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Localization of Quasienergy Eigenfunctions in Action Space
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It is shown that the localization length of quasienergy eigenfunctions is determined by the classi-
cal diffusion rate: l = D/2. The new numerical method of minimal Lyapunov exponent for the cal-

culation of I is proposed and applied to the quantum standard map and Lloyd model.
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A dynamical approach to the problem of the quan-
tum limitation of classical chaos, ' 3 which plays a sig-
nificant role in the excitation of atoms by a strong
monochromatic field, ~ is proposed. This method is
based on the observation that the properties of quan-
tum quasienergy eigenfunctions can be determined by
the dynamics of a classical Hamiltonian system with
many degrees of freedom. We discuss here also the
possibility of using such an approach for the problem
of one-dimensional Anderson localization in solid-
state systems. s The analogy between the problems of
Anderson localization and quantum limitation of chaos
was established by Fishman, Grempel, and Prange. 6

Let us consider the system with the Hamiltonian
H= Ho(l) + V(8)5r(t), where I= —i I/F88, ST(t) is
the periodic delta function, 0 is the phase variable,
It =1, and Ho is dimensionless. ' 3 6 The classical
equations of motion are

Here I and & are the values of the variables I and 8
after one period of time T. If the resonances overlap,
then the action grows without limit according to the
diffusion law: ((Al)2) = D7, where r is the number
of periods. In the region of strong stochasticity the
phases 8(7 ) are independent and random. So the dif-
fusion rate is equal to Dqt= J (V')2d0/2nThe'.
same expression for D can be obtained in the quasi-
linear approximation. s The quasiclassical condition

has the form D » 1, T && 1.2 3

As an example of such a system we consider the
quantum standard map described by the Hamiltoni-
an1-3, 6, 10

H= I /2+ kcos85T(t),

where k is a parameter characterizing the magnitude of
the perturbation. The classical dynamics is described
by the well-known standard map:

p =p + K sin8, 8 = 0+ p,

where p = TI and K = kT is the classical parameter of
stochasticity. ~ 9 The diffusion rate for action I is equal
to D = Do(K)/T2, where Do(K) is the diffusion rate
in the standard map. Numerical experiments'
with the quantum standard map have shown that in
the course of time, (I2) stops growing. This means
that the external field effectively excites only a finite
number of unperturbed levels (5 n = AI —I). It is na-
tural to interpret this effect as resulting from the local-
ization of quasienergy eigenfunctions. 3 6 The follow-
ing theoretical estimate has been obtained in Refs. 2—
4'

~here o. is an unknown nomerical constant. This rela-
tion is valid when the field excites a large number of
levels (D »1). This was confirmed indirectly by
numerical experiments with the quantum standard
map3 and a highly excited hydrogen atom in a mono-
chromatic field by measurement of the stationary dis-
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FIG. 1. Localization of the quasienergy eigenfunctions in

the quantum standard map (k = 2.8, T= 4.867). The open
and filled circles represent numerical data from Ref. 6. The
straight lines correspond to the value of I obtained by the
method of minimal Lyapunov exponent.

FIG 2. An example of a calculation of the localization
length for the quantum standard map {k = 40, k = 10). The
solid lines correspond to positive Lyapunov exponents and
the dashed lines to negative. Tvvo minimal exponents are
shown. The fast decay of the Bessel function allows k/2 to
be used in place of N.

tribution f„on the unperturbed levels.
To calculate i directly from an eigenfunction, let us

consider the equation for the eigenfunction with
quasienergy eo6.

u„=exp{i[a)—THO(n) ]I u„+,

u+ (8) = exp[ —iV(8) ]u (8).
Here u ~ are the values of the function u before and
after a kick 8 ( t) and u„+-are the Fourier coefficients of
u (8). It is convenient to introduce u = e
&& u ~/g, where g is some arbitrary real function of 8.
Then u+=ge '"i2u, u =ge' i2u, and from (3) we
obtain

X,u„~, W, sin(X„+P, ) =0. (6)

Here

W(8) = g exp( —i V/2) = g„W, exp [r (r8+ P, ) ],
X„=[ai —THO(n) ]/2, and we consider the case
W(9) = W( —8) only. In Ref. 6 the function g
=1/cos-,' V was implicitly taken. Such a choice leads
to a nonphysical singularity which does not allow for
an analysis of the wide class of potentials with
V(8) ~ n. . However, the choice of g is arbitrary and
does not influence the localization in the original sys-
tem (5). So, for example, in the quantum standard
map it is convenient to take g=1. The formula (6)
gives the relation between one-dimensional Anderson

localization and localization of quasienergy eigenfunc-
tions in an external field. The Hamiltonian of the cor-
responding solid-state problem has the form

H„= cos —, V tan( —,cu ——, THO) cos —, V ——, sin V.
1 1 I 1 1 ~

If in (6) only W, with IrI «N differs from zero,
then the formula (6) determines the dynamics of some
Hamiltonian system [ W(8) = W( —8) ] with N de-
grees of freedom in which the serial level number n

plays the role of discrete time. It is well known that in
the case N = 1 the localization length is determined by
the single positive Lyapunov exponent which gives the
rate of exponential decay of eigenfunctions. s 6" It
appears that the calculations of i for N & 1 have not
been carried out. For N&1, there are N pairs of
Lyapunov exponents y,

+ = —y, ~ O.s The asymptot-
ic decay rate of the quasienergy eigenfunctions
u„~ exp( —yoI n I) is then determined by the minimal
positive Lyapunov exponent yo= 1/i (see Fig. 1). The
condition for exponential localization is yo&0. A nu-
merical method for calculating all of the Lyapunov ex-
ponents is described in Ref. 8. An example of the cal-
culation of I by this method is shown in Fig. 2.

To determine the value of a in (4), let us consider
the Lloyd model. '2 It is obtained from (6) when
Woexp(igo) =1—iE, W+iexp(i&+i) =ik, W, =O
for I r I & I, and X„are randomly distributed on the in-
terval [0,n ].6 Then the diffusion rate in (1) is
D=D~, =2(4k2 —E2)'i2 (for D )) 1). The compar-
ison of D with the exact value

i = inv cosh {[(2k+E) + I ]'i + [(2k —E) + I ]'i }
1

4k

(see Ishii' and Refs. 5 and 6) in the region i » 1 gives u = —,.

In the quantum standard map we have W, = J,(k/2), $, = —,' m r. In this model t—he X„are not random and both
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FIG. 3. The ratio n = //D for different values of the dif-
fusion rate D in the quantum standard map (open circles)
and in the Lloyd model with many neighbors (filled circles).
Here and in Fig. 5 the logarithm is decimal.

D and /depend on the classical parameter of stochasti-
city K. A comparison between numerical data and the
theory (4) gives satisfactory agreement for the value
a = —,

' (see Fig. 3). The parameters k and K in Fig. 3
vary within the intervals 5 ~ k ~ 75 and 1.5 ~ K ~ 29
and T/47r is a typical irrational number, T» 1. The
scatter of points in Fig. 3 is mainly due to the fact that
some of experimental points are not far in the quasic-
lassical region (T—1). An example of the depen-
dence /(K) is shown in Fig. 4. It is clearly seen that
according to expression (4) the localization length
reproduces the oscillations of the classical diffusion
rate.

The obtained average value (n) =0.57, with root
mean square deviation b, =0.11, significantly differs
from the value obtained in Ref. 3, (a) =1.04, b,
=0.20. The cause of this discrepancy is apparently re-
lated to the fact that in Ref. 3 / was determined
from the stationary (time averaged) distribution f„
~ exp( —2~!n!//, ) (here we have introduced the index
s). If initially only the n =0 level were excited, then
this distribution would be given by f„=g I@ (0) I

(n)!, where g (n) is the eigenfunction with
quasienergy c0 . In Ref. 3 on the assumption that

(n) 2o: e 2 " ~t/' and the fluctuations of
(n) are negligibly small it was shown that /, = /.

However, the influence of strong fluctuations of
(n)12 may be significant, and may lead to /, e/.

So, for example, in Anderson localization the fluctua-
tions cause the difference between the rate of ex-
ponential decay of the density-density correlation
function, which is analogous to f„, and the decay rate
of the square of the eigenfunction. 5 A comparison of
the numerical data3 for /, with the results presented in
Fig. 5 of this paper shows that /, =2/. The cause of
difference between /, and / is apparently connected
with the strong fluctuations of !$ (n)!2. A detailed
discussion of the fluctuation properties and the locali-
zation in the region K ~ I will be given elsewhere.

Apparently, the analytic expression (4) for /and the

., fog(&T )

4
~ 0 ~

~ ~

1.0—

i

IO '20 30
K

FIG. 4. The dependence /(E) in the quantum standard
map (crosses; k=30). The curve and circles show the
theory and numerical data for the diffusion rate D(E) from
Ref. 9, Dq(= k2/2.

FIG. 5. The dependence of the localization length on the
diffusion rate Do of the classical standard map. The open
circles represent numerical data from Ref. 3 for values of I,
obtained from stationary distributions. The dashed line cor-
responds to the average value (n, ) = 1.04. The filled circles
show thc localization lengths obtained from the quasienergy
eigcnfunctions by the method of minimal Lyapunov ex-
ponent. The straight line shows the theoretical localization
/=D/2. In the inset the numerical data from Ref. 3 are
shown, giving the dependence of Do on 5K=K —K„,
E =0.971635.
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numerical method of minimal Lyapunov exponent
may be used in one-dimensional solid-state problems.
As an example, let us consider localization in the
Lloyd model with many neighbors: 8',e ' = ik,

I@

Woe 0=1—iE, fV, =O for ~r~ & III, and the X„areI/0

random. Then the potential is given by
t

V(8) = 2arctan E 2k X—cosre .

For this model, l = DE/2
—2k%2 (for E=O) and the

theory gives satisfactory agreement with the numerical
data in Fig. 2 which were obtained for parameters in
the intervals 0, 1 » k ~ 50, 4~ N~ 20. The average
value of a obtained from the numerical data was

(a) =0.52 with b, =0.07.
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