Polymers Physics Michael Rubinstein
 University of North Carolina at Chapel Hill

Outline

1. "Real" Chains

2. Thermodynamics of Mixtures

3. Polymer Solutions

Summary of Ideal Chains

Ideal chains: no interactions between monomers separated by many bonds
Mean square end-to-end distance of ideal linear polymer $\left\langle R^{2}\right\rangle=N b^{2}$
Mean square radius of gyration of ideal linear polymer $\left\langle R_{g}^{2}\right\rangle=\frac{N b^{2}}{6}$
Probability distribution function $P_{3 d}(N, \vec{R})=\left(\frac{3}{2 \pi N b^{2}}\right)^{3 / 2} \exp \left(-\frac{3 R^{2}}{2 N b^{2}}\right)$
Free energy of an ideal chain $F=\frac{3}{2} k T \frac{\vec{R}^{2}}{N b^{2}}$
Entropic Hooke's Law $\vec{f}=\frac{3 k T}{N b^{2}} \vec{R}$
Pair correlation function $g(r)=\frac{3}{\pi} \frac{1}{r b^{2}}$

Real Chains

Include interactions between all monomers
Short-range (in space) interactions
Probability of a monomer to be in contact with another monomer for d-dimensional chain

$$
\phi^{*} \approx b^{d} \frac{N}{R^{d}}
$$

If chains are ideal $R \approx b N^{1 / 2} \quad \phi^{*} \approx N^{1-d / 2} \quad$ small for $d>2$
Number of contacts between pairs of monomers that are far along the chain, but close in space

$$
N \phi^{*} \approx N^{2-d / 2} \quad \text { small for } d>4
$$

For $d<4$ there are many contacts between monomers in an ideal chain. Interactions between monomers change conformations of real chains.

Life of a Polymer is a Balance of entropic and energetic parts of free energy

Entropic part "wants" chains to have ideal-like conformations

Energetic part typically "wants" something else (e.g. fewer monomermonomer contacts in a good solvent).

Chain has to find a compromise between these two desires and optimize its shape and size.

Flory Theory

Number density of monomers in a chain is N / R^{3}
Probability of another monomer being within excluded volume v of a given monomer is $v N / R^{3}$
Excluded volume interaction energy per monomer $k T v N / R^{3}$
Excluded volume interaction energy per chain $k T v N^{2} / R^{3}$
Entropic part of the free energy is of order $k T R^{2} /\left(N b^{2}\right)$
Flory approximation of the total free energy of a real chain

$$
F \approx k T\left(v \frac{N^{2}}{R^{3}}+\frac{R^{2}}{N b^{2}}\right)
$$

Free energy is minimum at $\quad R \approx v^{1 / 5} b^{2 / 5} N^{3 / 5}$

Universal relation $R \sim N^{V}$
v - Flory scaling exponent
More accurate estimate $v \cong 0.588$

Radius of gyration of polystyrene chains in a θ-solvent (cyclohexane at $34.5^{\circ} \mathrm{C}$) and in a good solvent (benzene at $25^{\circ} \mathrm{C}$).
Fetters et al J. Phys. Chem. Ref. Data 23, 619 (1994)

Polymer Under Tension ${ }^{\circ}$ Ideal chain Real chain

Unperturbed size

$$
R_{0} \approx b N^{1 / 2}
$$

$$
R_{F} \approx b N^{3 / 5}
$$

Tension blobs (Pincus blobs) of size ξ contain g monomers

Chains are almost unperturbed on length scales up to ξ

$$
\xi \approx b g^{1 / 2}
$$

$$
\xi \approx b g^{3 / 5}
$$

On larger length scales they are stretched arrays of Pincus blobs

$$
\begin{aligned}
& R_{f} \approx \xi \frac{N}{g} \approx \frac{N b^{2}}{\xi} \approx \frac{R_{0}^{2}}{\xi} \quad R_{f} \approx \xi \frac{N}{g} \approx \frac{N b^{5 / 3}}{\xi^{2 / 3}} \approx \frac{R_{F}^{5 / 3}}{\xi^{2 / 3}} \\
& \xi \approx \frac{R_{0}^{2}}{R_{f}} \quad \text { Size of Pincus blobs } \\
& \xi \approx \frac{R_{F}^{5 / 2}}{R_{f}^{3 / 2}}
\end{aligned}
$$

Polymer Under Tension Ideal chain
 Real chain

$$
\xi \approx{\frac{R_{0}^{2}}{R_{f}}}^{\text {Size of Pincus blobs }} \xi \approx \frac{R_{F}^{5 / 2}}{R_{f}^{3 / 2}}
$$

Free energy cost for stretching a chain is on order $k T$ per blob
$F \approx k T \frac{N}{g} \approx k T \frac{R_{f}}{\xi} \approx k T\left(\frac{R_{f}}{R_{0}}\right)^{2} \quad F \approx k T \frac{N}{g} \approx k T \frac{R_{f}}{\xi} \approx k T\left(\frac{R_{f}}{R_{F}}\right)^{5 / 2}$
Tension force is on order $k T$ divided by blob size ξ

$$
f \approx \frac{k T}{\xi} \approx \frac{k T}{R_{0}^{2}} R_{f} \approx \frac{k T}{R_{0}} \frac{R_{f}}{R_{0}} \quad f \approx \frac{k T}{\xi} \approx \frac{k T}{R_{F}^{5 / 2}} R_{f}^{3 / 2} \approx \frac{k T}{R_{F}}\left(\frac{R_{f}}{R_{F}}\right)^{3 / 2}
$$

linear elasticity
For $b=1 n m$ at room T

$$
k T / b=4 p N
$$

Polymer Under Tension

Ideal chain

$$
\begin{array}{cr}
f \approx\left(k T / R_{0}^{2}\right) R_{f} & k T / b \uparrow \underbrace{}_{\text {linear elasticity }} \\
& f R_{R_{0}} \\
R_{F} \quad R_{\max }
\end{array}
$$

Real chain

$$
f \approx\left(k T / R_{F}^{5 / 2}\right) R_{f}^{3 / 2}
$$

non-linear elasticity

Challenge Problem 1: Pulling a Ring
Consider a pair of forces applied to monomers 1 and $1+N / 2$
i. Show that the modulus of an ideal ring is twice the modulus of a linear $N / 2$-mer $-\vec{f} / 2+880600 \cap \vec{f} / 2$
$-\vec{f} \varlimsup_{86000 \mathrm{~m}}^{0} \rightarrow \vec{f}$
$-\vec{f} / 2+\infty 0880 \mathrm{~g} \rightarrow \vec{f} / 2$
ii. How does modulus of a ring in a good solvent G_{r} a. $G_{r}=2 G_{N / 2}$ similar to ideal case
b. $\quad G_{r}<2 G_{N / 2}$ because the entropy of sections of a ring is lower
c. $\quad G_{r}>2 G_{N / 2}$ because ring sections reinforce each other

Biaxial Compression Ideal chain

On length scales smaller than compression blob of size D chain is almost unperturbed

$$
g \approx\left(\frac{D}{b}\right)^{2} \quad g \approx\left(\frac{D}{b}\right)^{5 / 3}
$$

Occupied part of the tube

$$
R_{\|} \approx D\left(\frac{N}{g}\right)^{1 / 2} \approx b N^{1 / 2} \quad R_{\|} \approx D\left(\frac{N}{g}\right) \approx\left(\frac{b}{D}\right)^{2 / 3} N b
$$

Free energy of confinement

$$
\begin{array}{cc}
F_{c o n f} \approx k T \frac{N}{g} \approx k T N\left(\frac{b}{D}\right)^{2} & F_{c o n f} \approx k T \frac{N}{g} \approx k T N\left(\frac{b}{D}\right)^{5 / 3} \\
F_{c o n f} \approx k T\left(\frac{R_{0}}{D}\right)^{2} & F_{c o n f} \approx k T\left(\frac{R_{F}}{D}\right)^{5 / 3}
\end{array}
$$

Challenge Problem 2:
 Biaxial Confinement of a Semiflexible Chain

Consider a semiflexible polymer - e.g. doublestranded DNA with Kuhn length $b=100 \mathrm{~nm}$ and contour length $L=16 \mu$ m.

Assume that excluded volume diameter of double helix is $d=3 n m$ (larger than its actual diameter
 2 nm due to electrostatic repulsions).

Calculate the size R_{F} of this lambda phage DNA in dilute solution and the length $R_{\|}$occupied by this DNA in a cylindrical channel of diameter D (for $d<D<R_{F}$).

Uniaxial Compression

Free energy of confinement in a slit is the same as in the cylindrical pore

Longitudinal size of an ideal chain in a slit is the same as for an unperturbed ideal chain. $\quad R_{\|} \approx b N^{1 / 2}$

2-dimensional Flory theory for real chain confined in a slit
D^{2} is the excluded area of a confinement blob with g monomers

$$
F \approx k T\left(D^{2} \frac{(N / g)^{2}}{R_{\|}^{2}}+\frac{R_{\|}^{2}}{(N / g) D^{2}}\right)
$$

Longitudinal size of a real chain in a slit $R_{\|} \approx D\left(\frac{N}{g}\right)^{3 / 4} \approx b N^{3 / 4}\left(\frac{b}{D}\right)^{1 / 4}$
Fractal dimension of real chains in 2-d is $D=4 / 3$

Scaling Model of Real Chains

Thermal blob - length scale at which excluded volume interactions are of order $k T$

$$
\begin{aligned}
& \text { uded } \\
& \left.\qquad k T|v| \frac{g_{T}^{2}}{\xi_{T}^{3}} \approx k T\right]
\end{aligned}
$$

Chain is ideal on length scales smaller than thermal blob $\xi_{T} \approx b g_{T}^{1 / 2}$ Number of monomers in a thermal blob $g_{T} \approx b^{6} / v^{2}$
good solvent $v>0$

$R \approx \xi_{T}\left(\frac{N}{g_{T}}\right)^{3 / 5} \approx b\left(\frac{v}{b^{3}}\right)^{1 / 5} N^{3 / 5}$

Size of a thermal blob $\xi_{T} \approx \frac{b^{4}}{|v|}$ poor solvent $v<0$

$$
R \approx \xi_{T}\left(\frac{N}{g_{T}}\right)^{1 / 3} \approx \frac{b^{2}}{|v|^{1 / 3}} N^{1 / 3}
$$

Flory Theory of a Polymer in a Poor Solvent

$F \approx k T\left(v \frac{N^{2}}{R^{3}}+\frac{R^{2}}{N b^{2}}\right)$
In poor solvent $v<0$ and $\quad R \rightarrow 0$

Cost of Confinement

Compression blob of size R with g monomers

$$
g \approx\left(\frac{R}{b}\right)^{2}
$$

Confinement free energy $F_{\text {conf }} \approx k T \frac{N}{g} \approx k T \frac{N b^{2}}{R^{2}}$

$$
F \approx k T\left(v \frac{N^{2}}{R^{3}}+\frac{R^{2}}{N b^{2}}+\frac{N b^{2}}{R^{2}}\right)
$$

Three Body Repulsion
$F \approx k T\left(\frac{R^{2}}{N b^{2}}+\frac{N b^{2}}{R^{2}}+v \frac{N^{2}}{R^{3}}+w \frac{N^{3}}{R^{6}}\right)$
Size of a globule
$R_{g l} \approx\left(\frac{w N}{|v|}\right)^{1 / 3}$

Real Chains in Different Solvents

Temperature Dependence of Chain Size

Mayer f-function

$$
f(r)=\exp \left[-\frac{U(r)}{k T}\right]-1 \approx\left\{\begin{array}{cc}
-1 & \text { for } r<b \text { where } U(r) \gg k T \\
-\frac{U(r)}{k T} & \text { for } r>b \text { where }|U(r)|<k T
\end{array}\right.
$$

Excluded volume

$$
v \approx-4 \pi \int_{0}^{\infty} f(r) r^{2} d r \approx 4 \pi \int_{0}^{b} r^{2} d r+\frac{4 \pi}{k T} \int_{b}^{\infty} U(r) r^{2} d r \approx\left(1-\frac{\theta}{T}\right) b^{3}
$$

Interaction parameter z is related to number of thermal blobs per chain

$$
z \approx \sqrt{\frac{N}{g_{T}}} \approx \frac{v}{b^{3}} N^{1 / 2} \approx \frac{T-\theta}{T} N^{1 / 2} \quad g_{T} \approx \frac{b^{6}}{v^{2}}
$$

Chain contraction in a poor solvent

$$
\frac{R}{b N^{1 / 2}} \approx|z|^{-1 / 3}
$$

Chain swelling in a good solvent

$$
\frac{R}{b N^{1 / 2}} \approx z^{2 v-1}
$$

Universal Temperature Dependence of Chain Size

Monte-Carlo simulations
Graessley et.al., Macromolecules 32, 3510, 1999 \& I. Withers

Polystyrene in decalin Berry, J. Chem. Phys. 44, 4550, 1966

Summary for Real Chains

Size of Linear Chains

$R_{\theta} \approx b N^{1 / 2}$ nearly ideal in θ-solvents
$(v)^{2 v-1}(v)^{0.18}$
Excluded volume

$$
v \approx b^{3}\left(\frac{T-\theta}{T}\right)
$$

$R_{\text {good }} \approx b\left(\frac{v}{b^{3}}\right)^{2 v-1} N^{v} \approx b\left(\frac{v}{b^{3}}\right)^{0.18} N^{0.588}$ swollen in good solvents
$R_{\text {athermal }} \approx b N^{V} \approx b N^{0.588}$ in athermal solvents
$R_{\text {poor }} \approx|v|^{-1 / 3} b^{2} N^{1 / 3} \quad$ collapsed into a globule in poor solvents

In good solvents

Stretching a real chain
$F \approx k T\left(\frac{R}{R_{F}}\right)^{1 /(1-v)} \approx k T\left(\frac{R}{R_{F}}\right)^{2.43}$

Confinement of a real chain

$$
F \approx k T\left(\frac{R_{F}}{D}\right)^{1 / v} \approx k T\left(\frac{R_{F}}{D}\right)^{1.7}
$$

Outline

1. Real Chains

2. Thermodynamics of Mixtures

3. Polymer Solutions

Binary Mixtures

Homogeneous - if components are intermixed on a molecular scale Heterogeneous - if there are distinct phases

Assume, for simplicity, no volume change on mixing
Consider a mixture with total number n of monomers (sites) and total volume $v_{0} n$ where v_{0} - volume of a lattice site

Assume that a monomer of each species occupies the same volume v_{0}

$$
\phi_{A}=\frac{V_{A}}{V_{A}+V_{B}}=\phi \quad \phi_{B}=1-\phi
$$

Volume fractions
$\phi_{A} n=\phi n$ monomers of type A and $\phi_{B} n_{B}=(1-\phi) n$ monomers of type B

Entropy of Mixing

$\phi n v_{0} \quad(1-\phi) n v_{0}$

ϕ - volume fraction of A (1- ϕ) - volume fraction of B v_{0} - volume of a lattice site

Number of translational states of a molecule in a mixture is the number of sites n

$$
\Omega_{A B}=\frac{V_{A}+V_{B}}{v_{0}}=n
$$

Number of states of molecule A in a pure A phase
$\Omega_{A}=\frac{V_{A}}{v_{0}}=n \phi$
Entropy change upon mixing of a molecule A
$\Delta S_{A}=k \ln \Omega_{A B}-k \ln \Omega_{A}=k \ln \left(\frac{\Omega_{A B}}{\Omega_{A}}\right)=k \ln \frac{1}{\phi}=-k \ln \phi$ $\mathrm{n}_{\mathrm{A}} / \mathrm{N}_{\mathrm{A}}$ and $\mathrm{n}_{\mathrm{B}} / \mathrm{N}_{\mathrm{B}}$ - number of A and B molecules

Total entropy change upon mixing
$\Delta S=\frac{n_{A}}{N_{A}} \Delta S_{A}+\frac{n_{B}}{N_{B}} \Delta S_{B}=-k\left[\frac{n_{A}}{N_{A}} \ln \phi+\frac{n_{B}}{N_{B}} \ln (1-\phi)\right]$

Energy of a Homogeneous Mixture Mean Field Theory

Average energy per A monomer
(2) (2) A monomer with probability ϕ
u_{ij} - interaction of i with j
(?) (A)? ? B monomer with probability $1-\phi$

$$
u_{A}=\frac{z}{2}\left[\phi u_{A A}+(1-\phi) u_{A B}\right]
$$

Z - coordination number (number of neighbors)

Average energy per B monomer $u_{B}=\frac{z}{2}\left[\phi u_{A B}+(1-\phi) u_{B B}\right]$
Average energy per monomer in homogeneous mixture

$$
\begin{aligned}
u_{f} & =\frac{n_{A} u_{A}+n_{B} u_{B}}{n}=\phi u_{A}+(1-\phi) u_{B}= \\
& =\frac{z}{2}\left[\phi^{2} u_{A A}+2 \phi(1-\phi) u_{A B}+(1-\phi)^{2} u_{B B}\right]
\end{aligned}
$$

Average energy per monomer of pure components
 before mixing $u_{i}=\frac{z}{2}\left[\phi u_{A A}+(1-\phi) u_{B B}\right]$

Energy of mixing $u_{m}=u_{f}-u_{i}$

Energy of Mixing

$\Delta U_{m}=n u_{m}=n \phi(1-\phi) z\left[u_{A B}-\frac{u_{A A}+u_{B B}}{2}\right]=n \phi(1-\phi) k T \chi$
Flory interaction parameter χ

$$
\chi=\frac{z}{k T}\left[u_{A B}-\frac{u_{A A}+u_{B B}}{2}\right]
$$

Probability of AB contact $\phi(1-\phi)$

Energy change on mixing per site $\quad u_{m}=k T \chi \phi(1-\phi)$

Free Energy of Mixing

$$
\Delta F_{m}=\Delta U_{m}-T \Delta S_{m}
$$

per site $\quad \frac{\Delta F_{m}}{n}=k T\left[\frac{\phi}{N_{A}} \ln \phi+\frac{(1-\phi)}{N_{B}} \ln (1-\phi)+\chi \phi(1-\phi)\right]$
Regular solution: $N_{A}=N_{B}=1 \quad$ Polymer solution: $N_{A}=N \gg 1, N_{B}=1$
Polymer blend: $N_{A} \gg 1, N_{B} \gg 1$

Flory-Huggins Free Energy of Mixing

$$
\frac{\Delta F_{m i x}}{n}=k T\left(\frac{\phi}{N_{A}} \ln \phi+\frac{1-\phi}{N_{B}} \ln (1-\phi)+\chi \phi(1-\phi)\right)
$$

At high T entropy of mixing dominates, $\Delta F_{m i x}$ is convex and homogeneous mixture is stable at all compositions.

At lower T for $\chi>0$ repulsive interactions are important and there is a composition range

$$
\phi^{\prime}<\phi<\phi^{\prime \prime}
$$

with thermodynamically stable phase separated state.

This composition range, called miscibility gap, is determined by the common tangent line.

Phase Diagrams

$$
\frac{\Delta F_{m i x}}{n}=k T\left(\frac{\phi}{N_{A}} \ln \phi+\frac{1-\phi}{N_{B}} \ln (1-\phi)+\chi \phi(1-\phi)\right)
$$

For $\chi<\chi_{\mathrm{cr}}$ mixture is stable at all compositions.
For $\chi>\chi_{c r}=\frac{1}{2}\left(\frac{1}{\sqrt{N_{A}}}+\frac{1}{\sqrt{N_{B}}}\right)^{2}$
there is a miscibility gap for $\phi^{\prime}<\phi<\phi^{\prime \prime}$
Critical composition $\quad \phi_{c r}=\frac{\sqrt{N_{B}}}{\sqrt{N_{A}}+\sqrt{N_{B}}}$
For a symmetric blend $N_{A}=N_{B}=N$

$$
\chi_{c r}=2 / N \quad \phi_{c r}=1 / 2
$$

For polymer solutions $N_{A}=N, N_{B}=1$

$$
\chi_{c r}=\frac{1}{2}+\frac{1}{\sqrt{N}}+\frac{1}{2 N} \quad \phi_{c r} \cong \frac{1}{\sqrt{N}}
$$

Phase Diagram of Polymer Solutions

$$
\chi=A+\frac{B}{T}
$$

Polymer solutions phase separate upon decreasing solvent quality below θ-temperature

Upper critical solution temperature $\mathrm{B}>0$

Solution phase separates below the binodal in poor solvent regime into a dilute supernatant of isolated globules at ϕ and concentrated sediment at $\phi^{\prime \prime}$.
dilute supernatant concentrated

Polyisoprene in dioxane
Takano et al., Polym J. 17, 1123, 1985

Intermolecular Interactions

Osmometer

Poly(α-methylstyrene) in toluene at $25^{\circ} \mathrm{C}$ Noda et al, Macromol. 16, 668, 1981

Osmotic pressure
$\Pi=R T\left(\frac{c}{M_{n}}+A_{2} c^{2}+\ldots\right)$
A_{2} - second virial coefficient

Mixtures at Low Compositions

$$
\frac{\Delta F_{m i x}}{n}=k T\left(\frac{\phi}{N_{A}} \ln \phi+\frac{1-\phi}{N_{B}} \ln (1-\phi)+\chi \phi(1-\phi)\right)
$$

Expand $\ln (1-\phi)$ in powers of composition ϕ

$$
\frac{\Delta F_{m i x}}{n} \cong k T\left(\frac{\phi}{N_{A}} \ln \phi+\phi\left(\chi-\frac{1}{N_{B}}\right)+\frac{\phi^{2}}{2}\left(\frac{1}{N_{B}}-2 \chi\right)+\frac{\phi^{3}}{6 N_{B}}+\ldots\right)
$$

Osmotic pressure

$$
\Pi \equiv-\left.\frac{\partial \Delta F_{m i x}}{\partial V}\right|_{n_{A}}=\frac{\phi^{2}}{b^{3}} \frac{\partial\left(\frac{\Delta F_{m i x}}{n \phi}\right)}{\partial \phi}=\frac{k T}{b^{3}}\left(\frac{\phi}{N_{A}}+\left(\frac{1}{N_{B}}-2 \chi\right) \frac{\phi^{2}}{2}+\frac{\phi^{3}}{3 N_{B}}+\ldots\right)
$$

Virial expansion in powers of number density $c_{n}=\phi / b^{3}$

$$
\Pi=k T\left(\frac{c_{n}}{N_{A}}+\frac{v}{2} c_{n}^{2}+w c_{n}^{3}+\ldots\right)
$$

Excluded volume $v=\left(\frac{1}{N_{B}}-2 \chi\right) b^{3} \quad$ 3-body interaction $w=\frac{b^{6}}{3 N_{B}}$
In polymer solutions $N_{B}=1 \quad \frac{v}{b^{3}}=1-2 \chi=\frac{T-\theta}{T}=\frac{2 A_{2} M_{0}^{2}}{b^{3} N_{A v}}$

Polymer Melts

Consider a blend with a small concentration of N_{A} chains in a melt of chemically identical N_{B} chains.
No energetic contribution to mixing $\chi=0$.
Excluded volume $v=\left(\frac{1}{N_{B}}-2 \chi\right) b^{3}=\frac{b^{3}}{N_{B}}$ is very small for $N_{B} \gg 1$
Flory Theorem Thermal blob $\quad g_{T} \approx \frac{b^{6}}{v^{2}}=N_{B}^{2} \quad \xi_{T} \approx b \sqrt{g_{T}} \approx b N_{B}$ Chains smaller than thermal blob $N_{A}<N_{B}{ }^{2}$ are nearly ideal. In monodisperse $N_{A}=N_{B}$ and weakly polydisperse
 melts chains are almost ideal.

In strongly asymmetric blends $N_{A}>N_{B}{ }^{2}$ long chains are swollen
$R_{A} \approx \xi_{T}\left(\frac{N_{A}}{g_{T}}\right)^{3 / 5} \approx b N_{B}\left(\frac{N_{A}}{N_{B}^{2}}\right)^{3 / 5} \approx b N_{A}^{1 / 2}\left(\frac{N_{A}}{N_{B}^{2}}\right)^{1 / 10}$

Challenge Problem 3:

 Long \mathbf{N}_{A}-mer in a 3-d Melt of $\mathbf{N}_{\mathbf{B}}$-mers

Why doesn't Flory Theorem work?

Challenge Problem 4:

 Mixing of Polymers with Asymmetric Monomers
N_{B} - monomers per B chain
v_{0} - volume of a lattice site $=$ volume of a small B monomer
$m v_{0}$ - volume of an A monomer m times larger than B monomer
Derive the free energy of mixing $\Delta F_{m i x}$ of A and B polymers.

Calculate the size R_{A} of dilute Achains in a 2 -d of B -chains for $m \gg 1$ in the case of $\chi=0$.

Summary of Thermodynamics of Mixtures

Free energy of mixing consists of entropic and energetic parts.
Entropic part per unit volume (translational entropy of mixing $\Delta \mathrm{S}_{\text {mix }}$)

$$
-\frac{T \Delta S_{m i x}}{V}=k T\left[\frac{\phi}{v_{A}} \ln \phi+\frac{1-\phi}{v_{B}} \ln (1-\phi)\right]
$$

Energetic part per unit volume
v_{A} - volume of A chain

$$
\frac{\Delta U_{m i x}}{V}=k T \frac{\chi}{v_{0}} \phi(1-\phi)
$$

$$
v_{B}-\text { volume of B chain }
$$

v_{0} - volume of a lattice site
Flory interaction parameter $\quad \chi=A+\frac{B}{T}$
Many low molecular weight liquids are miscible
Some polymer - solvent pairs are miscible
Very few polymer blends are miscible
Chains are almost ideal in polymer melts as long as they are shorter than square of the average degree of polymeriztion $N_{A}<N^{2}$

Outline

1. Real Chains

2. Thermodynamics of Mixtures

3. Polymer Solutions

Which of These Chains are Ideal?

A. Polymer in a solution of its monomers

B. Polymer dissolved in a melt of identical chains
C. Chain in a sediment of a polymer solution in a poor solvent

D. None of the above

Polymer Solutions

Theta solvent

$$
v=(1-2 \chi) b^{3}=\frac{T-\theta}{T} b^{3}=0
$$

Chains are nearly ideal at all concentrations $R=b \sqrt{N}$
Overlap concentration

$$
\phi_{\theta}^{*} \approx \frac{N b^{3}}{R^{3}}=\frac{1}{\sqrt{N}}
$$

Chain is ideal if it is smaller than thermal $\mathrm{blob}_{\xi_{T}} \approx \frac{b^{4}}{|v|}$
Boundaries of dilute θ-regime

$$
|v|=|1-2 \chi| b^{3}=\left|\frac{T-\theta}{T}\right| b^{3}=\frac{b^{3}}{\sqrt{N}}
$$

$$
T \approx \theta\left(1 \pm \frac{1}{\sqrt{N}}\right)
$$

Temperatures at which chains begin to either swell or collapse

Poor Solvent

Critical composition $\phi_{c r} \cong \frac{1}{\sqrt{N}}$
Critical interaction parameter

$$
\chi_{c r}=\frac{1}{2}+\frac{1}{\sqrt{N}}+\frac{1}{2 N}
$$

Solution phase separates below the binodal into a dilute supernatant Polystyrene in cyclohexane (9 and of isolated globules at ϕ and concentrated sediment at ϕ^{\prime}.
polyisobutylene in diisobutyl ketone ((\bullet) Shultz and Flory, J. Am. Chem. Soc. 74, 4760, 1952

Sediment concentration $\phi^{`}$ is determined by the balance of second and third virial term (similar to the concentration inside globules).

$$
\phi^{\prime \prime} \approx-\frac{v}{b^{3}} \approx 2 \chi-1 \approx \frac{N b^{3}}{R_{g l}^{3}} \quad R_{g l} \approx \frac{b N^{1 / 3}}{(2 \chi-1)^{1 / 3}} \approx \frac{b^{2} N^{1 / 3}}{|v|^{1 / 3}}
$$

Poor Solvent Dilute Supernatant of Globules

Globules behave as liquid droplets with size

$$
R_{g l} \approx \frac{b^{2} N^{1 / 3}}{|v|^{1 / 3}} \quad \xi_{T} \approx \frac{b^{4}}{|v|}
$$

Surface tension is of order kT per thermal blob

$$
\gamma \approx \frac{k T}{\xi_{T}^{2}} \approx \frac{k T}{b^{8}} v^{2} \approx \frac{k T}{b^{2}}(2 \chi-1)^{2}
$$

Total surface energy of a globule $\gamma R_{g l}^{2} \approx \frac{k T R_{g l}^{2}}{\xi_{T}^{2}} \approx \frac{k T|v|^{4 / 3}}{b^{4}} N^{2 / 3}$ is balanced by its translational entropy $k T \ln \phi$ '

Concentration of a dilute supernatant

$$
\phi^{\prime}=\phi^{\prime} \exp \left(-\frac{\gamma R_{g l}^{2}}{k T}\right) \approx \frac{|v|}{b^{3}} \exp \left(-\frac{|v|^{4 / 3}}{b^{4}} N^{2 / 3}\right) \begin{aligned}
& \text { is different from the } \\
& \text { mean field prediction. }
\end{aligned}
$$

Good Solvent

Swollen chain size in dilute solutions

$$
R \approx b\left(\frac{v}{b^{3}}\right)^{1 / 5} N^{3 / 5}
$$

Overlap concentration

$$
\phi^{*} \approx \frac{N b^{3}}{R^{3}} \approx\left(\frac{b^{3}}{v}\right)^{3 / 5} N^{-4 / 5}
$$

Semidilute solutions $\phi^{*}<\phi \ll 1$
Correlation length ξ
Distance from a monomer to nearest monomers on neighboring chains.

Correlation Length

For $r<\xi$ monomers are surrounded by solvent and monomers from the same chain.

The properties of this section of the chain of size ξ are the same as in dilute solutions.

$$
\xi \approx b\left(\frac{v}{b^{3}}\right)^{1 / 5} g^{3 / 5}
$$

g - number of monomers inside a correlation volume, called correlation blob.
Correlation blobs are at overlap $\phi \approx \frac{g b^{3}}{\xi^{3}}$
$\xi \approx b\left(\frac{b^{3}}{v}\right)^{1 / 4} \phi^{-3 / 4}$

For $r>\xi$ sections of neighboring chains overlap and screen each other.
On length scales $r>\xi$ polymers are ideal chains - melt with N / g effective segments of size ξ.

$$
R \approx \xi\left(\frac{N}{g}\right)^{1 / 2} \approx b\left(\frac{v}{b^{3} \phi}\right)^{1 / 8} N^{1 / 2}
$$

Semidilute Solutions

On length scales less than ξ_{T} chain is ideal because excluded volume interactions are weaker than $\mathrm{kT} . \quad r \sim n^{1 / 2}$
On length scales larger than ξ_{T} but smaller than ξ excluded volume interactions are strong enough to swell the chain. $\quad r \sim n^{3 / 5}$

On length scales larger than ξ excluded volume interactions are screened by surrounding chains.

$$
r \sim n^{1 / 2}
$$

Scaling Theory of Semidilute Solutions

At overlap concentration $\phi^{*} \approx\left(\frac{b^{3}}{v}\right)^{3 / 5} N^{-4 / 5}$ chain has its dilute solution size $R_{F} \approx b\left(\frac{v}{b^{3}}\right)^{1 / 5} N^{3 / 5}$
In semidilute solutions R is a power of ϕ that matches dilute size at ϕ^{*}

$$
R \approx R_{F}\left(\frac{\phi}{\phi^{*}}\right)^{x} \approx b\left(\frac{v}{b^{3}}\right)^{(1+3 x) / 5} N^{(3+4 x) / 5} \phi^{x}
$$

Chains in semidilute solutions are random walks $\frac{3+4 x}{5}=\frac{1}{2} \rightarrow \mathrm{x}=-1 / 8$ $R \approx R_{F}\left(\frac{\phi}{\phi^{*}}\right)^{-1 / 8} \approx b\left(\frac{v}{b^{3} \phi}\right)^{1 / 8} N^{1 / 2}$
Similarly correlation length $\xi \approx R_{F}\left(\frac{\phi}{\phi^{*}}\right)^{y} \approx b\left(\frac{v}{b^{3}}\right)^{(1+3 y) / 5} N^{(3+4 y) / 5} \phi^{y}$ is independent of N in semidilute solution $3+4 y=0^{\mathrm{y}=-3 / 4} \xi \approx R_{F}\left(\frac{\phi}{\phi^{*}}\right)^{-3 / 4} \approx b\left(\frac{b^{3}}{v}\right)^{1 / 4}$ $\phi^{-3 / 4}$

Concentrated Solutions

Correlation length ξ decreases with concentration, while thermal blob size ξ_{T} is independent of concentration.

At concentration $\phi^{* *}$ the two length are equal $\xi \approx \xi_{T}$ and intermediate swollen regime disappears.

$$
\begin{aligned}
& \text { me disapt } \\
& \phi^{* *} \approx \frac{v}{b^{3}}
\end{aligned}
$$

$$
\xi \approx b\left(\frac{b^{3}}{v}\right)^{1 / 4} \phi^{-3 / 4} \approx \frac{b^{4}}{v} \approx \xi_{T}
$$

This concentration is analogous to $\phi^{\prime \prime}$ in poor solvent at which two- and three-body interactions are balanced.
In concentrated solutions chains are ideal at all length scales.
On length scales less than ξ chains are ideal because excluded volume interactions are weaker than kT .
On length scales larger than ξ chains are ideal because excluded volume interactions are screened by surrounding chains.

Polymer Solutions

Osmotic Pressure

In dilute solutions $\phi<\phi^{*}$ - van't Hoff Law $\Pi \approx \frac{k T}{b^{3}} \frac{\phi}{N}$
Osmotic pressure Π in semidilute solutions $\phi>\phi^{*}$ is a stronger function of concentration

$$
\Pi \approx \frac{k T}{b^{3}} \frac{\phi}{N} f\left(\frac{\phi}{\phi^{*}}\right) \quad f\left(\frac{\phi}{\phi^{*}}\right) \approx\left\{\begin{array}{l}
1 \text { for } \phi<\phi^{*} \\
\left(\phi / \phi^{*}\right)^{z} \text { for } \phi>\phi^{*}
\end{array}\right.
$$

Osmotic pressure in semidilute solutions

$$
\Pi \approx \frac{k T}{b^{3}} \frac{\phi}{N}\left(\frac{\phi}{\phi^{*}}\right)^{z} \approx \frac{k T}{b^{3}} \phi^{1+z}\left(\frac{v}{b^{3}}\right)^{3 z / 5} N^{4 z / 5-1}
$$

is independent of chain length $(4 z / 5-1=0) . \quad z=5 / 4$

$$
\Pi \approx \frac{k T}{b^{3}}\left(\frac{v}{b^{3}}\right)^{3 / 4} \phi^{9 / 4} \approx \frac{k T}{\xi^{3}}
$$

Neighboring blobs repel each other with energy of order $k T$.

Concentration Dependence of Osmotic Pressure

$\operatorname{Poly}\left(\alpha\right.$-methylstyrene) in toluene at $25^{\circ} \mathrm{C}$ Noda et al, Macromol. 16, 668, 1981

Semidilute Theta Solutions

Chains are almost ideal

$$
R \approx b N^{1 / 2}
$$

 (globules)

$$
\phi
$$

$$
\xi \approx R_{0} \approx b \sqrt{N} \text { at } \phi^{*} \approx \frac{N b^{3}}{R_{0}^{3}} \approx \frac{1}{\sqrt{N}}
$$

$$
\xi \approx \frac{b}{\phi}
$$ Scaling assumption for $\phi>\phi^{*} \quad \xi \approx b N^{1 / 2}\left(\frac{\phi}{\phi^{*}}\right)^{x} \approx b \phi^{x} N^{(1+x) / 2}$

Correlation length in semidilute solutions is independent of chain length $(1+x) / 2=0 \quad x=-1$

$$
\xi \approx \frac{b}{\phi}
$$

Quiz \# 2

What is the meaning of

 correlation length in semidilute theta solutions? How different are semidilute theta solutions from ideal solutions of ideal chains?
Osmotic Pressure in Semidilute Theta Solutions

Mean-field prediction $\Pi=\frac{k T}{b^{3}}\left(\frac{\phi}{N}+\frac{w}{b^{6}} \phi^{3}+\ldots\right)$
First term (van't Hoff law) is important in dilute solutions
Three-body term is larger than linear in semidilute solutions $\phi>1 / N^{1 / 2}$

$$
\Pi=\frac{k T}{b^{3}} \phi^{3}
$$

Scaling Theory

$$
\Pi \approx \frac{k T}{b^{3}} \frac{\phi}{N} h\left(\frac{\phi}{\phi^{*}}\right) \quad h\left(\frac{\phi}{\phi^{*}}\right) \approx\left\{\begin{array}{l}
1 \text { for } \phi<\phi^{*} \\
\left(\phi / \phi^{*}\right) y \text { for } \phi>\phi^{*}
\end{array}\right.
$$

Osmotic pressure in semidilute θ-solutions

$$
\Pi \approx \frac{k T}{b^{3}} \frac{\phi}{N}\left(\frac{\phi}{\phi^{*}}\right)^{y} \approx \frac{k T}{b^{3}} \phi^{1+y} N^{y / 2-1}
$$

is independent of chain length $(y / 2-1=0) . \quad y=2$

$$
\Pi \approx \frac{k T}{b^{3}} \phi^{3} \approx \frac{k T}{\xi^{3}}
$$

Osmotic Pressure

Polyisobutylene in benzene at $\theta=24.5^{\circ} \mathrm{C}$ (filled circles), in benzene at $50^{\circ} \mathrm{C}$ (filled squares), in cyclohexane at $30^{\circ} \mathrm{C}$ (open circles) and at $8^{\circ} \mathrm{C}$ (open squares)
Flory and Daoust J. Polym. Sci. 25, 429, 1957

$$
\begin{gathered}
\xi \approx \frac{b}{\phi} \\
\Pi \approx \frac{k T}{\xi^{3}} \approx \frac{k T}{b^{3}} \phi^{3}
\end{gathered}
$$

Correlation length in semidilute θ-solvents is of the order of the distance between 3-body contacts.
Number density of n-body contacts $\sim \phi^{n} / b^{3}$
Distance between n-body contacts in 3-dimensional space $r_{n} \approx b \phi^{-n / 3}$

Summary of Polymer Solutions

In poor solvent part of the diagram binodal separates 2 -phase from 2 single phase regions:
Dilute globules at low concentrations $\phi<\phi$,
Concentrated solutions with overlapping ideal chains at $\phi>\phi "$
Near θ-temperature there are dilute and semidilute θ-regimes with ideal chains.
Dilute good solvent regime with swollen chains at $\phi<\phi^{*}$ and $v>0$. Semidilute good solvent regime at $\phi^{*}<\phi<\phi^{* *}$ with chains swollen at intermediate length scales shorter than correlation length ξ.
Osmotic pressure in semidilute solutions is $k T$ per correlation volume ξ^{3}.

Challenge Problem 5: Confinement of Polymers in Solutions \& Melt

Calculate the pressure between two solid plates fully immersed into a semidilute polymer solution or melt as a function of separation D between plates for separations smaller than chain size R.

Assume no attraction between plates and polymer.
Separately consider cases with correlation length $\xi<D<R$ and $b<D<\xi$

Single Chain Adsorption Ideal chain Roal chain adsorption blob
 $$
\xi_{a d s} \approx b g^{1 / 2} \text { adsorption blob } \xi_{a d s} \approx b g^{3 / 5}
$$

Volume fraction in a chain section of size $\xi_{a d s}$ containing g monomers

$$
\phi \approx \frac{b^{3} g}{\xi_{a d s}^{3}} \approx \frac{b}{\xi_{a d s}}
$$

$$
\phi \approx \frac{b^{3} g}{\xi_{a d s}^{3}} \approx\left(\frac{b}{\xi_{a d s}}\right)^{4 / 3}
$$

Number of monomers per adsorption blob in contact with the surface

$$
\frac{\phi}{b^{3}} \xi_{a d s}^{2} b \approx \frac{\xi}{b} \quad \frac{\phi}{b^{3}} \xi_{a d s}^{2} b \approx\left(\frac{\xi}{b}\right)^{2 / 3}
$$

Energy gain per monomer in contact with the surface is $-\varepsilon k T$
Energy gain per adsorption blob

$$
k T \varepsilon \frac{\xi_{a d s}}{b} \approx k T \quad k T \varepsilon\left(\frac{\xi_{a d s}}{b}\right)^{2 / 3} \approx k T
$$

Single Chain Adsorption Ideal chain
 $$
\varepsilon \frac{\xi_{a d s}}{b} \approx 1
$$

Size $\xi_{a d s}$ and number of monomers g in an adsorption blob
$\xi_{a d s} \approx \frac{b}{\varepsilon} \quad g \approx\left(\frac{\xi_{a d s}}{b}\right)^{2} \approx \varepsilon^{-2} \quad \xi_{a d s} \approx \frac{b}{\varepsilon^{3 / 2}} \quad g \approx\left(\frac{\xi_{a d s}}{b}\right)^{5 / 3} \approx \varepsilon^{-5 / 2}$

Free energy of an adsorbed chain

$$
F \approx-k T \frac{N}{g} \approx-k T N \varepsilon^{2} \quad F \approx-k T \frac{N}{g} \approx-k T N \varepsilon^{5 / 2}
$$

Flory Theory of Adsorption
Fraction of monomers in direct contact with the surface is b / D

Number of monomers in direct contact with the surface is $N b / D$

Energy gain per monomer contact with the surface is $-k T \varepsilon$
Energy gain from surface interactions per chain $\quad F_{\text {int }} \approx-\varepsilon k T N \frac{b}{D}$ Total free energy is a sum of interaction and confinement parts Ideal chain $F=F_{\text {conf }}+F_{\text {int }} \quad$ Real chain

$$
F \approx k T N\left(\frac{b}{D}\right)^{2}-k T \varepsilon N \frac{b}{D}
$$

$$
F \approx k T N\left(\frac{b}{D}\right)^{5 / 3}-k T \varepsilon N \frac{b}{D}
$$

$$
D \approx \frac{b}{\varepsilon} \quad \text { Optimal thickness } \quad D \approx \frac{b}{\varepsilon^{3 / 2}}
$$

Multi-Chain Adsorption

Single-chain adsorption de Gennes' self-similar carpet

First layer is dense packing of adsorption blobs Polymer concentration decays from the high value in the first layer. The correlation length $\xi(z)$ corresponding to concentration $\phi(z)$ at distance z from the surface is of the order of this distance.
$\xi(z) \approx \frac{b}{[\phi(z)]^{3 / 4}} \approx z \quad \phi(z) \approx\left(\frac{z}{b}\right)^{-4 / 3}$
Coverage is controlled by the first layer of blobs.
$\Gamma \approx \int \frac{\phi(z)}{b^{3}} d z \approx b^{-3} \int_{\xi_{a d s}}^{R}\left(\frac{z}{b}\right)^{-4 / 3} d z \approx b^{-2}\left(\frac{b}{\xi_{a d s}}\right)^{1 / 3} \approx \frac{\varepsilon^{1 / 2}}{b^{2}} \approx \frac{g_{a d s}}{\xi_{a d s}^{2}}$

Alexander - de Gennes Brush

Grafting density σ-number of chains per unit area.

Distance between sections of chains

$$
\xi=\sigma^{-1 / 2}
$$

Number of monomers per blob

$$
g \sim \xi^{l / v} \sim \sigma^{1 /(2 v)}
$$

Thickness of the brush $H \sim \xi N / g \sim N \sigma^{(I-v) /(2 v)}$
Energy per chain $\quad E_{\text {chain }} \sim k T N / g \sim k T N \sigma^{l /(2 v)}$
Energy per unit volume $\frac{E_{\text {chain }}}{V} \approx E_{\text {chain }} \frac{\sigma}{H} \approx k T \frac{N}{g} \frac{\sigma}{H} \approx k T \frac{\sigma}{\xi} \approx \frac{k T}{\xi^{3}} \approx \Pi$

Polymer Brush Height depends on Grafting Density

Grafting density $\sigma\left(\mathrm{nm}^{-2}\right)$

If the grafting density is high, chains repel each other and stretch away from the surface, forming a polymer brush.

Mushroom Regime unperturbed size

$$
H \simeq R_{0}
$$

