Aging phenomena in magnetic systems

Michel Pleimling

Department of Physics Virginia Tech

July 16, 2009

イロン イヨン イヨン ・

Content

Introduction to aging phenomena Phenomenology of aging Aging in coarsening systems

Content

3 Aging in coarsening systems

Physical aging is known (and exploited) since prehistoric times First systematic studies: glassy systems (Struik '78)

a priori behavior should depend on entire history of the sample

<ロ> (四) (四) (三) (三) (三)

Physical aging is known (and exploited) since prehistoric times First systematic studies: glassy systems (Struik '78)

<ロ> (四) (四) (三) (三) (三)

evidence for universal behavior

same universal curve for very different materials!

Colloids: relaxation after mechanical stress (Derec '95)

contrainte (Pa) tw = 10, 100, 1000, 10000 s log (t') 8.01 0.1 1 10 100 1000 10000 Colloids: two-time correlators (Bonn et al. '04)

<ロ> (四) (四) (日) (日) (日)

Spin glasses: thermoremanent magnetization (Vincent et al. '95)

The answer of the system is slower for 'older' systems

CdCr_{1.7}In_{0.3}S₄ (Hérisson/Ocio '02)

dynamical scaling!

Memory effects (Lefloch et al. '92)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへぐ

Diluted ferromagnets $Fe_{0.20}Ni_{0.80}$)₇₅ $P_{16}B_6AI_3$ (Jonason et al. '96)

Bursac et al. '05: Aging phenomena are encountered in living cells

Cytoskeleton: crowded nonequilibrium network of structural proteins

<ロ> <同> <同> <三>

cytoskeleton stabilizes cell shape and drives cell motion

critical contact process: $A \xrightarrow{p} 0$, $A + 0 \xrightarrow{1-p} A + A$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへぐ

Aging

Defining characteristics and symmetry properties of aging:

- slow dynamics (i.e. non-exponential relaxation)
- breaking of time-translation invariance
- dynamical scaling

Questions:

- why do materials 'look old' after some time?
- what (reversible) microscopic processes lead to such macroscopic behavior?

<ロ> (四) (四) (日) (日) (日)

For better conceptual understanding: study aging first in simpler systems

Aging in the spin glass $Ag_{0.933}Mn_{0.027}$ (Data courtesy M. Ocio, J. Hammann and E. Vincent)

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ ◆

Measured values of the subaging exponent in some spin glasses

Material	μ	quantity	
$Fe_{0.5}Mn_{0.5}TiO_3$	0.84	M _{TRM}	
	~ 1	frequency-dependent	
		susceptibility $\chi(t,\omega)$	
$CdCr_{1.7}In_{0.3}S_4$	0.87	$M_{ m TRM}$	
	0.87	autocorrelator	
	~ 1	frequency-dependent	
		susceptibility $\chi(t,\omega)$	
Au _{0.92} Fe _{0.08}	0.91	$M_{ m TRM}$	
$Ag_{0.933}Mn_{0.027}$	0.97	$M_{ m TRM}$	
Cu _{0.94} Mn _{0.06}	0.999	M _{TRM}	
$SrCr_{8.6}Ga_{3.4}O_{19}$	0.85	M _{TRM}	

Measured values of the subaging exponent in some soft matter systems

Material	μ	quantity
cytoskeleton	0.32	compliance
(human airway smooth muscle)		
cytoskeleton	0.4	compliance
(human muscle cell)		
colloïdal glass (PMMA)	0.48(1)	autocorrelator
	0.48(1)	ZFC-response
polyelectrolyte microgel	~ 0.8	compliance
multilamellar vesicles	0.78(9)	compliance
	0.77(4)	intensity autocorrelation

phase ordering

equilibrium is never reached in the infinite system

aging in the d = 2 Ising model quenched below T_c

critical dynamics

equilibrium is never reached in the infinite system

fluctuation-dissipation ratio

experiment on the breaking of the fluctuation-dissipation theorem: spin glass $CdCr_{1.7}In_{0.3}S_4$

(日)、

∢ ≣ ▶

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Friday, July 17, 1:45 pm

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Monday, July 20, 10:45 am