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Summary of Ideal Chains 
Ideal chains: no interactions between monomers separated by many bonds 

Mean square end-to-end distance of ideal linear polymer 22 NbR 

Mean square radius of gyration of ideal linear polymer 
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Real Chains 
Include interactions between all monomers 

Short-range (in space) interactions 

Probability of a monomer to be in contact with another monomer 

for d-dimensional chain 
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If chains are ideal 2/1bNR  2/1* dN  small for d>2 

Number of contacts between pairs of monomers that are far along 

the chain, but close in space 
2/2* dNN  small for d>4 

For d<4 there are many contacts between monomers in an ideal chain. 

Interactions between monomers change conformations of real chains. 



Life of a Polymer is a Balance 
of entropic and energetic parts of free energy 

Fent Feng 

Entropic part “wants”  

chains to have ideal-like  

conformations 

Energetic part typically 

“wants” something else 

(e.g. fewer monomer- 

monomer contacts 

in a good solvent). 

Chain has to find a compromise between these two desires 

and optimize its shape and size. 
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Flory Theory 
Number density of monomers in a chain is  N/R3 

Probability of another monomer being within excluded  

volume v of a given monomer is vN/R3 
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Excluded volume interaction energy per monomer  kTvN/R3 

Excluded volume interaction energy per chain  kTvN2/R3 

Entropic part of the free energy is of order  kTR2/(Nb2) 

Flory approximation of the total free energy of a real chain 

Free energy is minimum at 5/35/25/1 NbvR 

Universal relation NR ~
 - Flory scaling exponent 

More accurate estimate 588.0
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Radius of gyration of polystyrene chains in a q-solvent (cyclohexane  

at 34.5oC) and in a good solvent (benzene at 25oC).  

Fetters et al J. Phys. Chem. Ref. Data 23, 619 (1994)  



Polymer Under Tension 

Rf 
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Unperturbed size 
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0 bNR  5/3bNRF 

Tension blobs (Pincus blobs) of size x  

contain g monomers 

2/1bgx
5/3bgx

Chains are almost unperturbed on length scales up to x  

On larger length scales they are stretched arrays of Pincus blobs 
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Polymer Under Tension 

Size of Pincus blobs 
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Free energy cost for stretching a chain is on order kT per blob 
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Tension force is on order kT divided by blob size x 
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linear elasticity non-linear elasticity 

even at low forces 

0 
For b = 1nm at room T 

kT/b = 4pN Log – log plot 



Polymer Under Tension 
Ideal chain Real chain 
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Rf linear elasticity non-linear elasticity 

Challenge Problem 1: Pulling a Ring 
Consider a pair of forces applied to monomers 1 and 1+N/2 

i.    Show that the modulus of an ideal ring  

      is twice the modulus of a linear N/2-mer 

ii. How does modulus of a ring in a good solvent Gr  

      compare to twice the modulus of linear N/2-mer GN/2? 
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a. Gr = 2GN/2  similar to ideal case 

b.    Gr < 2GN/2  because the entropy of sections of a ring is lower 

c.    Gr > 2GN/2  because ring sections reinforce each other 



Biaxial Compression 

D 
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Ideal chain Real chain 
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On length scales smaller than compression blob of size D chain is almost 

unperturbed  2
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Challenge Problem 2:  

Biaxial Confinement of a Semiflexible Chain 

Consider a semiflexible polymer – e.g. double-

stranded DNA with Kuhn length b=100nm and 

contour length L=16mm. 

Assume that excluded volume diameter of double 

helix is d=3nm (larger than its actual diameter 

2nm due to electrostatic repulsions). 

Calculate the size RF of this lambda phage DNA in dilute solution 

and the length R|| occupied by this DNA in a cylindrical channel 

of diameter D (for d<D<RF). 
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Uniaxial Compression 

D 

Free energy of confinement in a slit is the 

same as in the cylindrical pore 

Longitudinal size of an ideal chain in a slit is the same as for an 

unperturbed ideal chain. 2/1
|| bNR 

2-dimensional Flory theory for real chain confined in a slit 
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D2 is the excluded area  

of a confinement blob  

with g monomers 

Longitudinal size of a real chain in a slit 
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Scaling Model of Real Chains 
Thermal blob - length scale at which excluded 

 volume interactions are of order kT kT
g
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Chain is ideal on length scales smaller than thermal blob 
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Flory Theory of a Polymer in a Poor Solvent 
















2

2

3

2

Nb

R

R

N
vkTF In poor solvent v < 0 and 0R

Cost of Confinement 

2NbR 
Compression blob of size R 

with g monomers 

2











b

R
g

Confinement free energy 2

2

R

Nb
kT

g

N
kTFconf 
















2

2

2

2

3

2

R

Nb

Nb

R

R

N
vkTF For v < 0 0R

Three Body Repulsion 
















6

3

3

2

2

2

2

2

R

N
w

R

N
v

R

Nb

Nb

R
kTF

Size of a globule 
3/1











v

wN
Rgl



gT 

xT 

N 1 

b 

R 

3/5 

3/5 

good 

1/3 

poor 
1/2 
q-solvent 

1/3 
non-solvent 

athermal 

5/3bNRathermal 

3/1bNR solventnon 

2/1bNR q

5/3











T
Tgood

g

N
R x

3/1











T
Tpoor

g

N
R x

xT 

xT 

Real Chains in Different Solvents 



Temperature Dependence of Chain Size 

Mayer f-function 
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Summary for Real Chains 
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1. Real Chains 

 

2. Thermodynamics of Mixtures 

 

3. Polymer Solutions 

Outline 



Assume, for simplicity, no volume change on mixing 

Consider a mixture with total number n of monomers (sites) 

and total volume v0n where v0 – volume of a lattice site 

Assume that a monomer of each species occupies the same volume v0 

Binary Mixtures 
Homogeneous – if components are intermixed on a molecular scale 

Heterogeneous – if there are distinct phases 

Volume fractions 
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Entropy of Mixing 

+ = 

 - volume fraction of A 
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v0 – volume of a lattice site 

Number of translational states of a molecule 
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z – coordination number  

     (number of neighbors) 

uij – interaction of i with j 

Average energy per monomer of pure components  

before mixing   BBAAi uu
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Energy of Mixing 

     kTn
uu

uznnuU BBAA
ABmm 







 
 1

2
1

 0 1 

Um 

Energy change on mixing per site 

Probability of AB contact   1 

)1(   kTum

per site  
  














)1(1ln

1
ln 






BA

m

NN
kT

n

F

Free Energy of Mixing 

mmm STUF 








 


2

BBAA
AB

uu
u

kT

z


Flory interaction parameter    

Regular solution: NA = NB = 1 Polymer solution: NA = N >>1,  NB = 1 

Polymer blend: NA >>1,  NB >> 1 



At lower T for >0  repulsive 

interactions are important and  

there is a composition range 

 

with thermodynamically stable 

phase separated state. 

Flory-Huggins Free Energy of Mixing 
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Fmix is convex and homogeneous  

mixture is stable at all compositions. 
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Phase Diagrams 
   




















11ln

1
ln

BA

mix

NN
kT

n

F

For   cr mixture is stable at all 

compositions. 
2

11

2

1








>

BA
cr

NN
For 

there is a miscibility gap for '''  

0 

1 

2 

3 

4 

0 0.2 0.4 0.6 0.8 1 

N


 

Single Phase 

Two Phases 

Ncr 

cr  

For a symmetric blend NA=NB=N 

cr=2/N cr=1/2 

For polymer solutions NA = N,  NB = 1 

BA

B

cr
NN

N


Critical composition 

NN
cr

2

11

2

1


N
cr

1


-0.1 

0 

’ ” sp1 sp2 

N


F
m

ix
 

k
T

n
 N=2.7 

NA = NB 



Phase Diagram of Polymer Solutions 

M=53.3kg/mole 

Polyisoprene in dioxane 

Takano et al., Polym J. 17, 1123, 1985 
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Two Phases 
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Polymer solutions phase separate upon decreasing 

solvent  quality below q-temperature 

Upper critical solution temperature B>0 
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Mixtures at Low Compositions 
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Polymer Melts 
Consider a blend with a small concentration of NA chains in a melt 

of chemically identical NB chains. 

No energetic contribution to mixing   = 0. 

Excluded volume 
BB N

b
b

N
v

3
32

1
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  is very small for NB >> 1 

Thermal blob 
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b
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Chains smaller than thermal blob NA < NB
2  are nearly ideal. 

In monodisperse NA = NB and weakly polydisperse  

melts chains are almost ideal. 

In strongly asymmetric blends NA > NB
2  

long chains are swollen 
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Challenge Problem 3: 



Challenge Problem 4: 

v0 – volume of a lattice site = volume of a small B monomer 

mv0 – volume of an A monomer m times larger than B monomer 

Mixing of Polymers with Asymmetric Monomers 

NA – monomers  

per A chain 

NB – monomers  

per B chain 

Derive the free energy of mixing 

Fmix of A and B polymers. 

Calculate the size RA of dilute A-

chains in a 2-d of B-chains for 

m>>1 in the case of =0. 



Summary of Thermodynamics of Mixtures 

Free energy of mixing consists of entropic and energetic parts. 

Entropic part per unit volume (translational entropy of mixing Smix ) 

 













 





1ln

1
ln

BA

mix

vv
kT

V

ST

Energetic part per unit volume 

 





1
0v

kT
V

Umix

Many low molecular weight liquids are miscible 

Some polymer – solvent pairs are miscible 

Very few polymer blends are miscible 

vA – volume of A chain 

vB – volume of B chain 

v0 – volume of a lattice site 

T

B
A Flory interaction parameter 

Chains are almost ideal in polymer melts as long as they are  

shorter than square of the average degree of polymeriztion NA<N2 



1. Real Chains 

 

2. Thermodynamics of Mixtures 

 

3. Polymer Solutions 

Outline 



Which of These Chains are Ideal? 

Quiz #1 

C. Chain in a sediment of a polymer solution  

      in a poor solvent 

A. Polymer in a solution of its monomers 

B. Polymer dissolved in a melt of identical chains 

D. None of the above 
sediment 



Polymer Solutions 
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Poor Solvent 

Critical composition 
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Critical interaction 

parameter 

M = 43.6 kg/mole 

Solution phase separates below  

the binodal  into a dilute supernatant  

of isolated globules at ` and  

concentrated sediment at ``. 

` 
`` 

Sediment concentration `` is determined by the balance of second and 

third virial term (similar to the concentration inside globules). 
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Polystyrene in cyclohexane ( ) and 

polyisobutylene in diisobutyl ketone ( ) 

Shultz and Flory, J. Am. Chem. Soc. 

74, 4760, 1952 

M = 1,270 kg/mole 



Poor Solvent 
Dilute Supernatant of Globules 

Globules behave as liquid droplets with size  
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Surface tension is of order kT per thermal blob 
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Good Solvent 
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Correlation length x 

Distance from a monomer to nearest 

monomers on neighboring chains. 



Correlation Length 

x 

R 

For r < x monomers are surrounded by 

solvent and monomers from the same chain. 

The properties of this section of the chain  

of size x are the same as in dilute solutions. 

g – number of monomers inside a correlation  

volume, called correlation blob. 

For r > x sections of neighboring chains overlap and screen each other. 

On length scales r > x polymers are ideal chains - melt  

with N/g effective segments of size x.  

Correlation blobs are at overlap 
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Semidilute Solutions 
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N g 
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On length scales less than xT  chain is ideal because excluded volume 

interactions are weaker than kT. 

r 

n 

r ~ n1/2 

On length scales larger than xT  but smaller than x excluded volume 

interactions are strong enough to swell the chain. r ~ n3/5 

On length scales larger than x excluded volume interactions are  

screened by surrounding chains. 
r ~ n1/2 

xT 



Scaling Theory of Semidilute Solutions 

At overlap concentration 
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Concentrated Solutions 
Correlation length x decreases with concentration, while thermal blob 

size xT  is independent of concentration. 

At concentration ** the two length are equal             and 

intermediate swollen regime disappears. 
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This concentration is analogous to ’’ in poor solvent at 

which two- and three-body interactions are balanced. 

In concentrated solutions chains are ideal at all length scales. 

On length scales less than x  chains are ideal because excluded volume 

interactions are weaker than kT. 

On length scales larger than x chains are ideal because excluded  

volume interactions are screened by surrounding chains. 



Polymer Solutions 
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Osmotic Pressure 

In dilute solutions  < * - van’t Hoff Law 
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Osmotic pressure P in semidilute solutions  > * is a stronger  
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Semidilute Theta Solutions 

 

T q 

2-phase 

* 

dilute q semidilute q 
c 

Tc 

` `` 
dilute 

poor 

(globules) 

dilute 

good 

(swollen) 

semidilute good 

co
n
ce

n
tr

at
ed

 

v 

0 

** Chains are almost ideal 
2/1bNR 

x 2











b
g

x

Correlation blobs are space-filling 
 

xx

x

x


bbbgb


3

23

3

3 /

NbR  0x
NR

Nb 1
3
0

3
* at 

  2/1

*

2/1 xx

x

NbbN 












 




x

Correlation length in semidilute solutions  

is independent of chain length (1+x)/2 = 0     x=-1 

Scaling assumption for  > * 


x

b



x

b




What is the meaning of 

correlation length in semidilute 

theta solutions? 

Quiz # 2 

How different are semidilute theta 

solutions from ideal solutions of 

ideal chains? 



Osmotic Pressure in Semidilute Theta Solutions 

Mean-field prediction 







P ...3

63




b

w

Nb

kT

First term (van’t Hoff law) is important in dilute solutions 

Three-body term is larger than linear  

in semidilute solutions  > 1/N1/2 
3

3


b

kT
P

Scaling Theory 














P

*3 


h

Nb

kT















*


h { 1 for   < * 

(/*)y for   > * 

12/1

3*3














P yy

y

N
b

kT

Nb

kT






Osmotic pressure in semidilute qsolutions 

is independent of chain length (y/2-1=0). y=2 
3

3

3 x


kT

b

kT
P





0.001 0.01 0.1 1

P
 (

P
a

)

102

103

104

105

3

1

2.31

Osmotic Pressure 

Polyisobutylene in benzene 

at q24.5 oC (filled circles), 

in benzene at 50 oC (filled 
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30 oC (open circles) and at 

8 oC (open squares) 

Flory and Daoust J. Polym. 

Sci. 25, 429, 1957 

Correlation length in semidilute q-solvents is of the order  

of the distance between 3-body contacts. 

Number density of n-body contacts ~ n/b3 

Distance between n-body contacts in 3-dimensional space 3/n
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Summary of Polymer Solutions 
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0 

** 
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1/2 

In poor solvent part of the 

diagram binodal separates 

2-phase from 2 single phase 

regions:  

Dilute globules at low  

concentrations  < ’ 

Concentrated solutions 

with overlapping ideal 

chains at  > ” 

Near qtemperature there are dilute and semidilute q-regimes 

with ideal chains. 

Dilute good solvent regime with swollen chains at  < * and v > 0. 

Semidilute good solvent regime at * <  < ** with chains swollen  

at intermediate length scales shorter than correlation length x. 

Osmotic pressure in semidilute solutions is kT per correlation volume x3. 



Challenge Problem 5: 
Confinement of Polymers in Solutions & Melt 

Calculate the pressure between two solid plates fully immersed into 

a semidilute polymer solution or melt as a function of separation D 

between plates for separations smaller than chain size R. 

Assume no attraction between plates and polymer. 

Separately consider cases with correlation length x<D<R and b<D<x 

semidilute polymer  

solution or melt 

D 

x 



Single Chain Adsorption 
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Single Chain Adsorption 
xads Ideal chain Real chain 

Size xads and number of monomers g in an adsorption blob 
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Flory Theory of Adsorption 

D 

b 
Fraction of monomers in direct contact  

with the surface is  b/D 

Number of monomers in direct contact  

with the surface is  Nb/D 

Energy gain per monomer contact with 

the surface is  -kTe 

Energy gain from surface interactions per chain 
D

b
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Total free energy is a sum of interaction and confinement parts 
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xads 

x(z)  z 

z 
de Gennes’ self-similar carpet 

Multi-Chain Adsorption 

First layer is dense packing of adsorption blobs 

Polymer concentration decays from the high value in the first layer. 
 

The correlation length x(z) corresponding to concentration (z) at 

distance z from the surface is of the order of this distance. 

xads 

Single-chain adsorption 
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Alexander – de Gennes Brush 

Grafting density s number of chains per 

unit area. 

Distance between sections of chains 

x  s1/2 

Number of monomers per blob 

g ~ x1/ ~ s-1/(2) 

Thickness of the brush H ~ x N/g ~ Ns(1-)/(2) 

Energy per chain Echain ~ kT N/g ~ kTNs1/(2) 

Energy per unit volume P
3xx

sss kT
kT

Hg

N
kT

H
E

V

E
chain

chain



10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

Grafting density s (nm-2) 

B
ru

sh
 h

ei
g
h
t 

H
 (

n
m

) 
Polymer Brush Height depends on Grafting Density 

If the grafting density is high, chains 

repel each other and stretch away from 

the surface, forming a polymer brush. 

Mushroom Regime 

unperturbed size 

H ≃ R0 

H ~ N s1/3 


