

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Dragana Popović

National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA

Boulder 2009 Summer School

Supported by NSF DMR and NHMFL (NSF and the State of Florida)

Lecture I: <u>Metal-insulator transition and</u> <u>complexity in electronic systems</u>

- Modern technology: synthetic materials, devices
- Designing materials: metals vs. insulators
- Metal-insulator transition
- Coulomb glass
- Miscellaneous complex electronic systems
- Metal-insulator transition in two dimensions (2D) general
- Practical realizations of 2D systems
- Metal-insulator transition (MIT) in 2D some experiments
- Literature

Lecture II: Studies of the electron dynamics near the 2D MIT: Relaxations of conductivity

Lecture III:Studies of the electron dynamics near the 2D MIT:
Fluctuations of conductivity

How does all this work: "The art of electronics"

Ultra small integrated circuits, transistor chips,...

Invention of integrated circuits

(Kilby, Nobel Prize in Physics, 2000)

Devices that control (switch on-off) electrical currents:

<u>Turn conductors into insulators and vice versa</u>

Why semiconductors?

Designing materials: metals *vs.* **insulators**

- good metals (Cu, Au, Ag, ...) and (band) insulators (C-diamond, Si, Ge, ...) well understood – see textbooks (band theory)
- many "old" (doped semiconductors Si:P, ...) and novel materials (high-T_C superconductors, ...) not understood

Metals: Pauli principle, large Fermi (kinetic) energy

 $(E_{\rm F} \sim 10\ 000\ {\rm K})$

- -Conduction band (partly filled)
 - conductivity σ (T=0) \neq 0 (σ = 1/ ρ)
 - elementary excitations: a few electron-hole pairs (fermions; weakly interacting – "Fermi liquid")
 - hard to affect, stable, robust

� <u>Insulators:</u> large energy gap (> 5 eV≈ 50 000 K; room T ≈ 300 K)

- Conduction band (empty)
 - σ (T=0) = 0
 - elementary excitations: collective modes (phonons, spin waves; typically bosons)
 - hard to affect, stable, robust

Valence band (filled)

Popović - Boulder 2009 lectures

- Semiconductors: insulators with E_G < 1-2 eV (~ 10 000 K); some electrons in the conduction band at room T as a result of thermal fluctuations
- Doped insulators: small Fermi energy
 - kT
- intentional adding of specific impurities (dopant)
 - **introducing new charge carriers**
- easy (!!!) to affect and control (ρ depends on doping)
- elementary excitations: ???? (no simple picture)

So, are doped semiconductors metals $[\sigma(T=0)\neq 0]$?

Doped semiconductors: Si:P – a classic example (the basis of semiconductor technology!)

- Si-group IV element (four valence electrons)
- **P** group V element (five valence electrons; substitutional impurity)
- the fifth P electron is only weakly bound to the P atom

Carriers but no conductivity at T=0!!?

What do the experiments say?

Metal-insulator transition

Low-temperature (< 1 K) conductivity: experiment (Si:P)

What's missing???

- high density kinetic energy (Fermi energy) dominates
- low density potential energy dominates:
- electron-electron interactions(Mott insulator)

disorder due to impurities, defects (Anderson insulator)

Result: formation of localized (bound) states \implies no conduction

•"dynamical scaling" in the critical region: $\sigma(n_s,T) \propto T^x f(T/\delta_n^{zv})$

• power-law critical behavior: $\sigma(n_s, T=0) \propto \delta_n^{\mu}$

Theoretical problems: no broken symmetry; order parameter? No small parameter; elementary excitations? Standard approaches fail

It gets even more complicated...

- Coulomb repulsion: keep electrons apart (uniform density)
- Random potential: nonuniform density
- competition between Coulomb interactions and disorder

Experimental signature: slow, out-of-equilibrium dynamics

• Slow nonequilibrium dynamics – similarities to other glasses?

• Unifying ideas, concepts?

Relevance for the MIT?

Three basic mechanisms for electron localization:

Metal-insulator transition and glassiness –

two of the most fundamental problems in condensed matter physics

Coulomb glass

 expected in Anderson insulators with strong electron-electron interactions [M. Pollak (1970); Efros, Shklovskii (1975); Davies, Lee, Rice (1982,84)]

Observations of glassiness in electronic systems – very few:

- slow relaxations in GaAs capacitance (Monroe et al.)
- slow relaxations and thermal hysteresis in conductivity of granular films (Goldman *et al.*, Wu *et al.*, Frydman *et al.*)
- slow relaxations of photoconductivity in $YH_{3-\delta}$ (Lee *et al.*)
- slow relaxations, aging, memory in conductivity of InO_x (<u>Ovadyahu *et al.*</u>) and granular Al (Grenet *et al.*)
- 2D electrons in Si (DP *et al.*): slow relaxations, aging, memory; slow, correlated dynamics – from insulating to (poorly) metallic

my work

• lightly doped cuprates (DP et al.)

Complex behavior of high-T_C superconductors

• only a few per cent of dopants cause a transition from an insulating to a (super) conducting state

• undoped parent compound (e.g. La₂CuO₄): Mott insulator, not a metal

• single-electron band theory of solids fails also here

Nanoscale charge inhomogeneities

$Ca_{2-x}Na_{x}CuO_{2}Cl_{2}$

[Kohsaka *et al.*, Phys. Rev. Lett. 93, 097004 (2004)]

• global phase separation not possible because of <u>charge neutrality</u>

("stripe- and clumpforming systems")

[Reichhardt *et al.*, Europhys. Lett. 72, 444 (2005)]

Some other complex, strongly correlated electronic systems

Percolative conduction in half-metallic-FM and insulatingferroelectric mixture of (La,Lu,Sr)MnO₃ (Park *et al.*, 2004).

Emergence of intermediate heterogeneous phases due to the existence of several **competing ground states**

Dynamics?

• quantum effects important

Metal-insulator transition in two dimensions

Is there a true (T=0) metallic state in 2D?

• Theoretical arguments from the 1980s:

no true (T=0) metallic state or MIT in 2D

Noninteracting electrons: always localized

Strong disorder: $\sigma \sim \exp \left[-(T/T_0)^{1/p}\right] p=1, 2, 3$
[strong localization]Weak disorder: $\sigma = ne^2 \tau/m^* + A(e^2/h) \ln (T/T_0)$
[weak localization; Abrahams, Anderson, Licciardello,
Ramakrishnan, PRL 42, 673 (1979)]

Weakly interacting electrons: always localized (also In T) [Altshuler, Aronov, SSC 39, 115, (1979); JETP 50, 968 (1979)]

<u>Strongly interacting</u> electrons:

No disorder: Wigner crystal (insulator)

But:

- mid 1990s present: experiments suggesting a true MIT in 2D
- an active research area in both theory and experiment

What about *strongly interacting* systems with weak disorder? Can *strong* electron-electron interactions cause delocalization?

Theory:

- early calculations perturbative (In T leading corrections)
- a hint from theory [Finkel'stein, Z. Phys. B 56, 189 (1984)] that the 2D metal might be possible, but theory uncontrolled at low T...
- Punnoose, Finkel'stein, Science 310, 289 (2005): interaction contribution changes sign and wins over weak localization!

2D metal possible!

But:

• this theory probably does **NOT** describe experiments

Practical realizations of 2D systems

• thin films

• semiconductor heterostructures at sufficiently low temperatures (e.g. Si MOSFET and AlGaAs/GaAs)

• **quasi-2D** systems: layered structures (*e.g.* cuprates)

Back to transistors...:

Si MOSFET – the basis of semiconductor technology

Metallic gate **Poly Si gate** SiO₂ Source Drain Substrate

Metal-Oxide-Semiconductor Field-Effect Transistor – conducts current because of the effect of the electric field (V applied to the gate) at the surface of Si

Popović - Boulder 2009 lectures

Gate, source, drain, substrate – all doped Si (in the old days, gate was Al)

Si MOSFET: a capacitor!

Popović - Boulder 2009 lectures

- electrons confined in a narrow potential well at the interface
 - motion perpendicular to the interface ("z-direction") is quantized
- discrete energy levels (subbands) for motion in the z-direction; energy levels:

$$E = E_n + (k_x^2 + k_y^2)\hbar^2/2m^*, n = 0, 1, 2, ...$$

electrons free to move in a plane parallel to the interface

- 2D systems studied extensively since late 1960s [Fowler, Fang, Howard, and Stiles, PRL 16, 901 (1966): 2D in Si MOSFETs]
- dimensionality plays a fundamental role in many phenomena (e.g. integer and fractional quantum Hall effects observed in 2D systems in high magnetic fields – Nobel prizes in physics, 1985 and 1998)

Room for more???

2D density of states: $D(E)=g_sg_v m^*/2\pi\hbar^2 = const$ (g_s, g_v – spin and valley degeneracies)

Add disorder

Carrier density n_s (=D(E)E_F at T=0; E_F - Fermi energy) can be tuned continuously over two orders of magnitude (!) by varying V_g

band tail (strongly localized states)

Disorder due to (Na+) ions randomly distributed throughout SiO₂ (frozen out below ~100 K), and to surface roughness

2D electrons move in a

smooth random potential

Strong Coulomb interactions and disorder!

Local compressibility

- as the density approaches n_c from the metallic side, 2DHG fragments into localized charge configurations that are distributed in space
- ⇒ insulating phase is spatially inhomogeneous
- the structure with sharp spikes emerges already at n>n_c (on the metallic side of the MIT!)

Dynamics? Coulomb glass?

[Ilani, Yacoby, Mahalu, Shtrikman, Science 292, 1354 (2001); also, PRL 84, 3133 (2000); 2D holes in GaAs]

- **Metal-insulator transition:** a fundamental problem of relevance to many interesting materials
- Problem: strongly (Coulomb) interacting electrons in a random potential ⇒ expect frustration, dynamic inhomogeneities
- 2D systems in semiconductors:
 - easy to use; can be precisely engineered (semiconductor technology!)
 - control and vary density (interactions) and disorder independently
 - "simple" no magnetic or structural degrees of freedom

(unlike *e.g.* cuprates)

Lectures II and III: study electron dynamics as n_s is varied through the MIT

Evidence of a phase transition? What can we learn about the MIT and out-of-equilibrium dynamics in general?

Literature I

- Doped semiconductors; strong localization (Anderson and Mott insulators), variable-range hopping transport:
 B.I. Shklovskii and A.L. Efros, *Electronic Properties of Doped Semiconductors* (Springer-Verlag, Berlin, 1984) out of print; http://www.tpi.umn.edu/shklovskii/
- Disorder and interactions; metal-insulator transition (3D, 2D); inhomogeneous phases; glassy behavior
 E. Miranda and V. Dobrosavljević, *Disorder-Driven non-Fermi Liquid Behavior of Correlated Electrons*, Rep. Prog. Phys. 68, 2337 (2005)
- E. Dagotto, *Complexity in Strongly Correlated Electronic Systems*, Science 309, 257 (2005) a very brief (few pages) review
- Metal-insulator transition in 2D basic issues:
 E. Abrahams, S.V. Kravchenko, M.P. Sarachik, *Metallic Behavior and Related Phenomena in Two Dimensions*, Rev. Mod. Phys. 73, 251 (2001)
- Weak localization and e-e interaction effects in metals: P.A. Lee and T.V. Ramakrishnan, *Disordered Electronic Systems*, Rev. Mod. Phys. 57, 287 (1985)
- 2D systems in Si and other semiconductors basics:

T. Ando, A.B. Fowler, and F. Stern, *Electronic Properties of Two-Dimensional Systems*, Rev. Mod. Phys. 54, 437 (1982)