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Field Theory of the Quantum Kicked Rotor
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The quantum kicked rotor is investigated by field theoretical methods. It is shown that the effective
theory describing the long wavelength physics of the system is precisely the supersymmetric nenlinear
model for quasi-one-dimensional metallic wires. This proves that the analogy between chaotic systems
with dynamical localization and disordered metals can indeed be exact. The role of symmetries is
discussed. [S0031-9007(96)01666-3]

PACS numbers: 05.45.+b, 03.65.Sq, 11.10.Lm, 72.15.Rn

Quantum mechanics tends to suppress the chaoticitgre going to show that the answer is positive. This is
of classical dynamical systems. The investigation of thidlone by mapping the kicked rotor onto the very same
phenomenon iperiodically drivensystems, i.e., systems supersymmetric nonlinearr model that is known to
that are governed by a Hamiltonian with periodic timedescribe the long wavelength physics of disordered wires.
dependence, has led to the discovery of one of the mogthe fact that both models can be described by the same
intriguing parallels between the fields of nonlinear dynam-effective field theory implies that all that is known about
ics and disordered solids: In the quantum kicked rotothe QKR applies to disordered wires and vice versa.
(QKR), a typical representative of this class of system, the The QKR is defined by the time dependent Hamiltonian

quantum mechanical suppression of chaos exhibits strik- . 72 . o
ing similarities to the phenomenon of Anderson localiza- H = 5 + kcod6 + a) Z d(nt — 1),
tion in disordered metallic wires [1]. n=-

By definition, the kicked rotor is a point particle that where the particle’s moment of inertia has been set to
moves freely on a circle. The patrticle is kicked periodi-unity and ¢ € R is a symmetry breaking parameter
cally in time, where the kick strength depends on thewhose meaning will be explained below. To elucidate the
angular position. When a kick strength parameter analogy between this Hamiltonian and disordered electron
exceeds a certain threshold value, the dynamics becomegstems, one may consider the discrete time analog of a
globally chaotic. In a statistical physicist’s language, thefour-point Green function in (angular) momentum space:
chaoticity of the motion manifests itself as follows: An + -
ensemble of particles prepared at time= 0 so as to (hle (wi)ll? <l?|G (wf)ll“»f'“f @
have definite angular momentuip but arbitrary angu- WhereG=(w):=3, %, U"e'="" =[1 — (Ue'*=7)*']7",
lar coordinated will diffusein ! space around the ini- U = expil*7/4)exdik cog6 + a)]exp(il*r/4) denotes
tial condition /;. In the correspondinguantum system the Floquet operator, i.e., the unitary operator governing
(6 — 0,1 —1,[1,6] = —iK), the unbound diffusion ii  the time evolution during one elementary time step, =
space is suppressed by localization. Numerical [1] andvy * (w/2 + i0), and (-- )y, := T fg”/T dwo(---)/2m
analytical [2,3] studies have shown that the QKR localizais an average over the rotor's quasienergy spectrum.
tion is analogous to the Anderson localization displayed Before turning to a quantitative discussion of the sys-
by metallic wires with many channels (quasi-1D wires).tem, let us explain the meaning of the symmetry break-
In particular, it has been demonstrated numerically [4]ing parameter. The localization length of a disordered
that a phenomenological modeling of the QKR by randomwire depends on the behavior of the Hamiltonian under
band matrices can successfully explain essential featurése time reversal transformatiofi: t — —¢, p — —p,
of the localization phenomenon. Random matrix modelsc — x, where p and x are the momentum and the po-
of the same type are known [5], in turn, to describe thesition. In the case of the rotor, where localization takes
universal large distance physics of disordered wires. place in momentum rather than coordinate space, this

However, the equivalence between the rotor and quassymmetry operation is irrelevant. However, it has been
1D wires still has the status of a conjecture. A rigorousshown [9] that the transformatiofi.: t — —¢, 8 — —06,
answer to the question whether this analoggasnplete [ — [ plays a role analogous t6 in disordered metals.
(and not just restricted to the bilateral appearance ofNote thatT. differs from T just by the exchange of
localization) has not yet been given. Can a simplemomentum and position.) To couple the system tB.a
one-dimensional driven system indeed exactly mimidoreaking perturbation in a simple way, we put it on an an-
the behavior of disordered electronic conductors, whictgular lattice of spacind/(2# L), L € N, thereby giving
includes a variety of complex phenomena that havet the topology of a ring of circumferende in momentum
recently been found [6—8]? In the present Letter wespace[10]. It will turn out that the symmetry breaking
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parameter then acts like &, breaking Aharonov-Bohm E¥ ® (io3) and ok (i = 1,2,3, X = AR,BF,T) de-
flux piercing the ring. notes the Pauli matrices.

In the following we deal with the correlator (1) by field  The next step in the construction of the field theory
theoretical methods. The strategy of our approach is dics the average over the phase &x@7), which plays a
tated by the experience gained from both the analysis afole similar to the energy average employed in Ref. [12].
disordered metals [11] and a recent field theoretical aph that case, energy averaging led to a quarti€fy)?]
proach [12] to Hamiltonian chaotic systems. Owing tononlocal contribution to the action of the field theory.
the different formulation of periodically driven systems, The latter was eliminated by means of a matrix valued
however, the actual computational scheme deviates sigwxiliary field Q that coupled to thelyadic products .
nificantly from these cases. To simplify the notation, weThe phase average to be carried out in the present problem
temporarily focus on the case of unbrokEnsymmetry, produces in addition to the quartic term an infinite
a=0. series of higher contributions to the action. We have

Invariance under the transformatidfi., which acts not succeeded in decoupling these terms by elementary
as anantiunitary operator in the quantum system, re- means. On the other hand, the experience gained from
sults in the Floguet operator being a symmetric matrixprevious diagrammatic analyses [3] of the QKR suggests
when represented in the basis (from now on we re- that a field coupling tay¢s should again describe the large
fer to all operators i representation). This makes it scale physics.
possible to decomposE = {(I|U|I")} by (Uei®=7)*! = The problem of identifying this field is solved by a
v+VI whereV. does not possess any symmetries otherecently discovered identity [14] that adapts the Hubbard-
than unitarity. We choos&+ = ei"‘”ﬂ/zKﬁ(}z, where  Stratonovich transformation to averages owamitary
K4, = {(] exp(+il?7/4) exd =ik cod6 + a)]|l')}, and operators. In the special case under consideration,
write the Green functions appearing in (1) as [13] namely, a phase or(U) average, this identity reads

1 Ve <e<z71’4771+7_72b7¢2>w0 — f DM(Z,Z)elle(ﬁz‘*'ﬁzZ"h, (5)

-1
G (w=) = (VI 1 ) =G (0)1.  (2)
- 1 where u :=expiwor), 11 = Vilw=o0x1, 72 =

In the next step we introduce a superfiefd= {rant,  7,V7|,,—0, all subscripts refer to thel indices (AR
A a,t = 1,2, with complex commuting (anticommuting) space),Z = {Zau.avr} iS @ nonlocal (inl) 4 X 4 super-
componentsy,—1 (¢.—2), and consider the generating matrix field, D u(Z,Z) = D(Z,Z)sdetl — ZZ) with
functional “sdet” the superdeterminant, arfdD (Z, Z) stands fozr the

_ -, integral over the matrix elements @fandZ := Ztogg.

f D,y exd—g(G™" + 1)yl (3) The proof [14] of (5) makes use of group theoretical

concepts and the theory of generalized coherent states [15]
and is too lengthy to be reported here. We note however
that the fieldz,; takes values in the unrestricted settok

where G = Ejk ® lgr ® G (w1) + Exg ® lpr ®
G (w-), matrices with subscript “AR” (“BF,” “T") act

in 'ghe two-dimensional spaces af (a. 1) |nd_|ces_ [the: 4 complex supermatrices. The latter can be interpreted as
indices refer to the matrix structure appearing in (2)] anda space parametrizing the coset specdK, K = {k €

2 R —
(EX)ijr := 8i#8j, X = AR,BF,T. Here and below, ¢|iqo3. = o3k} C G, whereG is the group o8 X 8
indices that are not indicated explicitly are summed OVersupermatriceg subject to the constraint g = 7, 7 =

Expressions like (1) can readily be obtained from (3) by((f?m ® ELL + 1,r ® EZ%) ® 17. This coset space is

differentiating twice with respect to matrix elements of {4 fie|d manifold of a tinitary’ supersymmetrier model

the source field/. As we are interested in the general 5 is twice as large as in the usual case [11] on account

structure of the theory, rather than in the calculation Of¢ the extra T space indices. The relationship between the
any particular correlation function, we henceforth orhit

; N . Z field and this manifold is the first indication of the fact
After a few elementary manipulations, namely matrixh4t we will end up with a nonlinear model.

transpositions and regrouping of integration variables, the afiar this comment on the formalism. we proceed to
Gaussian integral (3) takes the simple form apply (5) to the construction of the field theory for the
f D(d X)e—%(éﬂ/:+)‘()()+<}E/L'R®V+X+}Eﬁ®vf¢ ) rotor. To that end we insert (5) into (4) and perform the

’ ’ Gaussian integration over the fieldsand y. As a result

where the fields¢ = {pran} and xy = {xiau} com- W€ obtain for the generating functional (at= 0),
prise components of botlt and . Instead of display- ~ ~ 1 _

ing the structure of these new quantities explicitly, we f D(z, Z)expstr[In(l = 27) = 5In(1 = Z7~'Z"7)
merely note two essential features that fix their function- 1 oS AT .ot
ality as integration variables: (i and y are indepen- —3In(l = e ZUg Z7 70y )], (6)
dent of each other and (ii) they possess the symmetrwhereUy = Ul|,—, 7 = Mo, and the supertrace “str”
Y = (Iar ® M)Y, Y = ¢, x, whereM = E}JF ® o + includes a trace over thlespace. So far all manipulations
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have been exact. We next restrict the field theory tahe action in (6) to a “semiclassical approximation.” The
its infrared limit, which describes the long-time—large- expansion parameter of this approximationij®! < 1,
distance physics we are interested in. where 61 is the typical angular momentum scale over
The action of the field theory (6) vanishes for fieldswhich the relevantZ fields fluctuate [17]. As a result,
Z proportional to unity in angular momentum space if(i) the symbol str in (6) no longer includes a trace over
o — 0 and the constraint angular momentum space but rather an integral over
Z=r1'7"7 (7) the phase space coordinatésd) of the classical rotor,
is imposed. Field configurations that violate this symme<ii) Z(/,!’) is replaced by its Wigner transfor#(i, 6)
try are “massive” and cannot contribute to the long-rangéwe temporarily suppress the supersciipin Z¢), and
correlations of the model. We therefore restrict the inte<iii) UyZU, is replaced byzZ,, wheref,(l,0) = f(6 +
gration in (6) to the field manifold specified by (7). (The r(I + ksin6),! + ksin@) denotes the classical one time
integration over the massive quadratic fluctuations aroundtep evolution (standard map) of a phase space function.
this manifold yields a factor of unity by the supersymme- The angular variablé of the standard map is a rapidly
try of the model.) Note that the unitary coset sp@8&K  relaxing degree of freedom, which leads us to expect that
subject to the constraint (7) defines the field space of thenly 6 independent field configurations contribute to the
“orthogonat nonlinearc model. As a preliminary result, long wave limit of the model. To formulate this statement
we thus find that our field theory has the same symmetriem a quantitative manner we do a Fourier transform,
as the one describing time reversal invariant disordered(1,6) = >..___ Z,(I) expim#), and observe that the
metals. What happens when this symmetry is graduallyjonzero modeg,,..o are massive. Integration over these
broken by the introduction of a small finite value«? In  fields in Gaussian approximation yields an effective field
that case, the decomposition of the time evolution opetheory for the massless zero mad€) := Zy(l).
rator has to be generalized (@e'“=")*! = vay 4T, We finally expand the actio§[Z] in terms of slowly
where V¢ = ei"“’rT/zKi,k/z. All further steps can be fluctuating fields. This program is carried out most
repeated in essentially the same way as before and wexonomically in thel-Fourier space, i.e., in angular
again arrive at (6). The only change is that the fieldscoordinates [18]. The small parameters of this expansion
appearing in the action have undergone a “gauge transfoscheme ares 7 and the characteristic “momentugh”(¢
mation” Z,, — Zg 1= exp(—ialo3)Zy explial'e3), and  is an angular variable) of slowly fluctuating fieldg),
similarly for Z. which is of orderp < k! < 1. Concerning the former,
To carry the analogy to disordered metals further, wewve note that the mean quasienergy level spacing of the
need to expand the action around the lidjt = ;. Zy, model is A = 27 (L7)"'. Since we are interested in
o = 0. Details of this somewhat tedious calculation will small frequencies of) (A), we havewr ~ L™! < 1. To
be presented elsewhere [16]. Here we restrict ourselvdsading order inw7 and ¢ the action of the generating
to a rough sketch of the main ideas. We first subjectunctional reads

S[z¢. 2] ~ f dx(— inTstr[l ~ 7072 W] - %ax,axsu [l — Z%(x)Z°(:] |x,=x>, (8)

where we have Fourier-transformed back to angdlawhich is precisely the nonlinear model for a quasi-one—
momentum space, taken a continuum limit (i.e., thedimensional metallic ring in the presence dfabreaking
variable x is a smoothed version of theindex, >; —  (Aharonov-Bohm) vector potential of strengih

[dx) and D = k?/2 + ... is the classical diffusion Because of its importance for an understanding of the
coefficient of the rotor [19]. (The dots indicate oscillatory localization physics of wires, the model (9) has been in-
corrections [20] toD that result from elimination of the vestigated thoroughly [11]. Let us now review some of
nonzero modes and are smaller than the leading term ks essential properties in the terminology of the kicked

powers ofk.) Introducing ar8 X 8 matrix field Q by rotor. For times less tha@ (7k?) the kicked particle per-
forms a diffusive motion in momentum space. On larger
1 z\(1 o A time scales, quantum localization confines the particle to
0= (z 1 )(O -1 ) <Z 1 ) ’ stay within a volume specified by the localization length

&, = k?/2. For “flux” strengthsa ~ L~!, the orthogo-
we can rewrite the functional integral as nal symmetry of the model is broken and one expects a
doubling of the localization lengtld, — &, = 2£, [11].

D T (Note, however, thau,,x = 27 /L corresponds to one
[ DO exp[ str(—VaQVaQ + —QUZR>, “flux quantum” ¢ penetrating the ring. As the physics
32 8 of Aharonov-Bohm geometries 5 periodic,ay.y is the
V.Q = VO + ia[o3, Q], (9) maximum field strength that can be realized in our model.
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