

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Dragana Popović

National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA

Boulder 2009 Summer School

Supported by NSF DMR and NHMFL (NSF and the State of Florida)

Lecture I: <u>Metal-insulator transition and</u> <u>complexity in electronic systems</u>

Lecture II: <u>Studies of the electron dynamics near the 2D MIT:</u> <u>Relaxations of conductivity</u>

- 2D electron system in Si: temperature dependence of conductivity
- Relaxations of conductivity after a rapid change of density
- Relaxations after a waiting time protocol: aging and memory
- Aging across the 2D MIT

Lecture III:Studies of the electron dynamics near the 2D MIT:
Fluctuations of conductivity

Studies of the electron dynamics near the 2D MIT

- Problem: strongly interacting electrons in a random potential
- 2D electron system in Si MOSFETs; samples with very different amounts of disorder

• "peak mobility" at 4.2 K – rough measure of disorder

• vary density n_s using V_g

Evidence for phase transition(s)? MIT, glass transition?

Resistivity in high-mobility (low disorder) Si MOSFETs

Conductivity in low-mobility (high disorder) Si MOSFETs

- <u>low-mobility</u> (~600 cm²/Vs) Si MOSFETs (IBM); L×W: 1x90 and 2x50 μ m² (d_{ox}=50 nm, poly-Si gates, N_a~10¹⁷ cm⁻³)
- metallic $\langle \sigma(T) \rangle$ at high n_s
- d<σ>/dT=0 at n_s*=12.9×10¹¹ cm⁻² ("separatrix")
- metal-insulator transition: n_c=(5.0±0.3)×10¹¹ cm⁻²
 - glass transition (will show later): n_g=(7.5±0.3)×10¹¹ cm⁻²
 - ---- metallic glass
 - $k_F l < 1$ ("bad" metal)

[S. Bogdanovich and D. Popović, PRL 88, 236401 (2002)]

- at the lowest n_s , strongly localized: $<\sigma>\propto \exp(-T_o/T),$ \dots $n_c=(5.0\pm0.3)\times10^{11}$ cm⁻², $n_c\ll n_s^*$
- just above n_c (metallic glass): $<\sigma>=a(n_s) + b(n_s)T^x, x\approx 1.5$

<u>non-Fermi liquid behavior</u> (not a good metal)

 $\langle \sigma(n_c,T) \rangle \propto T^{3/2}$ (a power law, as it should be for the MIT)

(consistent with V. Dalidovich and V. Dobrosavljević, PRB 66, 081107 (2002), for the metallic glass phase)

Back to high-mobility samples; apply parallel magnetic field B

(no orbital effect;B couples only to spins)

<u>B=0:</u> (almost) no intermediate phase

Apply B: emergence of intermediate phase with the same σ(T) as in samples with high disorder

(suppression of screening by parallel B ⇒ effective disorder increases)

[Jaroszyński, Popović, Klapwijk, PRL 92, 226403 (2004)]

Intermediate metallic phase

High disorder (low-mobility devices): $n_c < n_g < n_s^*$ Low disorder (high-mobility devices): $n_c \approx n_s^* \lesssim n_g$ for B=0, $n_c < n_s^* \lesssim n_g$ for B≠0

[Bogdanovich, Popović, PRL 88, 236401 (2002); Jaroszyński, Popović, Klapwijk, PRL 89, 276401 (2002); Jaroszyński, Popović, Klapwijk, PRL 92, 226403 (2004)]

How to probe glassy dynamics?

- measure response of the system to some kind of a perturbation (e.g. after a rapid cooling; a spin glass in a magnetic field)
- here, perturbation = change of V_g ; measure conductivity σ vs. time t after the perturbation is switched off

supercooled water

[see also papers by Z. Ovadyahu for similar work in InO_x electron glass deep in the insulating regime]

[J. Jaroszyński and D. Popović, PRL 96, 037403 (2006)]

Repeat measurement at (many) different T (after warm-up to 10 K):

• minimum moves to longer times as T decreases – slower relaxations

- Characteristic (equilibration) time $\tau_{eq} \propto \exp(E_A/T)$, $E_A \approx 57$ K
- The system reaches equilibrium after a long enough t

$$\tau_{eq} \rightarrow \infty$$
 as T $\rightarrow 0$, *i.e.* glass transition T_g = 0

[see Grempel, Europhys. Lett. 66, 854 (2004) for a 2D Coulomb glass; also showed aging!]

Initial relaxation:

data (for different T) collapse for times before the minimum:

• for short enough t $<\tau_{eq}$, $\sigma(t,T)/\sigma_0 \propto t^{-\alpha(n)} \exp\{-[t/\tau_{low}(n_s,T)]^{\beta(n)}\}$ $(\alpha = 0.07, \beta < 0.3 \text{ for})$ this n_s) glassy relaxation $(n \equiv n_{c})$ $\tau_{\rm low} \propto f(n_{\rm s}) \exp{(E_{\rm a}/T)},$ E_a≈20 K c) T(K): 0.5 _ 2 $\log[\sigma/(\sigma_0(\tau_{low})^- \alpha)]$ 0.24 1.2 **2.4** $\log[\tau_{low}(2.4 \text{ K})/\tau_{low}(T)]$ -2 3.2 -5 5 -20 -15 -10 0 -6 log t/ τ_{low} 0.5 1.0 0 1/T(K)

Repeat everything for many different n_c

$\tau_{low} \propto \exp{(an_s^{1/2})} \exp{(E_a/T)}, E_a \approx 20 \text{ K}$

• $\underline{T \rightarrow 0}$: $\sigma/\sigma_0 \propto t^{-\alpha(n)}$ as expected for a phase transition at T=0 (previous slide: scaling as $T \rightarrow 0$)

Coulomb interactions in 2D: $E_F/U \sim n_s^{1/2}$

 $n_{s} > n_{\sigma}$)

What have we learned from relaxations?

- data strongly suggest $T_g=0$ for $n_s \le n_g$ in a 2DES in Si (diverging equilibration time, scaling of nonexponential relaxations, power law as $T \rightarrow 0 \Rightarrow T_g = 0$; similar behavior in spin glasses, where $T_g \ne 0$)
- at finite T, the system appears glassy for short enough t

(e.g. at T= 1 K, equilibration time ~ 10^{13} years!

age of the Universe ~ 10¹⁰ years)

- **Coulomb interactions** between 2D electrons a **dominant** role in the out-of-equilibrium dynamics
- as T \rightarrow 0, no relaxations for $n_s > n_g$; no relaxations for $k_F l > 1$

Note: system equilibrates only after it first goes farther away from equilibrium!

Phase diagram of a 2DES in Si

• Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, edited by J.-L. Barrat, M.V. Feigelman, J. Kurchan, J. Dalibard (Springer, New York, 2003)

- Les Houches summer school
- Ageing and the Glass Transition, edited by M. Henkel, M. Pleimling, R. Sanctuary (Lecture Notes in Physics, Springer, 2007) Univ. of Luxemburg summer school

Relaxations of conductivity after a waiting time protocol: aging and memory

[J. Jaroszyński and D. Popović, Phys. Rev. Lett. 99, 046405 (2007)]

Relaxations for a few different T and t_w:

Response (conductivity) depends on the system history (t_w and T) in addition to the time t - aging - a key characteristic of relaxing glassy systems.

When is overshooting observed?

- overshooting only when the system is excited out of a thermal equilibrium $(t_w \gg \tau_{eq})$; no memory
- no OS when excited out of a relaxing (nonequil.) state $(t_w \ll \tau_{eq})$: aging and memory

What is the origin of overshooting???

- observed in a variety of systems (e.g. insulating granular metals, manganites, biological systems)
- some theoretical models [Morita *et al.*, PRL 94, 087203 (2005); Mauro *et al.*, PRL 102, 155506 (2009)]
- large perturbations out of equilibrium?
- here ΔE_F >> T should trigger major charge rearrangements (n_s changed up to a factor of 7; in InO_x, density change ~ 1%)

Remove all 2D electrons from the inversion layer during $t_w (V_1 \le V_T)$:

No t_w dependence, *i.e.* no memory!

⇒ Glassiness from 2DES, not from background charges

Aging regime (no OS, T=1 K)

[J. Jaroszyński and D. Popović, Phys. Rev. Lett. 99, 216401 (2007)] (T=1 K: $\tau_{eq} \sim 10^{13}$ years! Age of the Universe ~ 10^{10} years)

 \Rightarrow a memory of t_w is imprinted on each $\sigma(t)$

• $\sigma(t, t_w)$ exhibit full aging for $n_s < n_c$

• for $n_s > n_c$, an increasingly strong departure from full aging that reaches maximum at n_g

aging function: $\sigma(t/t_w^{\mu})$

(μ-scaling useful in studies of other glasses; may not have a clear physical meaning)

• $\sigma(t, t_w)$ exhibit full aging for $n_s < n_c$

• for n_s > n_c, an increasingly strong departure from full aging that reaches maximum at n_g

NOTE: mean-field models of glasses include both those that show full aging and those where no t/t_w scaling is expected.

Popović - Boulder 2009 lectures

(μ-scaling useful in studies of other glasses; may not have a clear physical meaning) full aging: μ=1

- an abrupt change in aging at the 2D MIT (n_c)
- insulating glassy phase and metallic glassy phase are different!

Fixed t_w and n_1 ; vary n_0

 $\sigma(t)/\sigma_0 = [\sigma(t=1s)/\sigma_0] t^{-\alpha}$

- both relaxation amplitudes $\sigma(t=1s)/\sigma_0$ and slopes α depend nonmonotonically on n_0
- another change in aging properties at n_s ≈ n_c

Relaxation amplitudes peak just below n_c, and they are suppressed in the insulating regime!

Summary of Lecture II

- Emergence of an intermediate, (NFL) metallic phase $(n_c < n_g)$ between the metal and the insulator
- Glassy behavior for $n_s < n_g$ (in the insulator and in the intermediate phase) glassy ordering as a precursor of the MIT in a 2DES in Si
- abrupt changes in aging at the MIT
- 2DES in Si:
 - similarities to other glassy systems (e.g. spin glasses)
 - a "simple", model system for exploring the dynamics of strongly correlated systems (free of complications associated with changes in magnetic or structural symmetry)

Lecture III: other probes of the electron dynamics – fluctuations of σ