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Lecture I:    Metal-insulator transition and 
complexity in electronic systems

• Modern

 

technology: synthetic materials, devices
• Designing materials: metals vs. insulators
• Metal-insulator transition
• Coulomb glass
• Miscellaneous

 

complex electronic systems
• Metal-insulator transition in

 

two dimensions

 

(2D) -

 

general
• Practical realizations of 2D

 

systems
• Metal-insulator transition (MIT) in 2D –

 

some experiments
• Literature

Lecture II:   Studies of the electron dynamics near the 2D MIT:
Relaxations of conductivity 

Lecture III:   Studies of the electron dynamics near the 2D MIT:
Fluctuations of conductivity
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Lecture I:  Metal-insulator transition and 
complexity in electronic systems

Modern technology: Modern technology: 19471947
 

--
 

presentpresent

Invention of the
transistor

(Bardeen, Brattain, Shockley,
Nobel Prize in Physics, 1956)
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Invention of 
integrated circuits

(Kilby, Nobel Prize 
in Physics, 2000)

Why semiconductors?
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Designing materials: metals Designing materials: metals vs.vs. insulatorsinsulators

• good metals (Cu, Au, Ag, ...)

 

and (band) insulators (C-diamond, Si, Ge, ...)
well understood –

 

see textbooks (band theory)

• many “old”

 

(doped semiconductors –

 

Si:P, ...) and novel

 

materials
(high-TC

 

superconductors, ...) not understood

Turning insulators into metals using doping!

Metals vs. insulators

σ(T=0)≠0 σ(T=0)=0
(σ

 

–

 

conductivity;

 

metal-insulator transition at T=0 −

 

quantum effects)
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(EF

 

∼

 

10 000 K)

(> 5 eV≈

 

50 000 K; room T ≈

 

300 K)

Conduction band (partly filled)

• hard to affect,

 

stable, robust

• conductivity σ

 

(T=0) ≠

 

0

 

(σ

 

= 1/ρ

 

)
• elementary excitations: a few electron-hole pairs
(fermions;

 

weakly interacting –

 

“Fermi liquid”)

Conduction band (empty)

Valence band (filled)

• hard to affect,

 

stable, robust

• σ

 

(T=0) = 0
• elementary excitations: collective modes
(phonons, spin waves; typically bosons)



Popović

 

-

 

Boulder 2009 lectures

Semiconductors: insulators with EG < 1-2 eV (∼ 10 000 K);
some electrons in the conduction band at room T as a result
of thermal fluctuations 

• intentional adding of specific impurities 
(dopant)

introducing

 

new charge carriers

• easy (!!!) to affect and control
(ρ

 

depends on doping)

• elementary excitations: ????
(no simple picture)

So, are doped semiconductors metals
 

[σ(T=0)≠0]?
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Doped semiconductors:
 

Si:P
 

–
 

a classic example
(the basis of semiconductor technology!)

Si –

 

group IV element (four valence electrons)
P  –

 

group V element (five valence electrons; substitutional

 

impurity)
• the fifth P electron is only

 

weakly

 

bound to the P atom

Carriers but no conductivity at T=0!!?

σ(T=0)=0 σ(T=0)≠0

What do the experiments say?
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σ(n>nc

 

) ≠

 

0:
metal

Low-temperature (< 1 K) conductivity: experiment  (Si:P)

σ(n<nc

 

) =

 

0:
insulator

Metal-insulator transition
at n=nc

 

≠0
(quantum, i.e. T=0 phase transition)

• at low density n<nc

 

,

 

there are carriers,  
but no conductivity!!

Failure of the single-electron model
(i.e. band structure calculations)

MetalMetal--insulator transitioninsulator transition

Si:P

(Paalanen, Rosenbaum, Thomas, Bhatt; 1982)

nc

 σ

 

~ (n-nc

 

)1/2
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What’s missing???

electron-electron interactions
(Mott insulator)

disorder due to impurities, 
defects  (Anderson insulator)

Result: formation of localized 
(bound) states          no conduction 

• high density –

 

kinetic energy (Fermi energy) dominates
• low density –

 

potential energy dominates:
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Metal-insulator transition: a quantum critical point
• Experiments: a continuous

 

transition; sharp phase transition at T=0

•“dynamical scaling”

 

in the critical region: σ(ns

 

,T) ∝

 

Tx

 

f(T/δn
zν)

• power-law critical behavior: σ(ns

 

,T=0) ∝ δn
μ

Control parameter 
δn

 

=(ns

 

-nc

 

)/nc
(ns

 

-

 

carrier density)
Insulator
σ(T=0)=0

Crossover temperature
T0

 

~|δn

 

|zν

Metal
σ(T=0)≠0

Theoretical problems: no broken symmetry; order parameter?  No small
parameter; elementary excitations?

 

Standard approaches fail
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It gets even more complicated…

• Coulomb repulsion: keep electrons apart (uniform

 

density)
• Random potential: nonuniform

 

density

• competition between Coulomb interactions

 

and disorder

Frustration! (can’t

 

make everyone happy)

emergence of

 

(exponentially)

 

many

 

metastable

 

states 
with similar (free) energy

Fluid Glass

configuration space

Experimental signature: slow,

 

out-of-equilibrium dynamics
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• Slow nonequilibrium
 

dynamics –
 

similarities to  
other glasses?

• Unifying ideas, concepts?
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Relevance for the MIT?

Three basic mechanisms for electron localization:

Metal-insulator transition and glassiness

 

–
two of the most fundamental

 

problems in condensed matter physics
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Coulomb glassCoulomb glass

• expected in Anderson insulators with strong electron-electron interactions      
[M. Pollak

 

(1970); Efros, Shklovskii

 

(1975); Davies, Lee, Rice (1982,84)]

Observations of glassiness in electronic systems –

 

very few:

• slow relaxations in GaAs

 

capacitance (Monroe et al.)
• slow relaxations and thermal hysteresis in conductivity of granular films   
(Goldman et al., Wu et al., Frydman

 

et al.)

• slow relaxations of photoconductivity in YH3-δ

 

(Lee et al.)

• slow relaxations, aging, memory in conductivity of  InOx

 

(Ovadyahu

 

et al.)
and granular Al

 

(Grenet

 

et al.)

• 2D electrons in Si

 

(DP et al.):

 

slow relaxations, aging, memory;
slow, correlated dynamics –

 

from insulating to (poorly) metallic

• lightly doped cuprates

 

(DP et al.)

my work



Popović

 

-

 

Boulder 2009 lectures

Complex behavior of highComplex behavior of high--TTCC

 

superconductorssuperconductors

• single-electron band theory

 

of solids fails also here

• undoped

 

parent compound (e.g. La2

 

CuO4

 

):

 

Mott insulator, not a metal

• only a few per cent of 
dopants

 

cause a 
transition from an
insulating to a

 

(super)
conducting state

Emergence of
nanoscale

inhomogeneities!
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Computer modeling

(“stripe-

 

and clump-

 forming systems”)
[Reichhardt

 

et al., Europhys. 
Lett. 72, 444 (2005)]

Nanoscale
 

charge inhomogeneities

STM images

Ca2-x

 

Nax

 

CuO2

 

Cl2 [Kohsaka

 

et al., Phys. Rev. 
Lett. 93, 097004 (2004)]

• global phase separation not possible because of  
charge neutrality

• (infinitely?) many possible arrangements

 

of nanoscopic

 

ordered regions with  
comparable energies               charge (Coulomb) glass?
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Emergence of intermediate heterogeneous 
phases

 

due to the existence of several   
competing ground states               

Some other complex, strongly correlated 
electronic systems

Dynamics?

Percolative

 

conduction in half-metallic-FM and insulating-

 
ferroelectric mixture of (La,Lu,Sr)MnO3

 

(Park et al., 2004).

• quantum

 

effects important
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MetalMetal--insulator transition in two dimensionsinsulator transition in two dimensions

• Theoretical arguments from the 1980s:
no true (T=0) metallic state or MIT in 2D

Noninteracting

 

electrons: always localized
Strong disorder:

 

σ

 

~ exp [-(T/T0

 

)1/p]  p=1, 2, 3
[strong localization]

Weak disorder:

 

σ

 

= ne2τ/m*+ A(e2 /h) ln

 

(T/T0

 

)
[weak localization; Abrahams, Anderson, Licciardello,   
Ramakrishnan, PRL 42, 673 (1979)

 

]

Weakly interacting

 

electrons:   always localized

 

(also ln

 

T)
[Altshuler, Aronov, SSC 39, 115, (1979); JETP 50, 968 (1979)]

Strongly interacting

 

electrons: 
No disorder:   Wigner crystal  (insulator)

Is there a true (T=0) metallic state in 2D?
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But:
• mid 1990s –

 

present: experiments

 

suggesting a true MIT in 2D
• an

 

active research area in both theory and experiment

Theory:
• early calculations perturbative

 

(ln

 

T –

 

leading corrections)
• a hint

 

from theory [Finkel’stein, Z. Phys. B 56, 189 (1984)]

 

that the 2D  
metal might be possible, but theory uncontrolled at low T…

• Punnoose, Finkel’stein, Science 310, 289 (2005):
interaction

 

contribution changes sign and wins

 

over weak localization!
2D metal possible!

What about

 

strongly interacting systems with

 

weak disorder?
Can strong electron-electron interactions cause delocalization?

But:
• this theory probably does NOT

 

describe experiments
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Practical realizations of 2D systemsPractical realizations of 2D systems

• thin films

• semiconductor heterostructures

 

at sufficiently low temperatures
(e.g. Si MOSFET and AlGaAs/GaAs) 

• quasi-2D

 

systems: layered structures
(e.g. cuprates)

La2

 

CuO4
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Si MOSFET –
 

the basis of semiconductor technology
Metallic

gate

Gate, source, drain,
substrate –

 

all doped Si

 (in the old days, gate 
was Al)

Back to transistors…:

Metal-Oxide-Semiconductor
Field-Effect Transistor –

 
conducts  current

because of the effect of the electric field
(V applied to the gate)

 

at the surface of Si
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eVg
EFg

p-SiSiO2gate

inversion layer (30-80 Å) -
electrons in the conduction band

Si MOSFET: a capacitor!

electrons
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• electrons confined in a narrow
potential well at the interface 

motion perpendicular
to the interface (“z-direction”)
is quantized

• discrete energy levels (subbands)

 

for 
motion in the z-direction; energy levels:

E=En

 

+ (kx
2+ky

2)ħ2/2m*,  n=0,1,2,…

electrons free to move in a plane
parallel to the interface

At low enough T, only E0

 
is occupied: a 2D system.

SiO2

Si

EC

z

E0∼20 meV
(200 K)
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2D density of states:

 

D(E)=gs

 

gv

 

m*/2πħ2

 

= const
(gs

 

, gv

 

–

 

spin and valley degeneracies)

E

D(E)

E0

• dimensionality

 

plays a fundamental

 

role in many phenomena (e.g. integer   
and fractional quantum Hall effects observed in 2D systems in

 

high  
magnetic fields –

 

Nobel prizes in physics, 1985 and 1998)

Room for more???

• 2D systems studied extensively

 

since late

 

1960s
[Fowler, Fang, Howard, and Stiles, PRL 16, 901 (1966): 2D in Si MOSFETs]
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2D density of states:

 

D(E)=gs

 

gv

 

m*/2πħ2

 

= const
(gs

 

, gv

 

–

 

spin and valley degeneracies)

E

D(E)

E0

Add disorder

band tail (strongly localized states)

EF

Carrier density

 

ns

 

(=D(E)EF at T=0;

 
EF

 

-

 

Fermi energy) can be

 

tuned 
continuously

 

over two orders of 
magnitude (!) by varying Vg

Disorder

 

due to (Na+)

 

ions randomly

 
distributed throughout

 

SiO2

 

(frozen 
out below ∼100 K), and to surface 
roughness

Si

SiO2

2D

 

at low T

Vg

2D electrons move in a
smooth random potential
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2D metal2D metal--insulator transition?insulator transition?

[Kravchenko, Mason, Bowker, Furneaux, 
Pudalov, D’Iorio, PRB 51, 7038 (1995); 
2DES in Si MOSFETs]

TF ∼10 K

Resistivity

Temperature

Large resistivity drop!
(origin?)

“separatrix”

 

ns
*

 

(= nc

 

? NO!
nc

 

–

 

critical density for the MIT)

• dramatic

 

change of behavior
near “separatrix”

 

at T < 0.3TF

insulating behavior for ns

 

< ns
*

[exponential ρ(T)]

metallic behavior for ns

 

> ns
*
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T0

 

∼

 

|δn

 

|zν

 

(δn

 

=ns

 

/nc

 

-1)

“dynamical scaling”:

σ(ns

 

,T) = σc f(T/δn
zν)

Metal-insulator transition as a
quantum critical point:

[Kravchenko et al., PRB 51, 7038 (1995)]

The same data:

(rescaled T axis)
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• low densities (ns ∼

 

1011

 

cm-2)
Fermi energy:

 

EF = πħ2ns

 

/2m* ≈

 

0.6 meV
Electron-electron interaction energy: 

Ee-e

 

∼

 

(e2/ε)(πns

 

)1/2

 

≈

 

10 meV

rs

 

≡

 

Ee-e

 

/EF

 

∝

 

ns
-1/2

 

∼

 

10!

Change to metallic behavior 
occurs at:

many orders of magnitude

Metallic

Insulating

Conductivity σ

 

= 1/ρ

[Popović, Fowler, Washburn; 
PRL 79, 1543 (1997); other Si 
MOSFETs

 

where disorder

 

was

 

varied]

• critical conductivity ~ e2/h     
σ

 

~ (e2/h)(kF l)

 

⇒ kF

 

l ~ 1

(l –

 

mean free path; kF

 

–

 

Fermi 
wave vector)

The race begins!

kF

 

l >> 1

kF

 

l < 1

Strong Coulomb interactions and disorder!
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Local compressibility

[Ilani, Yacoby, Mahalu, Shtrikman,
Science 292, 1354 (2001); also, 
PRL 84, 3133 (2000); 2D holes in GaAs]

L
oc

al
 c

he
m

ic
al

 p
ot

en
tia

l

• as the density approaches nc
from the metallic side, 2DHG
fragments into localized charge
configurations that are distributed
in space
⇒

 

insulating phase is spatially
inhomogeneous

• the structure with sharp spikes
emerges

 

already at n>nc
(on the metallic side of the MIT!)

Dynamics?  Coulomb glass?
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Summary of Lecture ISummary of Lecture I

• Metal-insulator transition: a fundamental

 

problem of relevance to many
interesting materials

• Problem: strongly (Coulomb)

 

interacting electrons in a random potential
⇒ expect frustration, dynamic inhomogeneities

• 2D systems

 

in semiconductors: 
- easy to use; can be precisely engineered (semiconductor technology!)
- control and vary density (interactions) and disorder

 

independently
- “simple” – no magnetic or structural degrees of freedom

(unlike e.g. cuprates)

Lectures II and III:

 

study electron dynamics

 

as ns

 

is varied through the MIT 

Evidence of a phase transition? What can we learn about the MIT and 
out-of-equilibrium dynamics in general?
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Literature ILiterature I
• Doped semiconductors; strong localization (Anderson and Mott insulators), 

variable-range hopping transport:
B.I. Shklovskii

 

and A.L. Efros, Electronic Properties of Doped Semiconductors
(Springer-Verlag, Berlin, 1984) –

 

out of print; http://www.tpi.umn.edu/shklovskii/

• Disorder and interactions; metal-insulator transition (3D, 2D); inhomogeneous 
phases; glassy behavior
E. Miranda and V. Dobrosavljević, Disorder-Driven non-Fermi Liquid Behavior of
Correlated Electrons, Rep. Prog. Phys. 68, 2337 (2005)

• E. Dagotto, Complexity in Strongly Correlated Electronic Systems, Science 309, 257
(2005) –

 

a very brief (few pages) review

• Metal-insulator transition in 2D -

 

basic issues:
E. Abrahams, S.V. Kravchenko, M.P. Sarachik, Metallic Behavior and Related
Phenomena in Two Dimensions, Rev. Mod. Phys. 73, 251 (2001)

• Weak localization and e-e

 

interaction effects in metals:
P.A. Lee and T.V. Ramakrishnan, Disordered Electronic Systems, Rev. Mod. Phys. 57,
287 (1985)

• 2D systems in Si and other semiconductors –

 

basics:
T. Ando, A.B. Fowler, and F. Stern, Electronic Properties of Two-Dimensional Systems,
Rev. Mod. Phys. 54, 437 (1982)
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