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I. TWO-BODY INTERACTION

A. Relative coordinates

The general Hamiltonian for two-body interactions is given as follows,

H = − ~2

2M1

∇2
r1
− ~2

2M2

∇2
r2

+ V (r1 − r2). (1)

If we define the center-of-mass coordinates R and the relative coordinates r as

R =
M1r1 +M2r2
M1 +M2

, r = r1 − r2, (2)

the Hamiltonian can be transformed into

H = − ~2

2M
∇2

R −
~2

2µ
∇2

r + V (r), (3)

where M = M1 +M2 is the total mass, and µ = M1M2/(M1 +M2) is the reduced mass. In

this way, we can express the wave function of the two particles as

ψ(r1, r2) = ψcom(R)ψrel(r). (4)

Notice that the two-body interaction term only affects ψrel(r), so we reduce the two-body

problem to an effective one-body problem in relative coordinates.

B. Partial wave expansion

The two-body Schrödinger equation in the relative coordinates is given as follows,

~2

2µ
(∇2 + k2)ψ(r) = V (r)ψ(r), (5)

where k2 = 2µE/~2, and for simplicity we assume V (r) is a central and finite-range potential

which is non-zero in the regime r < r0. Using the partial wave expansion, we can expand

the wave function ψ(r) as

ψ(r) =
∑
lm

Rlm(r)Ylm(θ, φ). (6)
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Plugging Eq. (6) into Eq. (5) outside the range of the potential (r > r0), we get the

following differential equation for the radial part of the wave function,

1

r2
d

dr

(
r2

dRlm

dr

)
+

(
k2 − l(l + 1)

r2

)
Rlm = 0. (7)

The general solution of Eq. (7) is given by

Rlm(r) = Almjl(kr) +Blmnl(kr), (8)

where jl(r) and nl(r) are the spherical Bessel functions. The asymptotic behavior of Rlm(r)

for kr →∞ is given by

Rlm(r)→ 1

kr

[
Alm sin

(
kr − lπ

2

)
−Blm cos

(
kr − lπ

2

)]
∝ 1

kr
sin

(
kr − lπ

2
+ δl

)
(9)

where δl is defined as the scattering phase shift of the l-partial wave, which depends on the

finite range potential V (r). In terms of phase shift δl, we can rewrite Rlm(r) as follows,

Rlm(r) = Clm[jl(kr)− tan δl nl(kr)] (r > r0). (10)

In the following discussions, we called the wave function in the regime r > r0 as ψ>(r).

II. HUANG-YANG PSEUDOPOTENTIAL

A. Derivation of pseudopotential

The idea of Huang-Yang pseudopotential is to replace the potential V (r) by a contact

potential Vps(r), which acts only at r = 0 and gives the same wave function ψ>(r) outside

the range of the potential at the low-energy threshold (k → 0). Notice that the asymptotic

behavior of Rlm(r) for kr → 0 is given by

Rlm(kr)→ Clm

[
(kr)l

(2l + 1)!!
+ tan δl

(2l − 1)!!

(kr)l+1

]
, (11)

the Huang-Yang pseudopotential Vps(r) can be constructed as

Vps(r)ψ>(r) =
~2

2µ
∇2ψ>(kr → 0)

=
~2

2µ

∑
lm

ClmYlm(θ, φ)

(
∇2 − l(l + 1)

r2

)[
(kr)l

(2l + 1)!!
+ tan δl

(2l − 1)!!

(kr)l+1

]
.

(12)
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Using the fact that

∇2(rl) =
l(l + 1)

r2
rl, (13)(

∇2 − l(l + 1)

r2

)
1

rl+1
=

1

rl

[
rl∇2

(
1

rl+1

)
− 1

rl+1
∇2(rl)

]
=

1

rl
∇ ·
[
rl∇
(

1

rl+1

)
− 1

rl+1
∇(rl)

]
= −2l + 1

rl
∇ ·
(
r̂

r2

)
= −2l + 1

rl
4πδ(r),

(14)

we have

Vps(r)ψ>(r) = − ~2

2µ

∑
lm

Clm tan δl
(2l + 1)!!

kl+1

δ(r)

rl+2
Ylm(θ, φ), (15)

where δ(r) = 4πr2δ(r). Based on Eq. (11), we can also express Clm as follows,

Clm =
1

kl(2l)!!

[(
d

dr

)2l+1

rl+1Rlm(kr)

]∣∣∣∣
r=0

=
1

kl(2l)!!

[(
∂

∂r

)2l+1

rl+1

∫
dΩY ∗lm(Ω)ψ>(r)

]∣∣∣∣
r=0

.

(16)

Plugging Eq. (16) into Eq. (15), we have

Vps(r)ψ>(r) =
∑
lm

~2a2l+1
l

2µ

(2l + 1)!!

(2l)!!

δ(r)

rl+2
Ylm(θ, φ)

[(
∂

∂r

)2l+1

rl+1

∫
dΩY ∗lm(Ω)ψ>(r)

]∣∣∣∣
r=0

,

(17)

where we define the scattering length for the l-partial wave as

a2l+1
l = − lim

k→0

tan δl
k2l+1

. (18)

B. Pseudopotential in momentum space

Consider the plane wave basis,

〈r|k〉 =
1√
V

eik·r, (19)

and

〈k|Vps|k′〉 =
1

V

∫
d3r e−ik·rVps(r)e

ik′·r, (20)
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we have

〈k|Vps|k′〉 =
∑
lm

~2a2l+1
l

2µV

(2l + 1)!!

(2l)!!

[ ∫
d3r e−ik·r

δ(r)

rl+2
Ylm(θ, φ)

]

×
[(

∂

∂r

)2l+1

rl+1

∫
dΩY ∗lm(Ω)eik

′·r
]∣∣∣∣
r=0

.

(21)

Using the fact that

eik·r = 4π
∑
lm

iljl(kr)Y
∗
lm(k̂)Ylm(r̂), (22)

we have∫
d3r e−ik·r

δ(r)

rl+2
Ylm(θ, φ) = 4π

∑
l′m′

(−i)l′Yl′m′(k̂)

∫
r2dr jl′(kr)

δ(r)

rl+2
·
∫

dΩY ∗l′m′Ylm

= 4π(−i)lYlm(k̂)

∫
r2dr jl(kr)

δ(r)

rl+2

=
4π(−i)lYlm(k̂)kl

(2l + 1)!!
,

(23)

[(
∂

∂r

)2l+1

rl+1

∫
dΩY ∗lm(Ω)eik

′·r
]∣∣∣∣
r=0

= 4π
∑
l′m′

il
′
Y ∗l′m′(k̂

′)

[(
∂

∂r

)2l+1

rl+1jl′(k
′r)

∫
dΩY ∗lmYl′m′

]∣∣∣∣
r=0

= 4π ilY ∗lm(k̂′)

[(
∂

∂r

)2l+1

rl+1jl(k
′r)

]∣∣∣∣
r=0

= 4π ilY ∗lm(k̂′)(k′)l(2l)!!,

(24)

which gives

〈k|Vps|k′〉 =
8~2π2

µV

∑
lm

a2l+1
l (k′)lklY ∗lm(k̂′)Ylm(k̂). (25)

Recall the addition theorem for spherical harmonics,

Pl(k̂ · k̂′) =
4π

2l + 1

∑
m

Ylm(k̂)Y ∗lm(k̂′), (26)

where Pl(x) is the Legendre polynomial, we have

〈k|Vps|k′〉 =
2~2π
µV

∑
l

(2l + 1)a2l+1
l (k′)lklPl(k̂ · k̂′). (27)

For s-wave (l = 0), we have

〈k|Vps|k′〉 =
2~2π
µV

a0. (28)

For p-wave (l = 1), we have

〈k|Vps|k′〉 =
6~2π
µV

a31(k · k′). (29)
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III. MANY-BODY HAMILTONIAN

It’s convenient to express the many-body Hamiltonian for identical particles (µ = m/2)

in the second quantized form as follows,

H = H0 +H1,

H0 =
∑
α

∫
d3rψ†α(r)

[
− ~2

2m
∇2

]
ψα(r),

H1 =
1

2

∑
αβ

∫
d3r1d

3r2 ψ
†
α(r1)ψ

†
β(r2)V

αβ
ps (r1 − r2)ψβ(r2)ψα(r1),

(30)

in which V αβ
ps (r1−r2) is the pseudopotential for two-body interaction, α, β denote the internal

levels of the particles, and we use aαβ (b3αβ) to denote the s-wave scattering length (p-wave

scattering volume) between particles in internal level α and β.

In momentum space, the field operator can be expressed as

ψα(r) =
1√
V

∑
k

eik·rakα, (31)

so the interaction term can be written as

H1 =
1

2V 2

∑
αβ

∑
k1k2k3k4

a†k1α
a†k2β

ak3βak4α

∫
d3r1d

3r2 e−ik1·r1e−ik2·r2V αβ
ps (r1 − r2)e

ik3·r2eik4·r1

=
1

2V 2

∑
αβ

∑
k1k2k3k4

a†k1α
a†k2β

ak3βak4α

∫
d3R e−i(k1+k2−k3−k4)·R

∫
d3r e−i

k1−k2
2
·rV αβ

ps (r1 − r2)e
i
k4−k3

2
·r

=
1

2

∑
αβ

∑
k1k2k3k4

a†k1α
a†k2β

ak3βak4α

〈
k1 − k2

2

∣∣∣∣V αβ
ps

∣∣∣∣k4 − k3

2

〉
δk1+k2,k3+k4 ,

(32)

where R = (r1 + r2)/2, and r = r1 − r2.

For s-wave interaction, plug in Eq. (28), we have

H1 =
1

2

∑
αβ

4π~2aαβ
mV

∑
k1k2k3k4

a†k1α
a†k2β

ak3βak4α δk1+k2,k3+k4

=
1

2

∑
αβ

4π~2aαβ
mV 2

∑
k1k2k3k4

a†k1α
a†k2β

ak3βak4α

∫
d3r e−i(k1+k2−k3−k4)·r

=
1

2

∑
αβ

4π~2aαβ
m

∫
d3rψ†α(r)ψ†β(r)ψβ(r)ψα(r).

(33)
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For p-wave interaction, plug in Eq. (29), we have

H1 =
1

2

∑
αβ

3π~2b3αβ
mV

∑
k1k2k3k4

a†k1α
a†k2β

ak3βak4α[(k1 − k2) · (k4 − k3)] δk1+k2,k3+k4

=
1

2

∑
αβ

3π~2b3αβ
mV 2

∑
k1k2k3k4

a†k1α
a†k2β

ak3βak4α

∫
d3r [(k1 − k2) · (k4 − k3)]e

−i(k1+k2−k3−k4)·r

=
1

2

∑
αβ

3π~2b3αβ
m

∫
d3r [(∇ψ†α)ψ†β − ψ

†
α(∇ψ†β)] · [ψβ(∇ψα)− (∇ψβ)ψα].

(34)

In the derivation of s-wave and p-wave interaction above, we implicitly assume the field

operators ψα(r) and ψ†α(r) have regular spatial profile, so we do not need to include the

regularization operators.

Now we use the two-component Fermi gas (internal levels |g〉, |e〉) as an example to

illustrate the s-wave and p-wave interaction. Since the total wave function for two fermionic

atoms is antisymmetric, the spatial wave function related to spin state (|ge〉 − |eg〉)/
√

2 is

symmetric (s-wave interaction with scattering length aeg), while the spatial wave functions

related to spin states |gg〉, (|ge〉+ |eg〉)/
√

2, |ee〉 are antisymmetric (p-wave interaction with

scattering volume b3gg, b
3
eg, b

3
ee respectively). So the two-body interaction term H1 takes the

following form,

H1 =
4π~2aeg
m

∫
d3rψ†e(r)ψ

†
g(r)ψg(r)ψe(r)

+
∑
αβ

3π~2b3αβ
2m

∫
d3r [(∇ψ†α)ψ†β − ψ

†
α(∇ψ†β)] · [ψβ(∇ψα)− (∇ψβ)ψα].

(35)
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