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Physical aging is known (and exploited) since prehistoric times

First systematic studies: glassy systems (Struik ’78)

a priori behavior should depend on entire history of the sample
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Physical aging is known (and exploited) since prehistoric times

First systematic studies: glassy systems (Struik ’78)

evidence for universal behavior
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same universal curve for
very different materials!
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Colloids: relaxation after mechanical
stress (Derec ’95)

Colloids: two-time correlators
(Bonn et al. ’04)
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Spin glasses: thermoremanent magnetization (Vincent et al. ’95)

h

tt=st=0

The answer of the system is slower for ’older’ systems
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CdCr1.7In0.3S4

(Hérisson/Ocio ’02)

dynamical scaling!
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Memory effects (Lefloch et al. ’92)
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Diluted ferromagnets
Fe0.20Ni0.80)75P16B6Al3 (Jonason et al. ’96)
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Bursac et al. ’05: Aging phenomena are encountered in living cells

Cytoskeleton:

crowded nonequilibrium
network of structural proteins

cytoskeleton stabilizes cell shape and drives cell motion
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integrated response function

tµ = t/tµ

W with µ = 0.4
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critical contact process: A
p
→ 0, A + 0

1−p
→ A + A
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Aging

Defining characteristics and symmetry properties of aging:

slow dynamics (i.e. non-exponential relaxation)

breaking of time-translation invariance

dynamical scaling

Questions:

why do materials ’look old’ after some time?

what (reversible) microscopic processes lead to such
macroscopic behavior?

For better conceptual understanding:
study aging first in simpler systems
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Aging in the spin glass Ag0.933Mn0.027

(Data courtesy M. Ocio, J. Hammann and E. Vincent)
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Measured values of the subaging exponent in some spin glasses

Material µ quantity

Fe0.5Mn0.5TiO3 0.84 MTRM

∼ 1 frequency-dependent
susceptibility χ(t, ω)

CdCr1.7In0.3S4 0.87 MTRM

0.87 autocorrelator
∼ 1 frequency-dependent

susceptibility χ(t, ω)

Au0.92Fe0.08 0.91 MTRM

Ag0.933Mn0.027 0.97 MTRM

Cu0.94Mn0.06 0.999 MTRM

SrCr8.6Ga3.4O19 0.85 MTRM
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Measured values of the subaging exponent in some soft matter
systems

Material µ quantity

cytoskeleton 0.32 compliance
(human airway smooth muscle)

cytoskeleton 0.4 compliance
(human muscle cell)

collöıdal glass (PMMA) 0.48(1) autocorrelator
0.48(1) ZFC-response

polyelectrolyte microgel ∼ 0.8 compliance

multilamellar vesicles 0.78(9) compliance
0.77(4) intensity autocorrelation
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phase ordering

equilibrium is never reached in the infinite system
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aging in the d = 2 Ising model quenched below Tc
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critical dynamics

equilibrium is never reached in the infinite system
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fluctuation-dissipation ratio
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phase ordering critical system spin glass
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experiment on the breaking of the fluctuation-dissipation theorem:
spin glass CdCr1.7In0.3S4
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Friday, July 17, 1:45 pm
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Monday, July 20, 10:45 am
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