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Summary of lIdeal Chains

Ideal chains: no interactions between monomers separated by many bonds

Mean square end-to-end distance of ideal linear polymer <R2> = Nb?
Nb?

Mean square radius of gyration of ideal linear polymer <R§> ==

( ») 3 3/2 3R?
Probability distribution function Py;q(N,R )= exp| —
g . (Zﬂszj p( 2Nb2J

3, _ R?
' in F=—kT—
Free energy of an ideal chain > b2
. = 3KT =
Entropic Hooke’s Law | = Nb2 R
31

Pair correlation function g(r)=—--
Trb



Real Chains

Include interactions between all monomers
Short-range (in space) interactions

Probability of a monomer to be in contact with another monomer
for d-dimensional chain

d N
¢g*~b R—d
If chains are ideal R ~bNY/2 ¢ ~N¥92  small for d>2

Number of contacts between pairs of monomers that are far along
the chain, but close in space Ng* ~ N 2-d/2 ool for d>4

For d<4 there are many contacts between monomers in an ideal chain.

Interactions between monomers change conformations of real chains.



Life of a Polymer is a Balance
of entropic and energetic parts of free energy

Energetic part typically
“wants” something else
(e.g. fewer monomer-
monomer contacts

In a good solvent).
‘l& b0 (oo

Entropic part “wants”
chains to have ideal-like
conformations




Flory Theory

Number density of monomers in a chain is N/R3

Probability of another monomer being within excluded
volume v of a given monomer is VN/R3

Excluded volume interaction energy per monomer KTvN/R3
Excluded volume interaction energy per chain kTvN?4/R3

Entropic part of the free energy is of order kTR?/(Nb?)

Flory approximation of the total free energy of a real chain

2 2
F ~ kT VN3+ R2
R> Nb

Free energy i1s minimum at R ~ v op2/5N3/5

v - Flory scaling exponent
More accurate estimate v = 0.588

Universal relation R~ NV
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Radius of gyration of polystyrene chains in a 0-solvent (cyclohexane
at 34.5°C) and in a good solvent (benzene at 25°C).
Fetters et al J. Phys. Chem. Ref. Data 23, 619 (1994)



Polymer Under Tensmn\.,:ﬁ

|deal chain Real chain

Unperturbed size
E55 Ry ~bNY/? Re ~bN3/5 ﬁ&?

Tension blobs (Pincus blobs) of size &
contain g monomers

Chains are almost unperturbed on length scales up to &

£ ~bgt/? £ ~bg*"
On larger length scales they are stretched arrays of Pincus blobs
N Nb* RE N Np°® R2?
szfgzgz; szggz(:z/s"éz/s
Size of Pincus blobs 512

RS 2
5"’ Rf é"’ R?/z



Polymer Under Tension

Ideal chain Real chain
» Size of Pincus blobs 5/2
R R
o £ 5
R; R
Free energy cost for stretching a chain is on order KT per blob
2 5/2
R R R R,
szTNszfsz(fj szTﬂ KT —f"’kT( j
g S Ro g S Re
Tension force is on order KT divided by blob size &
KT KT KT R+ KT KT s, KT(R¢)'
g Ro Ro Ro & RR? Re | Re

linear elasticity non-linear elasticity

even at low forces
—~ Log

Forb=1nmatroomT
KT/b = 4pN

— log plot



-
3

"¢ Polymer Under Tension

.

Ideal chain Real chain
f=kT/ROR, KR - fa(kT/RERY
linear elasticity 312 R; non-linear elasticity

RO RF Rmax
Challenge Problem 1: Pulling a Ring i
Consider a pair of forces applied to monomers 1 and 1+N/2 k&% &
i. Show that the modulus of an ideal ring - me

IS twice the modulus of a linear N/2-mer ~ -
— f/Z«m» f/2

Il. How does modulus of aring in a good solvent G, _ f /2«qq o o~ /2
compare to twice the modulus of linear N/2-mer Gy,?

a. G, =2Gy, similarto ideal case
b. G,<2G,,, because the entropy of sections of a ring is lower
c. G,>2G,,, because ring sections reinforce each other



Biaxial Compression
Ideal chain Real chain .
« . |

|<
PR ITS )
U o) )b
On length scales smaller than compression blob of size D chain is almost

unperturbed D2 D)\2/3
o~(1) o~(1)

Occupied part of the tube

1/2 2/3
RzDE ~pbNY/2 R”zDN <[ 2 Nb
o g) \D

Free energy of confinement

Feont = KT E ~ kTN (Dj Feont = KT 5 ~KTN (Dj

2 5/3
R R
Feonf = kT([;)j Feonf = kT(DFj




Challenge Problem 2:
Biaxial Confinement of a Semiflexible_Chain

Consider a semiflexible polymer — e.g. double-
stranded DNA with Kuhn length b=100nm and
contour length L=16 zm.

Assume that excluded volume diameter of double "l"
helix i1s d=3nm (larger than its actual diameter L
2nm due to electrostatic repulsions).

TARTEC b

Rp

Calculate the size Rg of this lambda phage DNA in dilute solution
and the length R, occupied by this DNA in a cylindrical channel
of diameter D (for d<D<Ry).



Uniaxial Compression

’

Free energy of confinement in a slit is the
same as in the cylindrical pore

Longitudinal size of an ideal chain in a slit is the same as for an
unperturbed ideal chain. Ry ~bN 1/2

2-dimensional Flory theory for real chain confined in a slit

D2 is the excluded area > (N /g)2 R||2
of a confinement blob F~KT| D S+ / 5
with g monomers R (N/g)D

N

3/4 h\L/4
Longitudinal size of a real chain in a slit R” =~ D(gj ~ bN 3/4(Dj

Fractal dimension of real chains in 2-d i1s D = 4/3



Scaling Model of Real Chalins

Thermal blob - length scale at which excluded
volume interactions are of order kT kT Mg_g ~kT I\ 2&7) || | N
ﬁ . "“4 Y [ [ )’( ‘ J!,: Jg‘ \
gT \‘ ; l‘{\ bf‘! \?/ / ‘/ // N//{j */‘/ J : ‘\\

L | 1/2
Chain is ideal on length scales smaller than thermal blob &t ~bgt

Number of monomers in a thermal blob g; = b6/v2
good solvent v>0 Size of a thermal blob T = ¢

poor solvent v<0




Flory Theory of a Polymer in a Poor Solvent

N2 R2
FrkT|v—+ In poor solventv<0and R—0
R®  Nb?

Cost of Confinement

. . 2
R<Nb2 CompressionblobofsizeR (R)

with g monomers b
| N - Nb
Confinement free energy Feons = KT E ~KT R2
2 2 2
F ~KkT VN3+R2+Nb2 Forv<0 R—>0
R Nb R

Three Body Repulsion
2 2 2 3 i
E~ kT( R® Nb N N ) Size of a globule

+ +V—+W— 1/3
 o[WN
(V)

Nb? R? RS RS



Real Chains in Different Solvents

Cp [ . /3n0n-solvent

1/3
Rnon—solvent ~bN

1 gr N



Temperature Dependence of Chain Size

Mayer f-function } { -1 for r<b where U(r)>>kT
—1 =

U(r)
f(r)=exp| ——= U
(r) p[ KT _k(Tr) for r>b where |U(r)|<kT

Excluded volume )
0 A 12
v -4z frrédr ~4z[rédr+-2 [U(r rzdrz(l—jbg’
of oo ~aafrar - fu(eor <[ 1-

Interaction parameter z is related to number of thermal blobs per chain

6

N v T-6 b

7 ~ ~ 3N1/2z Nl/Z g_l_z_z

g b T V

Chain contraction in a poor solvent Chain swelling in a good solvent
R _1/3 R 21
~|z T
bNY/2 bN



Universal Temperature Dependence
of Chain Size

2.5
20 + . 2.0 + SR
~_ L5T . N 15+
D\:QD | g@
o 1.0 + . v 1.0 +
05 + .. 05 -
0.0 ‘ ‘ ‘ ‘ ‘ ‘ 0.0 ‘ ‘ \ \
-40 -30 -20 -0 O 10 20 30 -5 0 5 10 15 20
NY2(1 - o/T) NY2(1 - 0/T)
Monte-Carlo simulations Polystyrene in decalin
Graessley et.al., Macromolecules Berry, J. Chem. Phys.

32, 3510, 1999 & |. Withers 44,4550, 1966



Summary for Real Chains

Size of Linear Chains Excluded volume
T-60
Ry ~bNY? nearly ideal in 6-solvents V= bg()
2v-1 0.18 T
v % v 0.588
Rgood = b(bgj N =~ b(bg) N swollen in good solvents

Rathermal =~ BNY ~bN®% in athermal solvents

-1/3).2\1/3 - -
Rooor =V = "b°N collapsed into a globule in poor solvents

In good solvents
Stretching a real chain Confinement of a real chain

1/(1-v) 2.43 1/v 1.7
F =~ kT i ~ KT i F ~ kT(RFj ~ kT(RFj
Re Re D D

non-Hookean elasticity
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Binary Mixtures

Homogeneous — iIf components are intermixed on a molecular scale
Heterogeneous — if there are distinct phases

Assume, for simplicity, no volume change on mixing

Consider a mixture with total number n of monomers (sites)
and total volume vyn where v,— volume of a lattice site

Assume that a monomer of each species occupies the same volume v,

Volume fractions
— VA —
¢A_VA+VB_¢ g =1-¢

o N = ¢gn monomers of type A and @ ng = (1-¢)n monomers of type B



Entropy of Mixing

¢ - volume fraction of A

(1—¢) - volume fraction of B

V,— volume of a lattice site

vy

Number of translational states of a molecule o _VYa+Ve _

: . ) ) AB = =

In a mixture i1s the number of sites n Vg

Number of states of molecule Ain a pure Aphase ©Q, = Va _ ng
VO

Entropy change upon mixing of a molecule A

Q%]:kmiz—km¢
A ¢

n,/N, and ny/Ng —number of Aand B molecules ~ AS

AS, =kInQ,; —kInQ, :kln(

Total entropy change upon mixing Infinite

|
AS =2 As, + T8 As = k| Dangy T gn— g) opes ¢
N N 0 1

A B A B




Energy of a Homogeneous Mixture
Mean Field Theory

Average energy per A monomer

u;; — Interaction of i with
@ A monomer with probability ¢

@iB monomer with probability 1 — ¢

@
@ = g + (A=) ] z — coordination number
(number of neighbors)

Average energy per B monomer u, = §[¢uAB +(1—pugg |

Average energy per monomer in homogeneous mixture

AU
n,u, +Nyu
uf _ _'AYA BB _ wA + (1_¢)UB — 0@\@&‘80\6 )
n AL
Z| ,» 2 = EUAA
:§[¢ uAA+2¢(1_¢)uAB +(1_¢) uBB Z < ©

Average energy per monomer of pure components °

before mixing y = 2 [gu,, +(1— @), ] N
2 Energy of mixing U, =uU; —Uu.



Energy of Mixing

ALJm =nu,, = n¢(1_ ¢)Z|:UAB R S _; = :| — n¢(1_ ¢)kTZ
Flory interaction parameter y

Z U,, +u U
— T U A BB

Probability of AB contact ¢(7—¢) 0 1 0

Energy change on mixing per site U = kTZ¢(1— ¢)
Free Energy of Mixing

AF, =AU, —TAS,
per site AR, _kT[I\? |n¢+(N¢)In(1 ¢)+Z¢(1 @}

n A B

Regular solution: N, = Ng =1 Polymer solution: N, =N >>1, Ny =1

Polymer blend: N, >>1, Nz >>1



Flory-Huggins Free Energy of Mixing

AFmix _ kT(¢In 5+ "2 In(-g)+ ;(¢(1—¢)j
n N A Ng

At high T entropy of mixing dominates,

AF;, 1S convex and homogeneous

mixture is stable at all compositions.

At lower T for y>0 repulsive

Interactions are important and

there Is a composition range
P<p<g’

with thermodynamically stable

phase separated state.

This composition range, called
miscibility gap, Is determined by
the common tangent line.




Phase Diagrams

N

AI:miX _ kT(

A B

For y < ., mixture is stable at all

compositions.
1

2
1 1
For Z>7(cr_2( /7NA+ ﬁNB]

there is a miscibility gap for ¢'< ¢ < ¢"

Critical composition

JNs

b N

For a symmetric blend N,=Ng=N

Yo—2IN  ¢.,=1/2

For polymer solutions Ny =N, Ng=

1 1

="+
Xer 2" N

+ 1 ¢cr5—
2N

Ni In ¢ -|—1N;¢ In(1—¢)+ Z¢(1_¢)j

PR S N T T T A T B
9

1



Phase Diagram of Polymer Solutions

Polymer solutions phase separate upon decreasing
v =A +§ solvent quality below 6-temperature

T Upper critical solution temperature B>0

2 binodal

#1Single Phase

Solution phase separates below
the binodal in poor solvent

regime into a dilute supernatant 1 /
of isolated globules at ¢~ and & 5] unstable

spinodal

concentrated sedimentat ¢, " /(Spin‘)dal N
8] 5 decomposition)
dilute D 16 { \ __ metastable
supernatant ¢ b ,TWQ Phlasels (nucleation
=" 000 005 o0d0 045 o2 025 ghd growth)
¢ _
concentram | - M=53.3kg/mole
sediment Polyisoprene in dioxane

Takano et al., Polym J. 17, 1123, 1985



Intgrmolecular Interactions

Osmotic pressure

C
M=RT| — +AC*+...
M n
A, — second virial coefficient
30
—~ 25 T o
2
Osmometer D 20- M,= 70800 g/mole
@)
£
~ 15 -
2 _
Poly(a-methylstyrene) s 5/
In toluene at 25 °C M, = 506000 g/mole
Noda et al, Macromol. o o o
16, 668, 1981 | | |

c (g/ml)



Mixtures at Low Compositions
AFmix _ kT(I\?In¢+1|\_I¢In(1—¢)+ ;(¢(1—¢)j

n A B
Expand In(1-¢) in powers of composition ¢

APix g ¢ B A U TP N
n:kT(NAIn¢+¢(;( NBjJFZ( 2;()+ +)

Osmotic pressure AF
¢2

OAF_. ng jkT[ ¢ +[i_2?(}¢2+ ¢ +)

1= ~ .3 ~ .3
oV - b oLl b | N, | Ng 2 3Ng

Virial expansion in powers M kT(

oy Vo2 el
of number density ¢, = ¢/b3 oo nt..

N A
1 3 . | b®
Excluded volume v = N——Z;( b 3-body interaction W:3—
B

Np
V., T-0 2AM{
In polymer solutions Ng =1 | 3=+~ A= BN,
Vv




Polymer Melts

Consider a blend with a small concentration of N, chains in a melt
of chemically identical Ng chains.

No energetic contribution to mixing y = 0.
3
Excluded volume v = (I\Il — 21]133 - E_ Is very small for Ny >> 1

6 B B Flory Theorem

b
Thermal blob Ot zv—2= NEza oT “bﬁszB

Chains smaller than thermal blob N, < Ng? are nearly ideal.

In monodisperse N, = Ng and weakly polydisperse
melts chains are almost ideal. R,

In strongly asymmetric blends N, > Ng?
long chains are swollen

N 38 e N, 1/10
Ra = é:T( Aj ~bNg| ~2 | ~bNg? =2 bt
Or N& Né




Challenge Problem 3:

Long N,-mer In a 3-d Melt of Ng-mers

_:|-NB—.I|. 2 1/5!.-
N =4 N TN ) "
— -lj _ NB _E_|_'. ...... A B =
< Ng = 16 —a— o M
= B
L N, =32 »--d— = .
= Ng = fd —v— =
“¢ 2t e+ ¥ g
nd P—
W, T s z -El oll:
- T & &
h vTt . = .E
w fi.- -.-'-ﬂgl.
I_’ . P | . P | . P | P | . P | . SE
0001 il .1 I | | (&}
_NA/NB2 M. Lang

Why doesn’t Flory Theorem work?



Challenge Problem 4:

Mixing of Polymers with Asymmetric Monomers

N, —monomers
per A chain

L~

V,— volume of a lattice site = volume of a small B - monomer

mv,— volume of an A monomer m times larger than B monomer

70 -

Derive the free energy of mixing
AFmix
Calculate the size R, of dilute A- o
chains in a 2-d of B-chains for

m>>1 in the case of y=0. a0

of A and B polymers. 60 -

Ng — monomers
per B chain

M, = 1240
M, = 1160
M, = 1080
M, = 1000
M, = 920
M, = 840
M, = 760




Summary of Thermodynamics of Mixtures

Free energy of mixing consists of entropic and energetic parts.

Entropic part per unit volume (translational entropy of mixing AS,;, )

_mm:nv.ml—vﬁ.n@_@}
V Va Vg
v, — volume of A chain

Energetic part per unit volume
Vg — volume of B chain

AU nix X
VR KT %¢(1—¢) vV, — volume of a lattice site
: . B
Flory interaction parameter  y = A+?

Many low molecular weight liquids are miscible
Some polymer — solvent pairs are miscible
Very few polymer blends are miscible

Chains are almost ideal in polymer melts as long as they are
shorter than square of the average degree of polymeriztion N,<N?
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Quiz #1
Which of These Chains are Ideal?

Q@O0
A. Polymer in a solution of its monomers 8%%%
0950
B. Polymer dissolved in a melt of identical chains %
SSSAOTS
YN
C. Chain in a sediment of a polymer solution 5
In a poor solvent

D. None of the above



Polymer Solutions

Theta solvent

v:(1—2;()b3:TTib3:O

good solvent

Chains are nearly ideal

2 ot all concentrations R =b/N
Overlap concentration 3
¢* _Nb® 1
4 " R T UN
Chain is ideal if it 1s smaller than
thermal blob b*
.. S W
Boundaries of dilute 6-regime
T-6,3 b’
Vi=1-24b% =" ="~
vi=l-27 o

Temperatures at which chains begin 1 _ 9(1+1j
to either swell or collapse N



Poor Solvent

345

1 M = 1,270 kg/mole
Critical composition @ = N o
25 iy .
.. ) ) o “ .~ e
Critical interaction Y £
parameter i ¢ 3 )
P 1+ 1 n 1 mEJ(I)c 31
— AT TN M = 43.6 kg/mol
Cr 2 N 2N SDD |:|I1 |:|I2 33m?4le-[|5 3.DIII.IIIIII III.IIIIE III.IIII4 III.I£IE IZI.IIZIS 010
Solution phase separates below ¢ e
the binodal into a dilute supernatant Polystyrene in cyclohexane (9 and
of isolated globules at ¢ and polyisobutylene in diisobutyl ketone (e)

Shultz and Flory, J. Am. Chem. Soc.
74, 4760, 1952

Sediment concentration ¢ " is determined by the balance of second and
third virial term (similar to the concentration inside globules).
Vv Nb3 N3 h2N Y3

~——x~2yv-1~—— R, ~ ~
b3 X R8| gl (2;{_1)1/3 Mlls

concentrated sediment at ¢ .




Poor Solvent
Dilute Supernatant of Globules

Globules behave as liquid droplets with size

h2N1/3 h*
| & &T Ao
g 1/3 M

R

v
Surface tension is of order KT per thermal blob
KT kT o kT

yrar eV r (27 -1)
&b

~ 2
kTR2| KT V43
Total surface energy of a globule 7R§| ~ 29 R W N2/3

Is balanced by its translational entropy kTIng’

¢

Concentration of a dilute supernatant

2 4/3
$'= @' exp _@ ~ Mexp _M N2/3 | Is different from the
kT | b® b mean field prediction.



Good Solvent

dilute |\ 4" -V
good ~»', semidilute good. -~

Swollen chain size
In dilute solutions

Y 1/5 a5

Overlap concentration

3/5
()"
RS

-

Semidilute solutions ¢*<dp<<1

b

(swollen >

Tc \
dilute~ ( 2-phase o
poor

(globules) (I)

-

7/
\
\
\
\
\
\
entrated

T Ofdiucs semidiluicd g0

conc

Correlation length &

Distance from a monomer to nearest
monomers on neighboring chains.



Correlation Length

For r < £ monomers are surrounded by
solvent and monomers from the same chain.

The properties of this section of the chain
¢ of size £are the same as In dilute solutions.

1/5

Vv

£xbl L q3/°
h3

g — number of monomers inside a correlation

volume, called correlation blob.

Correlation blobs are at overlap ¢ ~ 5 E~b|l ¢—3/4
& Vv

For r > £ sections of neighboring chains overlap and screen each other.

On length scales r > &£ polymers are ideal chains - melt

with N/g effective segments of size &. N Y2 v 1/8
R ~ f(j ~b —— N1/2
g b ¢



gr N g N
On length scales less than & chain is ideal because excluded volume

Interactions are weaker than KT. | — 12

On length scales larger than & but smaller than &£ excluded volume
Interactions are strong enough to swell the chain. | _ 355

On length scales larger than £ excluded volume interactions are

screened by surrounding chains. [~ L2



Scaling Theory of Semidilute Solutions

3/5
. « [b -
At overlap concentration ¢ z[vj N ~4/5

1/5
V
chain has its dilute solution size Rg ~ b(b?’j N3/3
In semidilute solutions R is a power of ¢ that matches dilute size at ¢

X (1+3x)/5
RzRF[éj ~b( v3j N (3475 4
0, b

Chains in semidilute solutions are random walks

96 -1/8 1/8
R~Re| = ~D NL/2
F[fj (b"’qﬁ)

(1+3y)/5
Similarly correlation length ¢ = R,:[ j ( 3j N
is independent of N in _3/4 ( y j [ j Y

3+54x:1 Cx=-1/8

*

semidilute solution 3 + 4y = O



Concentrated Solutions

Correlation length & decreases with concentration, while thermal blob
size & Is Independent of concentration.

At concentration ¢~ the two length are equal & ~ & and

Intermediate swollen regime disappears. 3\1/4 4
~b b” 314 b _
-V G = [ j ¢ R Rcy
N Vv
G~

This concentration is analogous to ¢~ in poor solvent at
which two- and three-body interactions are balanced.

In concentrated solutions chains are ideal at all length scales.
On length scales less than & chains are ideal because excluded volume
Interactions are weaker than KT.

On length scales larger than & chains are ideal because excluded
volume interactions are screened by surrounding chains.



Polymer Solutions

[
dilute |}, 4* w .|V e
good ~h‘semidilute good_ - -~ 5 & -
(SWOHen) ..................... S § R~ RO ¢—**
=
O [t e PPTE 51 ()
T dilute 6  semidilute O cé for ¢ < ¢ < o™
Tc \)
dilute— o 2-phase o R 1
poor R —
(globules) o F /8
Ry
3/40
In athermal solvent v~b°> & ~b ¢
¢3/4 ~ ¢1/8 b \
¢** ~ 1 ()* (I)**




Osmotic Pressure

In dilute solutions ¢ < ¢ - van’t Hoff Law [T ~ o

b° N
Osmotic pressure IT in semidilute solutions ¢ > ¢" is a stronger
function of concentration

H~kT¢f & fﬂ N{lfor d< &
"N g 5 )\ o#yfor 6> ¢

Osmotic pressure in semidilute solutions
Z
kT g ¢ | KT 1z(V 25 425
[T~ | ¢ N
b3 N ¢ b3 b3
IS independent of chain length (4z/5-1=0). 2=5/4
KT I s KT
i) P T
Neighboring blobs repel each other with energy of order kT.




Concentration Dependence of Osmotic Pressure

II/cRT (molesd)

10-3

—
=
+

—
=
th

104

¢ (gfom®)

Poly(a.-methylstyrene) in toluene at 25 °C

T
10

[IMCRT

10 +

10%

1
107

100
c/C

Noda et al, Macromol. 16, 668, 1981

101

102

:



Semidilute Theta Solutions

dilute \® dil q ¢ |V Chains are almost ideal
good\\\s\eml 1lute %o’o/,, 5 A~ bNY 2
(swollen)——=--"" £
] e I = |
T Ol diluie 0 semidilute 8 310
-
T O
¢ Q
diluteT’ \
+ 2-phase =
poor ( P ¢
(globules) (I) ,
. . b3g b3(E/b)° b b
Correlation blobs are space-filling ¢ = 3 R (53 ) x — &= —
. NB® 1 < o ¢
ngOzb\/Nat¢ ~ R3 N\/N

X
0
Scaling assumption for ¢ > ¢* &=~ bN1/2[¢*j ~ hg*N ()2

Correlation length in semidilute solutions ?
IS Independent of chain length (1+x)/2 =0 x=-1 y



Quiz # 2

What Is the meaning of
correlation length in semidilute
theta solutions?

How different are semidilute theta
solutions from 1deal solutions of
Ideal chains?



Osmotic Pressure in Semidilute Theta Solutions

Mean-field prediction IT= g ( AL +j

N p®
First term (van’t Hoff law) 1s important in dilute solutions
Three-body term is larger than linear kT
in semidilute solutions ¢ > 1/N1/2 b3 ¢

Scaling Theory

- kT¢ 3 h¢~{1for¢<¢*
PN 5 | o#y for 9> ¢

Osmotic pressure in semidilute 6—solutions

y
KT o[ ¢ | KT Ly ¥/2-1
b® N{ ¢

IS independent of chain length (y/2-1=0). y=2 I ~ kT ¢3 kT

11l =




Osmotic Pressure

105 - Polyisobutylene in benzene
2.31 r at 0=24.5 °C (filled circles),
in benzene at 50 °C (filled

104 & squares), in cyclohexane at

< ] o 30 °C (open circles) and at
Q : 8 °C (open squares)
= 10% L Flory and Daoust J. Polym.
: Sci. 25, 429, 1957
- é: N b
102 + R
: K ’ _k
- . . T KT
0.001 0.01 0.1 1 T ~ 3 ¢
b3
¢ S

Correlation length in semidilute 6-solvents is of the order

of the distance between 3-body contacts.

Number density of n-body contacts ~ ¢"/b3

Distance between n-body contacts in 3-dimensional space 1, =b¢™ n/3



Summary of Polymer Solutions

dilute |vp* o7 - v In poor solvent part of the
g00d T - diagram binodal separates
(swollen 2-phase from 2 single phase

............. d. Elo. Lo
T Ofdiuicd * semidifite o5 12 regions

O
Q
T, S Dilute globules at low
- Y \O concentrations ¢ < ¢’
dilute”/ . 5 ~ |
poor ¢ X Concentrated solutions

(globules) > with overlapping ideal
(I) chains at ¢ > ¢”

Near O—temperature there are dilute and semidilute 6-regimes
with ideal chains.

Dilute good solvent regime with swollen chains at ¢ < ¢" and v > 0.

at ¢* < ¢ < ¢ with chains swollen
at intermediate length scales shorter than correlation length £.

Osmotic pressure in semidilute solutions is k7 per correlation volume &.



Challenge Problem 5:

Confinement of Polymers in Solutions & Melt

semidilute polymer
solution or melt

Calculate the pressure between two solid plates fully immersed into
a semidilute polymer solution or melt as a function of separation D
between plates for separations smaller than chain size R.

Assume no attraction between plates and polymer.

Separately consider cases with correlation length é&<D<R and b<D<¢



Single Chain Adsorption

|deal chain s Real chain
adsorption blob

£ ~bgl': adsorption blob &4, ~bg>/°
Volume fraction in a chain section of size & 4, containing g monomers
¢zbzgz b ¢zbggz(b]m
Sads  Gads §§’ds Gads
Number of monomers per adsorption blob in contact with the surface
t;%ggdsb z% t;%(fgdsb ) (gjm

Energy gain per monomer in contact with the surface is -&kT
Energy gain per adsorption blob

213
KTe ﬁds ~ kT KTe (5%‘18) ~ kT




Single Chain Adsorption

Ideal chain . Real chain
c @z < (gadsjyg ~1
b b

Size &, and number of monomers g in an adsorption blob

b s 2 b Eas ) 512
é:adsz; gz( abds) x & fadszggT gz( e;)dsj ~&E

Free energy of an adsorbed chain

F o KT N~ KTNe? F ~ kT N~ _KTNg52

9 9



Flory Theory of Adsorption

Fraction of monomers in direct contact
b with the surface is b/D

P
|

Number of monomers in direct contact
with the surface is Nb/D

Energy gain per monomer contact with
the surface i1s -kTe b
Energy gain from surface interactions per chain  Fj,t ® —& KTN 5

Total free energy Is a sum of interaction and confinement parts

Ideal chain F=Fef *Ft Real chain

2 5/3
F = kTN(Bj —kTe N R F ~ kTN(Bj —kTe N B
D D D D

Optimal thickness
D~ D~ L
312

M | T



Multi-Chain Adsorption

Single-chain adsorption de Gennes’ self-similar carpet ,

m&, b

b
~_ _ .—5I2
Sads ™ 312 Jads ® € Eads

&2) ~7

¥
First layer is dense packing of adsorption blobs

Polymer concentration decays from the high value in the first layer.

The correlation length &(z) corresponding to concentration ¢(z) at
distance z from the surface is of the order of this distance.

£(z) = b]3/4 SRR (zj“”?’ Coverage is controlled by

b the first layer of blobs.

R ,_\—4/3 13 179
I'~ j@dz ~b3 I (Zj dz ~ b_z[bj ¢ —~ gz;ds
b b Cads




Alexander — de Gennes Brush
S

Grafting density c —number of chains per
unit area.

Distance between sections of chains

Number of monomers per blob
g~ 6ﬂ/v~ 512V

Thickness of the brush  H ~ £N/g ~ No{t-/2Y)

T }\ ,  Energy perchain  Egy, ~ kT N/g ~ kTNoV”

Energy per unit volume chain Eepain — ~ KT No oK

Il
V H gH = & g8



Polymer Brush Height depends on Grafting Density

= | H~NGB

E f

T 10° .
% I

2 W

-

-

% N

m 10° .

L

Mushroom Regime
unperturbed size
H ~R,

10° 10  10° 10?2  10°
Grafting density o (nm-2)

If the grafting density is high, chains
repel each other and stretch away from
the surface, forming a polymer brush. SN
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