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1. “Real” Chains 

 

2. Thermodynamics of Mixtures 

 

3. Polymer Solutions 

Outline 



Summary of Ideal Chains 
Ideal chains: no interactions between monomers separated by many bonds 

Mean square end-to-end distance of ideal linear polymer 22 NbR 

Mean square radius of gyration of ideal linear polymer 
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Probability distribution function 

Free energy of an ideal chain 
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Entropic Hooke’s Law R
Nb

kT
f


2

3


Pair correlation function 
2

13
)(

rb
rg






Real Chains 
Include interactions between all monomers 

Short-range (in space) interactions 

Probability of a monomer to be in contact with another monomer 

for d-dimensional chain 
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If chains are ideal 2/1bNR  2/1* dN  small for d>2 

Number of contacts between pairs of monomers that are far along 

the chain, but close in space 
2/2* dNN  small for d>4 

For d<4 there are many contacts between monomers in an ideal chain. 

Interactions between monomers change conformations of real chains. 



Life of a Polymer is a Balance 
of entropic and energetic parts of free energy 

Fent Feng 

Entropic part “wants”  

chains to have ideal-like  

conformations 

Energetic part typically 

“wants” something else 

(e.g. fewer monomer- 

monomer contacts 

in a good solvent). 

Chain has to find a compromise between these two desires 

and optimize its shape and size. 
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Flory Theory 
Number density of monomers in a chain is  N/R3 

Probability of another monomer being within excluded  

volume v of a given monomer is vN/R3 
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Excluded volume interaction energy per monomer  kTvN/R3 

Excluded volume interaction energy per chain  kTvN2/R3 

Entropic part of the free energy is of order  kTR2/(Nb2) 

Flory approximation of the total free energy of a real chain 

Free energy is minimum at 5/35/25/1 NbvR 

Universal relation NR ~
 - Flory scaling exponent 

More accurate estimate 588.0
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Radius of gyration of polystyrene chains in a q-solvent (cyclohexane  

at 34.5oC) and in a good solvent (benzene at 25oC).  

Fetters et al J. Phys. Chem. Ref. Data 23, 619 (1994)  



Polymer Under Tension 

Rf 
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Unperturbed size 
2/1

0 bNR  5/3bNRF 

Tension blobs (Pincus blobs) of size x  

contain g monomers 

2/1bgx
5/3bgx

Chains are almost unperturbed on length scales up to x  

On larger length scales they are stretched arrays of Pincus blobs 
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Polymer Under Tension 

Size of Pincus blobs 
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Free energy cost for stretching a chain is on order kT per blob 
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Ideal chain Real chain 

Tension force is on order kT divided by blob size x 
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R0 RF Rmax 

Rf 

linear elasticity non-linear elasticity 

even at low forces 

0 
For b = 1nm at room T 

kT/b = 4pN Log – log plot 



Polymer Under Tension 
Ideal chain Real chain 

  fRRkTf 2
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R0 Rmax 

Rf linear elasticity non-linear elasticity 

Challenge Problem 1: Pulling a Ring 
Consider a pair of forces applied to monomers 1 and 1+N/2 

i.    Show that the modulus of an ideal ring  

      is twice the modulus of a linear N/2-mer 

ii. How does modulus of a ring in a good solvent Gr  

      compare to twice the modulus of linear N/2-mer GN/2? 
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a. Gr = 2GN/2  similar to ideal case 

b.    Gr < 2GN/2  because the entropy of sections of a ring is lower 

c.    Gr > 2GN/2  because ring sections reinforce each other 



Biaxial Compression 
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Ideal chain Real chain 
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R|| 

On length scales smaller than compression blob of size D chain is almost 

unperturbed  2
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Free energy of confinement 
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Challenge Problem 2:  

Biaxial Confinement of a Semiflexible Chain 

Consider a semiflexible polymer – e.g. double-

stranded DNA with Kuhn length b=100nm and 

contour length L=16mm. 

Assume that excluded volume diameter of double 

helix is d=3nm (larger than its actual diameter 

2nm due to electrostatic repulsions). 

Calculate the size RF of this lambda phage DNA in dilute solution 

and the length R|| occupied by this DNA in a cylindrical channel 

of diameter D (for d<D<RF). 
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Uniaxial Compression 

D 

Free energy of confinement in a slit is the 

same as in the cylindrical pore 

Longitudinal size of an ideal chain in a slit is the same as for an 

unperturbed ideal chain. 2/1
|| bNR 

2-dimensional Flory theory for real chain confined in a slit 
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D2 is the excluded area  

of a confinement blob  

with g monomers 

Longitudinal size of a real chain in a slit 
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Fractal dimension of real chains in 2-d is D = 4/3 



Scaling Model of Real Chains 
Thermal blob - length scale at which excluded 

 volume interactions are of order kT kT
g
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Chain is ideal on length scales smaller than thermal blob 
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26 vbgT 

Size of a thermal blob 
v

b
T

4

x

xT 
R 

xT 

Rgl 

5/3
5/1

3

5/3

N
b

v
b

g

N
R

T
T 

















 x 3/1

3/1

2
3/1

N
v

b

g

N
R

T

T 







 x

good solvent v>0 

poor solvent v<0 



Flory Theory of a Polymer in a Poor Solvent 
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Cost of Confinement 

2NbR 
Compression blob of size R 

with g monomers 
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Three Body Repulsion 
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Size of a globule 
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Real Chains in Different Solvents 



Temperature Dependence of Chain Size 

Mayer f-function 
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Interaction parameter z is related to number of thermal blobs per chain 
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Chain contraction in a poor solvent 
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Graessley et.al., Macromolecules 

32, 3510, 1999 & I. Withers 

Polystyrene in decalin 

Berry, J. Chem. Phys.  

44, 4550, 1966 

Universal Temperature Dependence  

of Chain Size 



Summary for Real Chains 

2/1bNR q

Size of Linear Chains 

nearly ideal in q-solvents 
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swollen in good solvents 

588.0bNbNRathermal   in athermal solvents 
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 collapsed into a globule in poor solvents 

In good solvents 
Stretching a real chain  
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non-Hookean elasticity  

Confinement of a real chain  
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1. Real Chains 

 

2. Thermodynamics of Mixtures 

 

3. Polymer Solutions 

Outline 



Assume, for simplicity, no volume change on mixing 

Consider a mixture with total number n of monomers (sites) 

and total volume v0n where v0 – volume of a lattice site 

Assume that a monomer of each species occupies the same volume v0 

Binary Mixtures 
Homogeneous – if components are intermixed on a molecular scale 

Heterogeneous – if there are distinct phases 

Volume fractions 
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VA VB VA+VB 
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A n =  n monomers of type A and B nB = (1- n monomers of type B 



Entropy of Mixing 

+ = 

 - volume fraction of A 

nv0 1nv0 nv0 
v0 – volume of a lattice site 

Number of translational states of a molecule 

in a mixture is the number of sites n 
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Entropy change upon mixing of a molecule A 
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nA/NA and nB/NB – number of A and B molecules 

Total entropy change upon mixing 
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Infinite  

slopes 

1 - volume fraction of B 



z – coordination number  

     (number of neighbors) 

uij – interaction of i with j 

Average energy per monomer of pure components  

before mixing   BBAAi uu
z

u   1
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Mean Field Theory 
Average energy per A monomer 

  ABAAA uu
z

u   1
2

B monomer with probability 1 –   A 
? 

? 
? ? 

? 
? 

A monomer with probability  
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Energy of a Homogeneous Mixture 



Energy of Mixing 
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Flory interaction parameter    

Regular solution: NA = NB = 1 Polymer solution: NA = N >>1,  NB = 1 

Polymer blend: NA >>1,  NB >> 1 



At lower T for >0  repulsive 

interactions are important and  

there is a composition range 

 

with thermodynamically stable 

phase separated state. 

Flory-Huggins Free Energy of Mixing 
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At high T entropy of mixing dominates, 

Fmix is convex and homogeneous  

mixture is stable at all compositions. 
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This composition range, called 

miscibility gap, is determined by 

the common tangent line. 



Phase Diagrams 
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Phase Diagram of Polymer Solutions 

M=53.3kg/mole 

Polyisoprene in dioxane 

Takano et al., Polym J. 17, 1123, 1985 

Single Phase 

Two Phases 

spinodal 

binodal 

Polymer solutions phase separate upon decreasing 

solvent  quality below q-temperature 

Upper critical solution temperature B>0 

Solution phase separates below 

the binodal in poor solvent 

regime into a dilute supernatant 

of isolated globules at ` and 

concentrated sediment at ``.  ` 
” 
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Intermolecular Interactions 

Osmotic pressure 
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Osmometer 

Poly(a-methylstyrene) 

in toluene at 25 oC 

Noda et al, Macromol. 

16, 668, 1981 

A2 – second virial coefficient 



Mixtures at Low Compositions 
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Expand ln(1-) in powers of composition  

Osmotic pressure 
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Virial expansion in powers  

of number density cn = /b3 
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Polymer Melts 
Consider a blend with a small concentration of NA chains in a melt 

of chemically identical NB chains. 

No energetic contribution to mixing   = 0. 

Excluded volume 
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  is very small for NB >> 1 

Thermal blob 
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Chains smaller than thermal blob NA < NB
2  are nearly ideal. 

In monodisperse NA = NB and weakly polydisperse  

melts chains are almost ideal. 

In strongly asymmetric blends NA > NB
2  

long chains are swollen 
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Challenge Problem 3: 



Challenge Problem 4: 

v0 – volume of a lattice site = volume of a small B monomer 

mv0 – volume of an A monomer m times larger than B monomer 

Mixing of Polymers with Asymmetric Monomers 

NA – monomers  

per A chain 

NB – monomers  

per B chain 

Derive the free energy of mixing 

Fmix of A and B polymers. 

Calculate the size RA of dilute A-

chains in a 2-d of B-chains for 

m>>1 in the case of =0. 



Summary of Thermodynamics of Mixtures 

Free energy of mixing consists of entropic and energetic parts. 

Entropic part per unit volume (translational entropy of mixing Smix ) 
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Energetic part per unit volume 
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Umix

Many low molecular weight liquids are miscible 

Some polymer – solvent pairs are miscible 

Very few polymer blends are miscible 

vA – volume of A chain 

vB – volume of B chain 

v0 – volume of a lattice site 

T

B
A Flory interaction parameter 

Chains are almost ideal in polymer melts as long as they are  

shorter than square of the average degree of polymeriztion NA<N2 



1. Real Chains 

 

2. Thermodynamics of Mixtures 

 

3. Polymer Solutions 

Outline 



Which of These Chains are Ideal? 

Quiz #1 

C. Chain in a sediment of a polymer solution  

      in a poor solvent 

A. Polymer in a solution of its monomers 

B. Polymer dissolved in a melt of identical chains 

D. None of the above 
sediment 



Polymer Solutions 

 

T 

2-phase 

Tc 

` ``  

1/2 c 0 

poor solvent 

Theta solvent 

  021 33 


 b
T

T
bv

q


Chains are nearly ideal 

at all concentrations NbR 

Overlap concentration 

NR

Nb 1
3

3
* q

good solvent 

q dilute q 
* 

  *   * *1 

semidilute 

 qsolvent 

Chain is ideal if it is smaller than  

thermal blob               

v

b
T

4

x

Boundaries of dilute q-regime 

N

b
b

T

T
bv

3
3321 




q












N
T

1
1qTemperatures at which chains begin  

to either swell or collapse 

v 



Poor Solvent 

Critical composition 
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Critical interaction 

parameter 

M = 43.6 kg/mole 

Solution phase separates below  

the binodal  into a dilute supernatant  

of isolated globules at ` and  

concentrated sediment at ``. 

` 
`` 

Sediment concentration `` is determined by the balance of second and 

third virial term (similar to the concentration inside globules). 
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Polystyrene in cyclohexane ( ) and 

polyisobutylene in diisobutyl ketone ( ) 

Shultz and Flory, J. Am. Chem. Soc. 

74, 4760, 1952 

M = 1,270 kg/mole 



Poor Solvent 
Dilute Supernatant of Globules 

Globules behave as liquid droplets with size  
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Surface tension is of order kT per thermal blob 
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Concentration of a dilute supernatant 
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is balanced by its translational entropy kTln’ 

is different from the  

mean field prediction. 
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Overlap concentration 
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Semidilute solutions *1 

x 

Correlation length x 

Distance from a monomer to nearest 

monomers on neighboring chains. 



Correlation Length 

x 

R 

For r < x monomers are surrounded by 

solvent and monomers from the same chain. 

The properties of this section of the chain  

of size x are the same as in dilute solutions. 

g – number of monomers inside a correlation  

volume, called correlation blob. 

For r > x sections of neighboring chains overlap and screen each other. 

On length scales r > x polymers are ideal chains - melt  

with N/g effective segments of size x.  

Correlation blobs are at overlap 
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Semidilute Solutions 
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On length scales less than xT  chain is ideal because excluded volume 

interactions are weaker than kT. 
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r ~ n1/2 

On length scales larger than xT  but smaller than x excluded volume 

interactions are strong enough to swell the chain. r ~ n3/5 

On length scales larger than x excluded volume interactions are  

screened by surrounding chains. 
r ~ n1/2 

xT 



Scaling Theory of Semidilute Solutions 

At overlap concentration 
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Chains in semidilute solutions are random walks 
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yy

F N
b

v
bR 




x 5/)43(

5/)31(

3*




























is independent of N in 

semidilute solution 3 + 4y = 0 
y = -3/4 4/3

4/134/3

*
































 




x

v

b
bRF



Concentrated Solutions 
Correlation length x decreases with concentration, while thermal blob 

size xT  is independent of concentration. 

At concentration ** the two length are equal             and 

intermediate swollen regime disappears. 
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This concentration is analogous to ’’ in poor solvent at 

which two- and three-body interactions are balanced. 

In concentrated solutions chains are ideal at all length scales. 

On length scales less than x  chains are ideal because excluded volume 

interactions are weaker than kT. 

On length scales larger than x chains are ideal because excluded  

volume interactions are screened by surrounding chains. 



Polymer Solutions 
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Osmotic Pressure 

In dilute solutions  < * - van’t Hoff Law 
Nb

kT 
3

P

Osmotic pressure P in semidilute solutions  > * is a stronger  

function of concentration 
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Osmotic pressure in semidilute solutions 

is independent of chain length (4z/5-1=0). z=5/4 
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Neighboring blobs repel each other with energy of order kT. 
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Poly(a-methylstyrene) in toluene at 25 oC  

Noda et al, Macromol. 16, 668, 1981 

Concentration Dependence of Osmotic Pressure 



Semidilute Theta Solutions 
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Correlation blobs are space-filling 
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Correlation length in semidilute solutions  

is independent of chain length (1+x)/2 = 0     x=-1 

Scaling assumption for  > * 
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What is the meaning of 

correlation length in semidilute 

theta solutions? 

Quiz # 2 

How different are semidilute theta 

solutions from ideal solutions of 

ideal chains? 



Osmotic Pressure in Semidilute Theta Solutions 

Mean-field prediction 
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First term (van’t Hoff law) is important in dilute solutions 

Three-body term is larger than linear  

in semidilute solutions  > 1/N1/2 
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Scaling Theory 
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Osmotic pressure in semidilute qsolutions 

is independent of chain length (y/2-1=0). y=2 
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Osmotic Pressure 

Polyisobutylene in benzene 

at q24.5 oC (filled circles), 

in benzene at 50 oC (filled 

squares), in cyclohexane at 

30 oC (open circles) and at 

8 oC (open squares) 

Flory and Daoust J. Polym. 

Sci. 25, 429, 1957 

Correlation length in semidilute q-solvents is of the order  

of the distance between 3-body contacts. 

Number density of n-body contacts ~ n/b3 

Distance between n-body contacts in 3-dimensional space 3/n
n br  
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Summary of Polymer Solutions 
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In poor solvent part of the 

diagram binodal separates 

2-phase from 2 single phase 

regions:  

Dilute globules at low  

concentrations  < ’ 

Concentrated solutions 

with overlapping ideal 

chains at  > ” 

Near qtemperature there are dilute and semidilute q-regimes 

with ideal chains. 

Dilute good solvent regime with swollen chains at  < * and v > 0. 

Semidilute good solvent regime at * <  < ** with chains swollen  

at intermediate length scales shorter than correlation length x. 

Osmotic pressure in semidilute solutions is kT per correlation volume x3. 



Challenge Problem 5: 
Confinement of Polymers in Solutions & Melt 

Calculate the pressure between two solid plates fully immersed into 

a semidilute polymer solution or melt as a function of separation D 

between plates for separations smaller than chain size R. 

Assume no attraction between plates and polymer. 

Separately consider cases with correlation length x<D<R and b<D<x 

semidilute polymer  

solution or melt 

D 

x 



Single Chain Adsorption 
xads 

Volume fraction in a chain section of size xads containing g monomers 

Ideal chain Real chain 
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Number of monomers per adsorption blob in contact with the surface 
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Energy gain per monomer in contact with the surface is -ekT 

Energy gain per adsorption blob 
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kT ads 
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Single Chain Adsorption 
xads Ideal chain Real chain 

Size xads and number of monomers g in an adsorption blob 
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Flory Theory of Adsorption 

D 

b 
Fraction of monomers in direct contact  

with the surface is  b/D 

Number of monomers in direct contact  

with the surface is  Nb/D 

Energy gain per monomer contact with 

the surface is  -kTe 

Energy gain from surface interactions per chain 
D

b
kTNF eint

Total free energy is a sum of interaction and confinement parts 
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Ideal chain Real chain 

Optimal thickness 
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xads 

x(z)  z 

z 
de Gennes’ self-similar carpet 

Multi-Chain Adsorption 

First layer is dense packing of adsorption blobs 

Polymer concentration decays from the high value in the first layer. 
 

The correlation length x(z) corresponding to concentration (z) at 

distance z from the surface is of the order of this distance. 
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Single-chain adsorption 
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x Coverage is controlled by 

the first layer of blobs. 
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Alexander – de Gennes Brush 

Grafting density s number of chains per 

unit area. 

Distance between sections of chains 

x  s1/2 

Number of monomers per blob 

g ~ x1/ ~ s-1/(2) 

Thickness of the brush H ~ x N/g ~ Ns(1-)/(2) 

Energy per chain Echain ~ kT N/g ~ kTNs1/(2) 

Energy per unit volume P
3xx

sss kT
kT

Hg

N
kT

H
E

V
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chain

chain
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Polymer Brush Height depends on Grafting Density 

If the grafting density is high, chains 

repel each other and stretch away from 

the surface, forming a polymer brush. 

Mushroom Regime 

unperturbed size 

H ≃ R0 

H ~ N s1/3 


