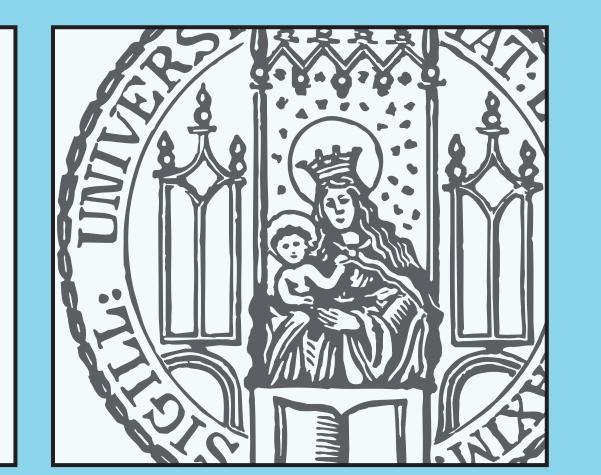


Evolutionary games of condensates

in driven-dissipative systems of non-interacting bosons

Johannes Knebel¹, Markus F. Weber¹, Torben Krüger², Erwin Frey¹

¹Arnold Sommerfeld Center for Theoretical Physics, LMU München; ²IST Austria



5000 10

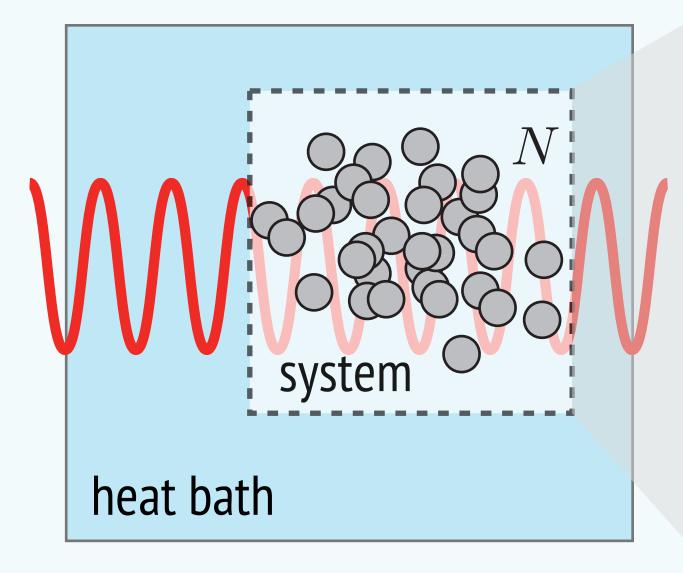
(Average # of condensates) / (# of states)

Summary

- Condensation is a collective behavior of particles observed in both classical and quantum physics. For example, when an equilibrated, dilute gas of bosonic particles is cooled to a temperature near absolute zero, the ground state becomes macroscopically occupied (Bose-Einstein condensation). Whether novel condensation phenomena occur far from equilibrium is a topic of vivid research.
- Only recently has it been proposed that a driven and dissipative gas of bosons may condense not only into a single, but also into multiple non-degenerate states¹. In our work, we applied concepts from evolutionary dynamics to determine the states that become condensates². This condensate selection is guided by the vanishing of relative entropy production.

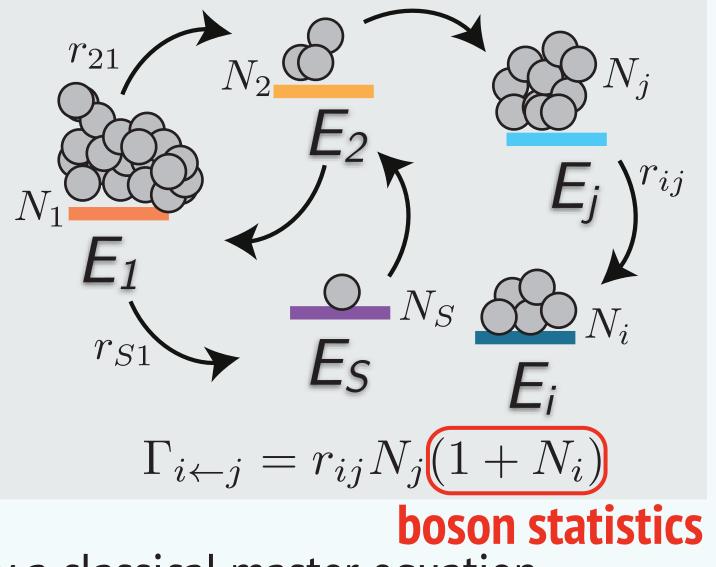
Non-interacting bosons in driven-dissipative systems¹

- Many-body open quantum system
 - > non-interacting bosons
 - > dissipative (weakly coupled to a heat bath)
 - > driven (periodically in time, Floquet system)



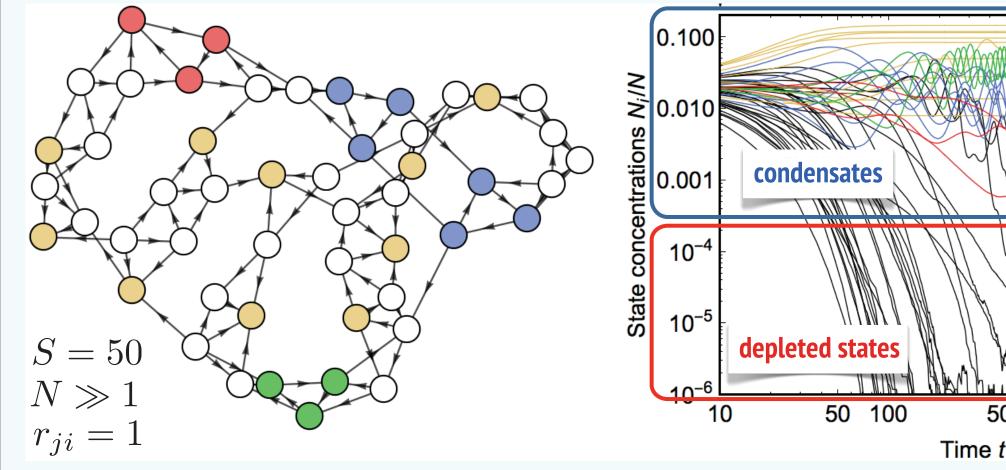
• Coarse-grained dynamics captured by a classical master equation

incoherent (classical) dynamics on a coarse-grained timescale



Condensation into multiple quantum states^{1,2}

• Starting from a random network of states, multiple states may be macroscopically occupied.



- Question: Which of the states become the condensates?
- Correspondence to evolutionary dynamics Quantum (Floquet) states \longleftrightarrow Strategies Non-interacting bosons \longleftrightarrow Interacting agents Reactions and switches Transitions

 $\partial_t P(\mathbf{N}, t) = \sum \left(\Gamma_{i \leftarrow j} (N_i - 1, N_j + 1) P(\mathbf{N} - \mathbf{e}_i + \mathbf{e}_j, t) - \Gamma_{i \leftarrow j} (N_i, N_j) P(\mathbf{N}, t) \right)$

Condensation is captured by the antisymmetric Lotka-Volterra equation²

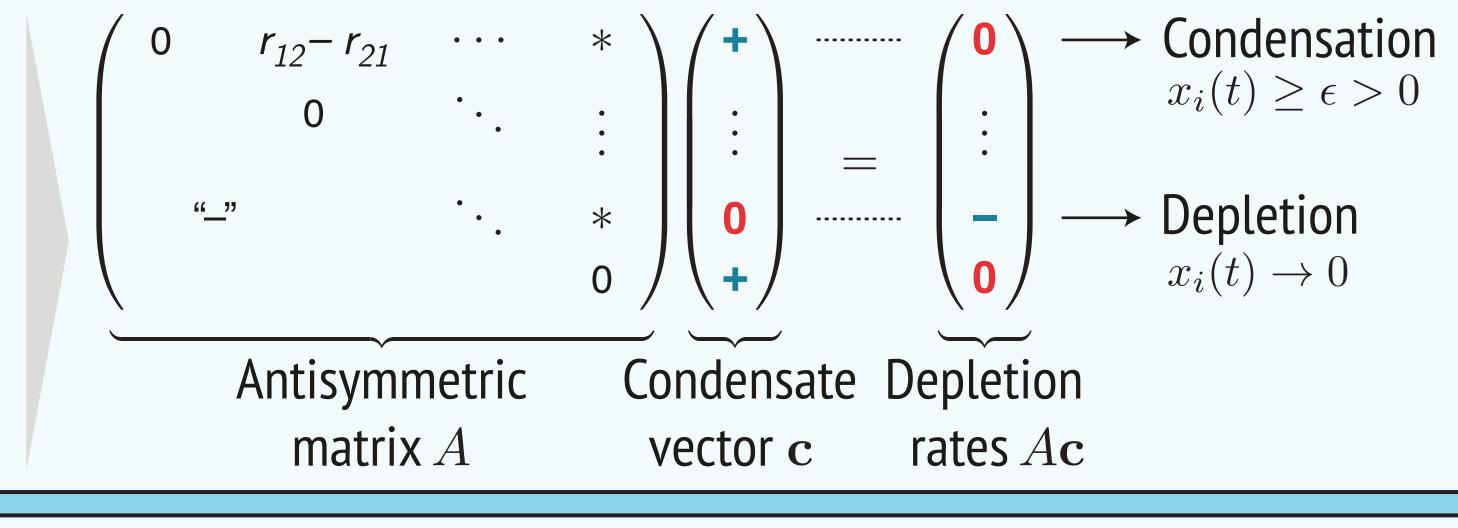
• On the leading order timescale, condensation is captured by a coupled sytem of nonlinear ODEs; $x_i = N_i/N$, $N \gg 1$

 $\frac{\mathrm{d}}{\mathrm{d}t}x_i = x_i \sum (r_{ij} - r_{ji})x_j = x_i (A\mathbf{x})_i$, also known as the replicator equation for zero-sum games in evolutionary dynamics.

- Mathematics to determine condensates and depleted states
 - 1. Find a condensate vector (linear programming theory³)
 - $A\mathbf{c} \le 0$ and $\mathbf{c} A\mathbf{c} > 0$
 - 2. Relative entropy of a condensate vector to the state concentrations

 $D(\mathbf{c}||\mathbf{x}) = \sum c_i \log(c_i/x_i)$

is a Lyapunov function and determines the condensates.



Condensation in large random networks of states shows critical behavior²

