi gas (internal levels $|g\rangle,|e\rangle$) as an example to illustrate the s-wave and p-wave interaction. Since the total wave function for two fermionic atoms is antisymmetric, the spatial wave function related to spin state $(|g e\rangle-|e g\rangle) / \sqrt{2}$ is symmetric (s-wave interaction with scattering length $a_{e g}$), while the spatial wave functions related to spin states $|g g\rangle,(|g e\rangle+|e g\rangle) / \sqrt{2},|e e\rangle$ are antisymmetric (p-wave interaction with scattering volume $b_{g g}^{3}, b_{e g}^{3}, b_{e e}^{3}$ respectively). So the two-body interaction term H_{1} takes the following form,

$$
\begin{align*}
H_{1} & =\frac{4 \pi \hbar^{2} a_{e g}}{m} \int \mathrm{~d}^{3} \mathbf{r} \psi_{e}^{\dagger}(\mathbf{r}) \psi_{g}^{\dagger}(\mathbf{r}) \psi_{g}(\mathbf{r}) \psi_{e}(\mathbf{r}) \\
& +\sum_{\alpha \beta} \frac{3 \pi \hbar^{2} b_{\alpha \beta}^{3}}{2 m} \int \mathrm{~d}^{3} \mathbf{r}\left[\left(\nabla \psi_{\alpha}^{\dagger}\right) \psi_{\beta}^{\dagger}-\psi_{\alpha}^{\dagger}\left(\nabla \psi_{\beta}^{\dagger}\right)\right] \cdot\left[\psi_{\beta}\left(\nabla \psi_{\alpha}\right)-\left(\nabla \psi_{\beta}\right) \psi_{\alpha}\right] \tag{35}
\end{align*}
$$

[1] K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).
[2] A. Derevianko, Phys. Rev. A 67, 033607 (2003).
[3] A. Derevianko, Phys. Rev. A 72, 044701 (2005).
[4] Z. Idziaszek and T. Calarco, Phys. Rev. Lett. 96, 013201 (2006).
[5] Z. Idziaszek, Phys. Rev. A 79, 062701 (2009).

