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Field Theory of the Quantum Kicked Rotor
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The quantum kicked rotor is investigated by field theoretical methods. It is shown that the effe
theory describing the long wavelength physics of the system is precisely the supersymmetric nonlins

model for quasi-one-dimensional metallic wires. This proves that the analogy between chaotic sy
with dynamical localization and disordered metals can indeed be exact. The role of symmetr
discussed. [S0031-9007(96)01666-3]
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Quantum mechanics tends to suppress the chaoti
of classical dynamical systems. The investigation of th
phenomenon inperiodically drivensystems, i.e., systems
that are governed by a Hamiltonian with periodic tim
dependence, has led to the discovery of one of the m
intriguing parallels between the fields of nonlinear dynam
ics and disordered solids: In the quantum kicked rot
(QKR), a typical representative of this class of system, t
quantum mechanical suppression of chaos exhibits st
ing similarities to the phenomenon of Anderson localiz
tion in disordered metallic wires [1].

By definition, the kicked rotor is a point particle tha
moves freely on a circle. The particle is kicked period
cally in time, where the kick strength depends on th
angular position. When a kick strength parameterkt

exceeds a certain threshold value, the dynamics beco
globally chaotic. In a statistical physicist’s language, th
chaoticity of the motion manifests itself as follows: A
ensemble of particles prepared at timet ­ 0 so as to
have definite angular momentuml0 but arbitrary angu-
lar coordinateu will diffuse in l space around the ini-
tial condition l0. In the correspondingquantum system
(u ! û, l ! l̂, fl̂, ûg ­ 2ih̄), the unbound diffusion inl
space is suppressed by localization. Numerical [1] a
analytical [2,3] studies have shown that the QKR localiz
tion is analogous to the Anderson localization display
by metallic wires with many channels (quasi-1D wires
In particular, it has been demonstrated numerically [
that a phenomenological modeling of the QKR by rando
band matrices can successfully explain essential featu
of the localization phenomenon. Random matrix mode
of the same type are known [5], in turn, to describe t
universal large distance physics of disordered wires.

However, the equivalence between the rotor and qua
1D wires still has the status of a conjecture. A rigorou
answer to the question whether this analogy iscomplete
(and not just restricted to the bilateral appearance
localization) has not yet been given. Can a simp
one-dimensional driven system indeed exactly mim
the behavior of disordered electronic conductors, whi
includes a variety of complex phenomena that ha
recently been found [6–8]? In the present Letter w
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are going to show that the answer is positive. This
done by mapping the kicked rotor onto the very sam
supersymmetric nonlinears model that is known to
describe the long wavelength physics of disordered wir
The fact that both models can be described by the sa
effective field theory implies that all that is known abou
the QKR applies to disordered wires and vice versa.

The QKR is defined by the time dependent Hamiltonia

Ĥ ­
l̂2

2
1 k cossû 1 ad

X̀
n­2`

dsnt 2 td ,

where the particle’s moment of inertia has been set
unity and a [ R is a symmetry breaking paramete
whose meaning will be explained below. To elucidate th
analogy between this Hamiltonian and disordered electr
systems, one may consider the discrete time analog o
four-point Green function in (angular) momentum space

kkl1jG
1sv1d jl2l kl3jG

2sv2d jl4llv0 , (1)

whereG6sv6d :­
P6`

n­0 Ûneiv6nt ­ f1 2 sÛeiv6td61g21,
Û ­ expsil̂2ty4d expfik cossû 1 adg expsil̂2ty4d denotes
the Floquet operator, i.e., the unitary operator governi
the time evolution during one elementary time step,v6 ­
v0 6 svy2 1 i0d, and k· · ·lv0 :­ t

R2pyt
0 dv0s· · ·dy2p

is an average over the rotor’s quasienergy spectrum.
Before turning to a quantitative discussion of the sy

tem, let us explain the meaning of the symmetry brea
ing parametera. The localization length of a disordered
wire depends on the behavior of the Hamiltonian und
the time reversal transformationT : t ! 2t, p ! 2p,
x ! x, wherep and x are the momentum and the po
sition. In the case of the rotor, where localization take
place in momentum rather than coordinate space, t
symmetry operation is irrelevant. However, it has bee
shown [9] that the transformationTc: t ! 2t, u ! 2u,
l ! l plays a role analogous toT in disordered metals.
(Note that Tc differs from T just by the exchange of
momentum and position.) To couple the system to aTc

breaking perturbation in a simple way, we put it on an a
gular lattice of spacing1ys2pLd, L [ N , thereby giving
it the topology of a ring of circumferenceL in momentum
space[10]. It will turn out that the symmetry breaking
© 1996 The American Physical Society
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parametera then acts like aTc breaking Aharonov-Bohm
flux piercing the ring.

In the following we deal with the correlator (1) by field
theoretical methods. The strategy of our approach is d
tated by the experience gained from both the analysis
disordered metals [11] and a recent field theoretical a
proach [12] to Hamiltonian chaotic systems. Owing t
the different formulation of periodically driven systems
however, the actual computational scheme deviates s
nificantly from these cases. To simplify the notation, w
temporarily focus on the case of unbrokenTc symmetry,
a ­ 0.

Invariance under the transformationTc, which acts
as an antiunitary operator in the quantum system, re
sults in the Floquet operator being a symmetric matr
when represented in thel basis (from now on we re-
fer to all operators inl representation). This makes i
possible to decomposeU ­ hkljÛjl0lj by sUeiv6td61 ­
V6V T

6, whereV6 does not possess any symmetries oth
than unitarity. We chooseV6 ­ e6iv6ty2Ka­0

6,ky2, where
Ka

6,k :­ hklj exps6il̂2ty4d expf6ik cossû 1 adg jl0lj, and
write the Green functions appearing in (1) as [13]

G6sv6d ­

√
1 V6

V T
6 1

!21

11

­: G̃6sv6d11 . (2)

In the next step we introduce a superfieldc ­ hclatlj,
l, a, t ­ 1, 2, with complex commuting (anticommuting)
componentsca­1 sca­2d, and consider the generating
functional Z

D sc, c̄d expf2c̄
°
G21 1 Jdcg , (3)

where G ­ E11
AR ≠ 1BF ≠ G̃1sv1d 1 E22

AR ≠ 1BF ≠

G̃2sv2d, matrices with subscript “AR” (“BF,” “T”) act
in the two-dimensional spaces ofl (a, t) indices [thet
indices refer to the matrix structure appearing in (2)] an
sEij

Xdi0j0 :­ dii0djj0 , X ­ AR, BF, T. Here and below,
indices that are not indicated explicitly are summed ove
Expressions like (1) can readily be obtained from (3) b
differentiating twice with respect to matrix elements o
the source fieldJ. As we are interested in the genera
structure of the theory, rather than in the calculation
any particular correlation function, we henceforth omitJ.

After a few elementary manipulations, namely matr
transpositions and regrouping of integration variables, t
Gaussian integral (3) takes the simple formZ

D sf, xde2 1

2
sf̄f1x̄xd1f̄E11

AR≠V1x1x̄E22
AR≠V T

2f, (4)

where the fieldsf ­ hflatlj and x ­ hxlatlj com-
prise components of bothc and c̄. Instead of display-
ing the structure of these new quantities explicitly, w
merely note two essential features that fix their functio
ality as integration variables: (i)f and x are indepen-
dent of each other and (ii) they possess the symme
Ȳ ­ s1AR ≠ MdY , Y ­ f, x, whereM ­ E11

BF ≠ s
1
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E22
BF ≠ sis2

Td and s
i
X si ­ 1, 2, 3, X ­ AR, BF, Td de-

notes the Pauli matrices.
The next step in the construction of the field theor

is the average over the phase expsiv0td, which plays a
role similar to the energy average employed in Ref. [12
In that case, energy averaging led to a quartic [,sc̄cd2]
nonlocal contribution to the action of the field theory
The latter was eliminated by means of a matrix value
auxiliary field Q that coupled to thedyadicproductcc̄.
The phase average to be carried out in the present probl
produces in addition to the quartic term an infinite
series of higher contributions to the action. We hav
not succeeded in decoupling these terms by element
means. On the other hand, the experience gained fro
previous diagrammatic analyses [3] of the QKR sugges
that a field coupling tocc̄ should again describe the large
scale physics.

The problem of identifying this field is solved by a
recently discovered identity [14] that adapts the Hubbar
Stratonovich transformation to averages overunitary
operators. In the special case under consideratio
namely, a phase or Us1d average, this identity reads

kef̄1uh11h̄2ūf2lv0 ­
Z

D msZ, Z̃def̄1Zf21h̄2Z̃h1 , (5)

where u :­ expsiv0td, h1 ­ V1jv0­0x1, h̄2 ­
x̄2V T

2jv0­0, all subscripts refer to thel indices (AR
space),Z ­ hZatl,a 0t0l0 j is a nonlocal (inl) 4 3 4 super-
matrix field, D msZ, Z̃d ­ D sZ, Z̃dsdets1 2 ZZ̃d with
“sdet” the superdeterminant, and

R
D sZ, Z̃d stands for the

integral over the matrix elements ofZ andZ̃ :­ Zys
3
BF .

The proof [14] of (5) makes use of group theoretica
concepts and the theory of generalized coherent states [
and is too lengthy to be reported here. We note howev
that the fieldZll0 takes values in the unrestricted set of4 3

4 complex supermatrices. The latter can be interpreted
a space parametrizing the coset spaceGyK, K ­ hk [
Gjks

3
AR ­ s

3
ARkj , G, whereG is the group of8 3 8

supermatricesg subject to the constraintgyhg ­ h, h ­
ss3

AR ≠ E11
BF 1 1AR ≠ E22

BFd ≠ 1T . This coset space is
the field manifold of a “unitary” supersymmetrics model
that is twice as large as in the usual case [11] on accou
of the extra T space indices. The relationship between t
Z field and this manifold is the first indication of the fac
that we will end up with a nonlinears model.

After this comment on the formalism, we proceed t
apply (5) to the construction of the field theory for the
rotor. To that end we insert (5) into (4) and perform th
Gaussian integration over the fieldsf andx. As a result
we obtain for the generating functional (atJ ­ 0),Z

D sZ, Z̃d expstrflns1 2 ZZ̃d 2
1
2 lns1 2 Zt21ZT td

2
1
2 lns1 2 eivtZ̃U0t21Z̃T tU

y
0 dg , (6)

whereU0 ­ Uja­0, t ­ Ms
3
BF , and the supertrace “str”

includes a trace over thel space. So far all manipulations
4537
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have been exact. We next restrict the field theory
its infrared limit, which describes the long-time–larg
distance physics we are interested in.

The action of the field theory (6) vanishes for field
Z proportional to unity in angular momentum space
v ! 0 and the constraint

Z̃ ­ t21ZT t (7)
is imposed. Field configurations that violate this symm
try are “massive” and cannot contribute to the long-ran
correlations of the model. We therefore restrict the in
gration in (6) to the field manifold specified by (7). (Th
integration over the massive quadratic fluctuations arou
this manifold yields a factor of unity by the supersymm
try of the model.) Note that the unitary coset spaceGyK
subject to the constraint (7) defines the field space of
“orthogonal” nonlinears model. As a preliminary result
we thus find that our field theory has the same symmet
as the one describing time reversal invariant disorde
metals. What happens when this symmetry is gradu
broken by the introduction of a small finite value ofa? In
that case, the decomposition of the time evolution o
rator has to be generalized tosUeiv6td61 ­ V a

6V 2aT
6 ,

where V a
6 ­ e6iv6ty2Ka

6,ky2. All further steps can be
repeated in essentially the same way as before and
again arrive at (6). The only change is that the fie
appearing in the action have undergone a “gauge trans
mation” Zll0 ! Za

ll0 :­ exps2ials3
TdZll0 expsial0s

3
T d, and

similarly for Z̃.
To carry the analogy to disordered metals further,

need to expand the action around the limitZll0 ­ dll0Z0,
v ­ 0. Details of this somewhat tedious calculation w
be presented elsewhere [16]. Here we restrict ourse
to a rough sketch of the main ideas. We first subj
l
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the action in (6) to a “semiclassical approximation.” Th
expansion parameter of this approximation ish̄ydl ø 1,
where dl is the typical angular momentum scale ov
which the relevantZ fields fluctuate [17]. As a result
(i) the symbol str in (6) no longer includes a trace ov
angular momentum space but rather an integral o
the phase space coordinatessl, ud of the classical rotor,
(ii) Zsl, l 0d is replaced by its Wigner transformZsl, ud
(we temporarily suppress the superscripta in Za), and
(iii) U0ZU

y
0 is replaced byZu, wherefusl, ud ­ fsssu 1

tsl 1 k sinud, l 1 k sinuddd denotes the classical one tim
step evolution (standard map) of a phase space functio

The angular variableu of the standard map is a rapidl
relaxing degree of freedom, which leads us to expect t
only u independent field configurations contribute to t
long wave limit of the model. To formulate this stateme
in a quantitative manner we do a Fourier transfor
Zsl, ud ­

P`
m­2` Zmsld expsimud, and observe that the

nonzero modesZmfi0 are massive. Integration over thes
fields in Gaussian approximation yields an effective fie
theory for the massless zero modeZsld :­ Z0sld.

We finally expand the actionSfZg in terms of slowly
fluctuating fields. This program is carried out mo
economically in the l-Fourier space, i.e., in angula
coordinates [18]. The small parameters of this expans
scheme arevt and the characteristic “momentum”f (f
is an angular variable) of slowly fluctuating fieldsZsfd,
which is of orderf ø k21 ø 1. Concerning the former,
we note that the mean quasienergy level spacing of
model is D ­ 2psLtd21. Since we are interested i
small frequencies ofO sDd, we havevt , L21 ø 1. To
leading order invt and f the action of the generating
functional reads
SfZa , Z̃ag .
Z

dx

√
2

ivt

2
strf1 2 ZasxdZ̃asxdg21 2

D
4

≠x0≠xstr lnf1 2 ZasxdZ̃asx0dg jx0­x

!
, (8)
y
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where we have Fourier-transformed back to angu
momentum space, taken a continuum limit (i.e., th
variable x is a smoothed version of thel index,

P
l !R

dx) and D ­ k2y2 1 . . . is the classical diffusion
coefficient of the rotor [19]. (The dots indicate oscillator
corrections [20] toD that result from elimination of the
nonzero modes and are smaller than the leading term
powers ofk.) Introducing an8 3 8 matrix fieldQ by

Q ­

√
1 Z
Z̃ 1

! √
1 0
0 21

! √
1 Z
Z̃ 1

!21

,

we can rewrite the functional integral as

Z
D Q exp

Z
str

√
D
32

=aQ=aQ 1
ivt

8
Qs3

AR

!
,

=aQ ­ =Q 1 iafs3
T, Qg , (9)
ar
e

by

which is precisely the nonlinears model for a quasi-one–
dimensional metallic ring in the presence of aT–breaking
(Aharonov-Bohm) vector potential of strengtha.

Because of its importance for an understanding of
localization physics of wires, the model (9) has been
vestigated thoroughly [11]. Let us now review some
its essential properties in the terminology of the kick
rotor. For times less thanO stk2d the kicked particle per
forms a diffusive motion in momentum space. On larg
time scales, quantum localization confines the particle
stay within a volume specified by the localization leng
jo ­ k2y2. For “flux” strengthsa , L21, the orthogo-
nal symmetry of the model is broken and one expec
doubling of the localization lengthjo ! ju ­ 2jo [11].
(Note, however, thatamax ­ 2pyL corresponds to on
“flux quantum” f0 penetrating the ring. As the physic
of Aharonov-Bohm geometries isf0 periodic,amax is the
maximum field strength that can be realized in our mod
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For systems withL * jo this strength does not suffice
cause a crossover fromjo to ju.)

A careful look reveals that the localization lengthjo

predicted by our analysis is four times larger than
length jn found in numerical work (cf., e.g., Ref. [21]
We believe that this discrepancy is caused by an am
guity in the convention of what is called a localizatio
length: The “field theoretical” localization length dete
mines the exponential decay of theaverage transition
probability kjG1sv1; l, l0dj2lv0 , exps2jl 2 l0jyjod be-
tween two remote statesjl 2 l0j ¿ jo. In numerical
measurements, however, one computes theaverage of
individual decay constants,which is to say that one
calculates jl 2 l0jyjn ­ k2 ln jG1sv1; l, l0dj2lv0 . The
lengthsjo andjn thus defined do not coincide in gener
According to Ref. [22] they are related byj0 ­ 4jn for
quasi-1D wires. In view of this, our analytical result do
agree with the numerics after all.

To summarize, we have mapped both the unitary
the orthogonal quantum kicked rotor on the supersymm
ric nonlinears model for quasi-1D wires. This prove
the long-standing conjecture that the universal proper
of these two classes of system are indeed the same.
mapping is straightforward and direct and avoids so
approximations made in earlier work, namely, (i) the
placement of the deterministic rotor by a stochastic mo
and (ii) the passage from unitary to Hermitian rando
ness. Note that the rotor-metal analogy is not restric
to the phenomenon of strong localization. It has rece
been shown that quantum interference in metals manif
itself in variousprestagesof localization such as nontriv
ial wave function statistics [6,7] or the appearence of p
localized states [8]. The exact correspondence betw
quasi-1D wires and the rotor suggests that these eff
must be observable in the latter, too. In fact, the ro
may be an ideal model system for highly accurate num
ical analyses of these prelocalization phenomena, sin
can be implemented more efficiently on a computer t
can weakly disordered multichannel wires.

We have benefitted from discussions with O. Aga
S. Fishman, P. Freche, M. Janssen, and A. Mirlin.
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