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Lecture I:    Metal-insulator transition and
complexity in electronic systems

Lecture II:   Studies of the electron dynamics near the 2D MIT:
Relaxations of conductivity 

• 2D electron system in Si: temperature dependence of conductivity
• Relaxations of conductivity after a rapid change of density
• Relaxations after a waiting time protocol: aging and memory
• Aging across the 2D

 

MIT

Lecture III:    Studies of the electron dynamics near the 2D MIT:
Fluctuations of conductivity
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Studies of the electron dynamics near the 2D MITStudies of the electron dynamics near the 2D MIT

•
 

Problem: strongly interacting electrons in a random potential
•

 
2D electron system

 

in Si MOSFETs; samples with very

 

different

 

amounts 
of

 

disorder

• “peak mobility”

 

at 4.2 K –

 

rough 
measure of disorder

• vary density ns

 

using Vg

Evidence for phase transition(s)?
MIT, glass transition?

σ

Vg

(Electric) field effect: 
conductivity σ(Vg

 

)

Drude

 

σ=ns

 

eμ
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• lowest ns

 

and T: 
<ρ>

 

∝

 

exp(Ea /kB T) 
⇒

 
nc

 

≈
 

9.7×1010

 

cm-2

nc

 

≈
 

ns
*

• high-mobility

 

(~ 25,000 cm2/Vs)  Si MOSFETs

 

(Groningen/Delft);
L=120 μm, W=50 μm
(d0x

 

=147 nm, Al gates,
Na

 

~1014

 

cm-3)

Resistivity in highResistivity in high--mobility (low disorder) Si mobility (low disorder) Si MOSFETsMOSFETs

nc

 

≤
 

ng
critical density (where strong 
localization ends)

“separatrix”

 

ns
*

glass transition

Will show this later
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Conductivity in lowConductivity in low--mobility mobility 
(high disorder) Si MOSFETs(high disorder) Si MOSFETs

• metallic <σ(T)>

 

at high ns

• d<σ>/dT=0 at ns
*=12.9×1011

 

cm-2

(“separatrix”)
• metal-insulator

 

transition:
nc

 

=(5.0±0.3)×1011

 

cm-2

• glass transition (will show later):
ng

 

=(7.5±0.3)×1011

 

cm-2

metallic glass 

• low-mobility

 

(~600 cm2/Vs)
Si MOSFETs

 

(IBM);
L×W: 1x90 and 2x50 μm2

(dox

 

=50 nm, poly-Si gates,
Na

 

~1017

 

cm-3)

kF

 

l < 1  (“bad”

 

metal)<…> -time average
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• at the lowest ns

 

, strongly localized:  
<σ>

 

∝

 

exp(-To

 

/T),
nc

 

=(5.0±0.3)×1011

 

cm-2,
nc ≪ ns

*

• just above nc

 

(metallic glass):
<σ>=a(ns

 

) + b(ns

 

)Tx,  x≈1.5

non-Fermi liquid behavior
(not a good metal)

<σ(nc

 

,T)> ∝ T3/2    (a power law, as it should
be for the MIT)

(consistent with V. Dalidovich and V. Dobrosavljević, 
PRB 66, 081107 (2002), for the metallic glass phase)

[S. Bogdanovich

 

and D. Popović,
PRL 88, 236401 (2002)]
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Back to highBack to high--mobility samples; mobility samples; 
apply parallel magnetic field Bapply parallel magnetic field B

[Jaroszyński, Popović, Klapwijk, PRL 92, 226403 (2004)]

Bad (NFL) metal

(no orbital effect;
B couples only to spins)

2DES spin-polarizedB

B=0:
(almost) no intermediate 
phase

Apply B:
emergence of 
intermediate phase
with the same σ(T) 
as in samples with high
disorder

(suppression of screening
by parallel B ⇒ effective
disorder increases)
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Intermediate metallic phase

σ(ns

 

,T,B)=σ(ns

 

,T=0,B)+b(ns

 

,B)T3/2 !

(same as in low-mobility samples at B=0!)

consistent with QPT

σ(ns

 

,T=0,B) ∝ δn
μ

 

,   μ ∼ 1.5

• at B=0, μ ∼ 1-1.5 [Fletcher et al., 
Semicond. Sci. Tech. 16, 386 (2001)]

ns

 

(1010

 

cm-2)=11.9, 11.6, 11.3, 11.2, 11.0, 10.9,
10.7 from top; nc

 

(B=2T)=10.67×1010

 

cm-2
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T=0 phase diagramT=0 phase diagram

ns
*

 

–

 

separatrix

 

(from transport)
ng

 

–

 

glass transition (will show later)
nc

 

–

 

critical density for the MIT

 

from σ(T) on both insulating and metallic sides
High disorder

 

(low-mobility devices):

 

nc

 

< ng

 

< ns
*

Low disorder

 

(high-mobility devices):

 

nc

 

≈

 

ns
* ≲ ng

 

for B=0,
nc

 

< ns
* ≲ ng

 

for B≠0

Insulator: σ(T=0)=0
Metal: σ(T=0)≠0;
dσ/dT<0

Strange metal: σ(T=0)≠0

σ(ns

 

,T)=σ(ns

 

,T=0)+b(ns

 

)T3/2

nc

 

ng

 

ns
*              density

[Bogdanovich, Popović, PRL 88, 236401 (2002);
Jaroszyński, Popović, Klapwijk, PRL 89, 276401 (2002);
Jaroszyński, Popović, Klapwijk, PRL 92, 226403 (2004)]

Intermediate phase!

will show this is a
glass transition
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• measure response of the system

 

to

 

some kind of a perturbation
(e.g. after a rapid cooling;
a spin glass in a magnetic field)

• here, perturbation = change of Vg

 

; 
measure conductivity σ

 

vs. time t
after the perturbation is switched off 

[see also papers by Z. Ovadyahu

 

for
similar work in InOx

 

electron glass
deep in the insulating regime]

How to probe glassy dynamics?How to probe glassy dynamics?

supercooled

 

water
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Relaxations of conductivity after a rapid change of nRelaxations of conductivity after a rapid change of nss

Initial 
ns

 

(1011cm-2)
=20.26 > ng

kF

 

l
 

≤
 

1
Final
ns

 

(1011cm-2)=
=4.74 ≥

 

nc

[J. Jaroszyński

 

and D. Popović, PRL 96, 037403 (2006)]

Time

2
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10

σ0
σ 

(e
2 /h

)

T=3.3 K

σ0

 

–

 

equilibrium
conductivity at
T and final ns

ng

 

≈7.5×1011cm-2, nc

 

≈4.5×1011cm-2

ΔEF

 

» kB

 

T
Overshooting
of equilibrium!

Low-mobility samples
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Repeat measurement at

 

(many) different T

 

(after warm-up to 10 K):

• minimum moves to longer times as T decreases –

 

slower

 

relaxations
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data (for different T) collapse for 
times

 

after

 

the minimum

• Characteristic (equilibration) time τeq

 

∝

 

exp (EA

 

/T),

 

EA

 

≈

 

57 K
• The system reaches

 

equilibrium

 

after a

 

long enough t

τeq

 

→ ∞
 

as  T→0,  i.e. glass transition Tg

 

= 0

[see Grempel, Europhys. Lett. 66, 854 (2004)
for a 2D Coulomb glass; also showed aging!]

(τhigh

 

≡ τeq

 

)

• Relaxations
exponential

Approach to equilibrium:
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data

 

(for different T)

 

collapse for

 times

 

before

 

the minimum:

• for short enough t

 

<τeq

 

,

σ(t,T)/σ0

 

∝
 

t-α(n)

 
exp{-[t/τlow

 

(ns

 

,T)]β(n)

 
}

glassy relaxation(n ≡

 

ns

 

)

(α=0.07, β<0.3 for 
this ns

 

)

Initial relaxation:

τlow

 

∝
 

f(ns

 

)
 

exp (Ea

 

/T),             
Ea

 

≈20 K
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• T→0:
σ/σ0

 

∝
 

t-α(n)

as expected for a phase
transition at T=0
(previous slide:
scaling

 

as T→0)

α(ns

 

)→0 as ns

 

→ng
−

(no slow relaxation for 
ns > ng

 

)

Repeat everything for many different ns

τlow

 

∝
 

exp (ans
1/2) exp (Ea

 

/T), Ea

 

≈20 K

Coulomb interactions

 

in 2D:

 

EF

 

/U ~ ns
1/2
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What have we learned from relaxations?What have we learned from relaxations?

• data strongly suggest Tg

 

=0 for ns ≤

 

ng

 

in a 2DES in Si
(diverging equilibration time, scaling of nonexponential

 

relaxations, power
law as T→0 ⇒ Tg

 

= 0;

 

similar behavior in spin glasses, where Tg

 

≠

 

0)
• at

 

finite T, the system appears

 

glassy for short enough t

(e.g. at T= 1 K,  equilibration time ∼

 

1013

 

years!  
age of the Universe ∼

 

1010

 

years)

• Coulomb interactions

 

between 2D electrons –

 

a dominant

 

role in the 

out-of-equilibrium dynamics

• as T→0, no relaxations for ns

 

> ng

 

; no relaxations for kF

 

l > 1

Note:

 

system equilibrates only after it first goes

 

farther away

 

from equilibrium!
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Phase diagram of a 2DES in SiPhase diagram of a 2DES in Si

Glassy regime:

 

slow, nonexponential

 

relaxations,
diverging equilibration time (Tg

 

=0)

T
em

pe
ra

tu
re

 (K
)

ns
*0

dσ/dT<0dσ/dT>0

Glassy Behavior
(for ns <ng )

Insulating
σ(T→0)=0

Metallic
(Non-Fermi Liquid)

σ(T→0)≠0

kF l < 1

Metallic
(FL? NFL?)

nc ng

intermediate, 
glassy phase
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TimesTimes

timet=0
preparation 

time

tm 
measurement

time

In equilibrium

 

τeq

 

< tm

Out of equilibrium

 

τeq

 

> tm

tw
waiting time

0 t

Out of equilibrium:
responses and correlations depend
on two times, t and tw

 

(age)

 

-

 

aging

= t +tw
measurement

time

• Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, edited by
J.-L. Barrat, M.V. Feigelman, J. Kurchan, J. Dalibard

 

(Springer, New York, 2003)
-

 

Les Houches

 

summer school
• Ageing and the Glass Transition, edited by M. Henkel, M. Pleimling, R. Sanctuary

(Lecture Notes in Physics, Springer, 2007) –

 

Univ. of Luxemburg summer school
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Relaxations of conductivity after a waiting time Relaxations of conductivity after a waiting time 
protocol: aging and memoryprotocol: aging and memory

[J. Jaroszyński

 

and D. Popović, Phys. Rev. Lett. 99, 046405 (2007)]

Initial and final 
ns

 

(1011cm-2)=3.88 < nc

 

;
density during tw

 

=1000 s: 
ns

 

(1011cm-2)=20.26 > ng

• change history by 
varying T and tw
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Relaxations for a few different T and tw

 

:

Response

 

(conductivity) depends on

 

the system history

 

(tw

 

and T) in addition 
to the time t –

 

aging –

 

a key characteristic of relaxing glassy systems.

Memory

overshooting
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Memory loss

And a few more…

 

: 
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• overshooting

 

only when the 
system is excited out of a 
thermal equilibrium 
(tw

 

»

 

τeq

 

); no memory

• no OS when excited out of a 
relaxing (nonequil.) state 
(tw

 

«

 

τeq

 

): aging and memory

When is overshooting observed?
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What is the origin of overshooting???

• observed

 

in a variety of systems (e.g. insulating granular metals, 
manganites, biological systems)

• some theoretical models
[Morita et al., PRL 94, 087203 (2005); Mauro et al., PRL 102, 155506 (2009)]

• large

 

perturbations out of equilibrium?

• here ΔEF

 

>> T

 

should trigger major charge rearrangements
(ns

 

changed up to a factor of 7;

 

in InOx

 

, density change ~ 1%)
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0

0.02

0.04

0.06

0.08

1 2 3 4 log t (s)

lo
g 
σ(

t,T
)/σ

0(T
)

tw(s):

10000

1000
100

Remove all 2D electrons from the inversion layer during tw
(V1

 

<VT

 

):

No tw

 

dependence, i.e. no memory!

⇒ Glassiness from 2DES, not from background charges

T=1 K
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Aging regime (no OS, T=1 K)Aging regime (no OS, T=1 K)
[J. Jaroszyński

 

and D. Popović, Phys. 
Rev. Lett. 99, 216401 (2007)]

(T= 1 K:  τeq

 

∼

 

1013

 

years!
Age of the Universe ∼

 

1010

 years)

n0

 

< nc

Full (simple) aging: σ(t/tw

 

)

σ(t)/σ0

 

∝
 

(t/tw

 

)-α

 
for t ≤

 
tw

⇒ a memory of tw

 

is imprinted on each σ(t)
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• σ(t, tw

 

) exhibit full aging for ns

 

< nc
• for ns

 

> nc

 

, an increasingly strong departure from full aging
that reaches maximum at ng

aging function: σ(t/tw
μ)

 

(μ-scaling useful in studies of other 
glasses; may not have a clear 
physical meaning)



full aging: μ=1

• an abrupt change in aging
at the 2D MIT (nc

 

)

• insulating glassy phase and
metallic glassy phase are 
different!

NOTE: mean-field models of glasse

 

s 
include both those that show full aging and 
those where no t/tw

 

scaling is expected.
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• σ(t, tw

 

) exhibit full aging for ns

 

< nc
• for ns

 

> nc

 

, an increasingly strong departure from full aging
that reaches maximum at ng

aging function: σ(t/tw
μ)

 

(μ-scaling useful in studies of other 
glasses; may not have a clear 
physical meaning)
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μ

 

does not depend 
on temperature

two different samples
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σ(t)/σ0

 

=[σ(t=1s)/σ0

 

] t-α

Relaxation amplitudes peak just below nc

 

,
 

and they are 
suppressed in the insulating regime!

• both relaxation amplitudes
σ(t=1s)/σ0

 

and slopes α

 

depend
nonmonotonically

 

on n0

• another change in aging 
properties at ns

 

≈
 

nc

nc ng

Fixed tw

 

and n1

 

; vary n0
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Summary of Lecture IISummary of Lecture II

• Emergence of an intermediate, (NFL) metallic phase

 

(nc

 

< ng

 

)

 

between 
the metal and the insulator

• Glassy behavior for ns

 

< ng

 

(in the insulator and in the intermediate phase) –
glassy ordering as a precursor of the MIT

 

in a 2DES in Si

• abrupt changes in aging at the MIT

• 2DES in Si: 
-

 

similarities to other glassy systems (e.g. spin glasses)
- a “simple”, model system

 

for exploring the dynamics of strongly 
correlated systems (free of  complications associated with changes 
in magnetic or structural symmetry)

Lecture  III:

 

other probes of the electron dynamics –

 

fluctuations of σ
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