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We present the first microscopic theory of transport in quasiperiodically driven environments (‘‘kicked

rotors’’), as realized in recent atom optic experiments. We find that the behavior of these systems depends

sensitively on the value of a dimensionless Planck constant ~h: for irrational values of ~h=ð4�Þ they fall into
the universality class of disordered electronic systems and we describe the corresponding localization

phenomena. In contrast, for rational values the rotor-Anderson insulator acquires an infinite (static)

conductivity and turns into a ‘‘supermetal.’’ We discuss the ensuing possibility of a metal-supermetal

quantum phase transition.
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Since its introduction in the late 1970s [1], the quantum
kicked rotor—a quantum particle moving on a ring under
the influence of periodic driving in time—has been one of
the most prominent model systems of quantum chaos (see
Ref. [2] for review.) The rotor owes its popularity to a
combination of nominal simplicity and astonishingly rich
phenomenology, resembling the physics of Anderson lo-
calization in disordered electronic systems [2–4]. In
Ref. [5] this system has for the first time been realized in
a cold atom setting and localization phenomena otherwise
predicted for quasi-one-dimensional quantum wires have
indeed been observed. The next experimental break-
through occurred in 2008 when an effectively higher-
dimensional generalization of the rotor, the so-called qua-
siperiodic quantum kicked rotor (QQKR), was realized in a
gas of cold cesium atoms, and an Anderson-type transition
has been seen [6]. By now, the critical states emerging at
the transition point have been observed [7], and it stands to
reason that the QQKR makes for an almost ideal environ-
ment to study critical phenomena in the Anderson univer-
sality class.

Although the physics of quasi-one-dimensional local-
ization in the kicked rotor has been a subject of theoretical
research for more than three decades (see Refs. [2,4] for
review), a truly microscopic theory has been formulated
only recently [4]. Concerning the physics of QQKR, no
first-principle theory of its Anderson transition has been
formulated as yet, and this is a gap we aim to fill in this
Letter. In the QQKR, d-dimensional behavior is simulated
by modulated driving at d different frequencies. Below, we
will map the low energy physics of this system onto an
effective field theory equivalent to the nonlinear � model
of disordered metallic systems [8]. This construction es-
tablishes the connections to d-dimensional disordered met-
als; for the first time it microscopically explains the
observation of Anderson-type criticality. However, the
rotor is not a genuine metal, and these differences show
in anomalies at certain configurations of its system

parameters: it has been known for some time [1] that the
one-dimensional kicked rotor displays so-called quantum

resonances at rational values ~h ¼ 4�p=q, p, q 2 N of its
dimensionless [9] Planck constant. At resonance, the sys-
tem compactifies to a ring of radius q (in angular momen-
tum space), and no Anderson localization exists.
Below we will show that in dimensions d > 1 the situ-

ation is even more interesting. At rational ~h=ð4�Þ the
system compactifies in one direction, e.g., for d ¼ 2 a
nominally two-dimensional QQKR maps onto the surface
of an infinitely long cylinder of finite circumference q (cf.
Fig. 1, top). Response and correlation functions domi-
nantly couple to the cylinder’s compact extension, and
this has a number of interesting consequences: below we
consider a (measurable) observable which, in the light of
the above analogies to metallic systems, plays a role analo-
gous to an optical conductivity. We find that the system
supports three distinct phases in which this observable
exhibits qualitatively different behavior. Localized regime:
In the limit q ! 1, and at low dimensions d < 3 (or d � 3
below the Anderson transition), the system is localized and
exhibits a vanishing conductivity, Fig. 1(b). Metallic re-
gime: For d � 3, q ! 1 (or d � 4, q finite), above the
Anderson transition the system behaves as a metal, and the
conductivity is finite, Fig. 1(a). Supermetallic regime: At
finite q and d < 4 (or d � 4 below the Anderson transi-
tion), the system is localized in the quasi (d-1) directions
along the cylinder axis, Fig. 1(c). In this case, the optical
conductivity transverse to the cylinder axis diverges.
Varying the rotor’s kicking strength, one may change the
strength of the effective ‘‘disorder’’ and hence drive a
metal-insulator Anderson transition (q ! 1), or a metal-
supermetal transition (finite q). Importantly, the above
phenomenology requires large values q � 1, where the

limiting case of irrational ~h=4� can be realized by sending
p, q ! 1. The reason is that the analogies between the
rotor and disordered metals are limited to semiclassical

regimes, ~h ¼ 4�p=q � 1, or q � p � 1 [10], implying a
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large number of coupled quantum channels in the trans-
verse direction. A survey of these phases is shown in
Table I.

In dimensionless units [9], the Hamiltonian of the sys-

tem is defined as Ĥ0ðtÞ ¼ 1
2
~h2n̂2 þ KðtÞ cos�̂Pm �ðt�mÞ,

where �̂ and n̂ ¼ �i@� are angular and angular momentum
operator, respectively. The time dependent kicking ampli-
tude, KðtÞ � Kfð cosð�1 þ!1tÞ; . . . ; cosð�d�1 þ!d-1tÞÞ,
where K 2 R sets the kicking strength, and f is some
function chosen to be smooth and of unit characteristic
variation [2]. Finally, the frequencies !1; . . . ; !d-1, are
incommensurate to the kicking frequency 2� and among
themselves, and �1; . . . ; �d-1 are arbitrary phases.

Motivated by the experimental setup [6], we consider the
spreading of a wave function initially uniform in �, as
described by the correlation function

EðtÞ � 1

2

X
n

jhnj�t
m¼1Û

0ðmÞj0ij2 n2; (1)

where Û0ðmÞ � expði ~h
2 n̂

2Þ expði KðmÞ
~h

cos�̂Þ and the over-

line stands for the average over the parameters �i. The

mapping to an effectively higher-dimensional system [11]
is accomplished by interpreting j�i � j�0; �1; . . . ; �d-1i,
�0 � � as a d-dimensional coordinate vector, comprising
a ‘‘real’’ angular coordinate, and a generalization of the
parameters �i to ‘‘virtual’’ coordinates. Similarly, we in-
troduce a d-dimensional angular momentum state, j ~Ni¼
jn;n1; . . . ;nd-1i, where n̂i¼�i@�i is conjugate to �i,

with eigenvalues ni 2 Z. Defining the operator

�̂ðtÞ � expð�it
P

i!in̂iÞ, we then pass to a ‘‘gauge trans-

formed’’ Hamiltonian Ĥ0ðtÞ! �̂ðtÞĤ0ðtÞ�̂�1ðtÞ� ĤðtÞ�
T̂ðN̂Þþ V̂ð�̂ÞPm�ðt�mÞ, with the kinetic energy T̂ðN̂Þ ¼
1
2
~h2n̂2 þ ~h

Pd�1
i¼1 !in̂i and the time independent potential

V̂ð�̂Þ ¼ K cos�̂fð cosð�̂1Þ; . . . ; cosð�̂d-1ÞÞ. Similarly, the

effective Floquet operator ÛðmÞ � �̂ðmþ 1Þ
Û0ðmÞ�̂�1ðmÞ becomes time independent, viz. Û �
expð i~h T̂Þ expð i~h V̂Þ. Finally, the higher-dimensional repre-

sentation of the correlation function reads EðtÞ ¼
1
2

P
~Njh ~NjÛtj0ij2n2. We have, thus, traded the time depen-

dence of the original problem for an effective extension to
a multidimensional Hilbert space with autonomous strobo-
scopic dynamics.

The effective Floquet operator Û possesses two funda-
mental symmetries: time reversal symmetry [12] T: t !
�t, �̂ ! ��̂, N̂ ! N̂, and invariance under the trans-
lation n̂ ! n̂þ q. According to general principles of quan-
tum mechanics, the translational symmetry can be used to
reduce the theory to one defined in the ‘‘unit cell’’ Iq �
f0; . . . ; q� 1g of real angular momentum coordinates. To
this end, one defines the reduced ‘‘Bloch-Floquet’’ opera-

tor Û� � eði=~hÞT̂ðN̂Þeði=~hÞV̂ð�̂þ�Þ, now acting in the ‘‘com-

pactified’’ Hilbert space of states jNi � jn0; n1; . . . ; nd-1i,
n0 ¼ nmodq 2 Iq with periodic boundary conditions in

the n direction. The configuration space of the theory thus
becomes the d-dimensional generalization of a ‘‘cylinder’’
of circumference q. The shifted angular operator is given

by �̂þ� � ð�̂þ�; �1; . . . ; �d-1Þ, where the Bloch phase
� 2 ½0; 2�=q� may be interpreted as an Aharonov-Bohm
flux threading the cylinder, cf. Fig. 1. It is then a matter of a
straightforward if somewhat lengthy calculation to show

that h ~NjÛj0i ¼ q
R2�=q
0

d�
2� hNjÛ�j0iei�n, entailing

EðtÞ ¼ q

2

Z 2�=q

0

d�

2�
@2�þ�� trðÛt

�þ�N̂0Û
ty
��Þj��¼�: (2)

Here, the trace extends over all states fjNig.
Equations (1) and (2) are different (yet equivalent) ways

of probing the spreading of angular momentum states.
Anticipating a competition of classical diffusion and quan-
tum localization, we expect three qualitatively distinct
cases (cf. Fig. 1 bottom and Table I): if the localization
length, �, is infinitely large, unbound diffusive spreading
n2 �Dt characterized by a diffusion coefficient, D, leads
to a linear increase EðtÞ �Dt (metal). In contrast, for

TABLE I. Regimes realizable in the QQKR.

Kicking strength Generic ~h Resonant ~h

< critical value Insulator Supermetal

> critical value Metal (d � 3) Metal (d � 4)

FIG. 1 (color online). The d ¼ 2 QQKR at finite q. Left:
q-periodic angular momentum space. Right: compactification
to cylinder of circumference q, threaded by flux �. Grey shaded
areas represent a lattice of angular momentum sites. Transport
between sites N and N0 takes place through phase coherent
propagation of advanced (solid lines) and retarded (dashed lines)
quantum amplitudes subject to different flux values ��. Bottom,
the three distinct regimes, (a) unbound diffusion, (b) localization
at � < q, and (c) localization at � > q.
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� � q we expect saturation, EðtÞ !t��2=D
const (insulator),

up to corrections exponentially small in the ratio q=�
which cannot be quantitatively resolved by the present
theory. Finally, in cases where � � q the system behaves
similar to a finite quantum system of characteristic quasi-
level spacing �1=ðq�d�1Þ. For large times, t � q�d�1,
individual states of this system can be resolved and a

formal decomposition of Û� in quasienergy states shows

that EðtÞ � t2 (supermetal).
Turning to a quantitative description, we define the

resolvent operators Ĝ�
�ð!�Þ � ½1� ðei!�Û�Þ�1��1,

where !� � !0 � 1
2 ð!þ i0Þ. The Fourier transform

Eð!Þ ¼ R1
0 dtei!tEðtÞ, then assumes the form Eð!Þ ¼R

2�
0

d�
2� @

2
�þ��j��¼�Yð�þ; ��; !Þ, where Yð�þ;��;!Þ�

htr½Ĝþ
�þð!þÞ�N̂0Ĝ

�
��ð!�Þ�i!0

and h	 	 	i!0
¼ R

2�
0

d!0

2� .

Notice that this expression resembles the two-particle re-
sponse functions describing the optical conduction proper-
ties of electronic systems.

To make further progress, we describe the correlation
function Y in terms of a low energy effective field theory.
The technical details of this mapping [13] are nearly
identical to those of our earlier treatment of the one-
dimensional rotor [4], and we here restrict ourselves to a
brief sketch of the principal steps. We start from a Gaussian
integral representation [8],

Y ¼
Z

dN
Z

Dð �c ; c Þhe� �cG�1c i!0
X½ �c ; c �; (3)

where the superfield c ¼ fc N;�;�g, � ¼ b, f distinguishes

between commuting and anticommuting components,
and � ¼ � between retarded and advanced
components. The preexponential term is given by
X½ �c ; c � ¼ c N;þ;b

�c 0;þ;bc 0;�;b
�c N;�;b and G�1 ¼

diagðG�1
�þð!þÞ; G�1

��ð!�ÞÞ is a matrix block-diagonal in

advanced-retarded (AR) space. To make progress with
this expression, we apply the color-flavor transformation
[14], an integral transform that trades the integral over c
and !0 for the integration over an auxiliary field, Z:
Yð�þ; ��; !Þ ¼ R

DðZ; ~ZÞð	 	 	Þ expð�S½Z; ~Z�Þ, where
S½Z; ~Z� ¼ �strlnð1� Z ~ZÞ þ strlnð1� ei!Ûy

��ZÛ�þ
~ZÞ;

where ‘‘str’’ is the supertrace [8], and we have temporarily
suppressed the preexponential terms for notational sim-
plicity. Here, Z ¼ fZN�;N0�0 g is a bilocal supermatrix field,

subject to the constraints ~Zb;b ¼ Zy
b;b,

~Zf;f ¼ �Zy
f;f, and

jZb;bZ
y
b;bj< 1. The anticommuting blocks Z�;�0 and ~Z�;�0 ,

� � �0 are independent. Physically (cf. Ref. [4] for a more
extensive discussion), the field ZN;�;N0;�0 � c N;�;þ �c N0;�0;�
describes the pair propagation of a retarded and an ad-
vanced single particle amplitude at a slight difference in
frequency, !, and Aharonov-Bohm flux ’ � �þ ���.
The structure of the action S½Z; ~Z� shows that field

configurations Ûy
��ZÛ�þ � Z, near stationary under the

adjoint action of the Bloch-Floquet operator, dominantly
contribute to the field integral. The identification of these
‘‘slow modes’’ is facilitated by passing to a Wigner repre-
sentation, ZN1;N2

! ZN;�, where N ¼ ðN1 þ N2Þ=2, and�
is dynamically conjugate to N. Because of the fast relaxa-
tion of the dynamics in the space of angular variables, �,
the modes of lowest action ZN;� ¼ ZN depend only on N.

These angular zero modes then produce the low energy
representation

Yð’;!Þ ¼ �
Z

dN
Z

dQe�S½Q�ðQNÞþb;�bðQ0Þ�b;þb;

S½Q� ¼ � 1

8

Z
dNstr

�Xd�1

i¼0

Dið@’i QÞ2 þ 2i!Q�3
AR

�
;

(4)

where the field Q is a matrix in the AR space,

Q ¼ 1 Z
~Z 1

� �
�3

AR

1 Z
~Z 1

� ��1

;

and

�3
AR ¼ 1

�1

� �
:

Depending on the detailed choice of the kicking potential,

the diffusion coefficients may take anisotropic valuesDi ¼
1
2~h2

hð@�iVð�ÞÞ2i� ¼ ðK=~hÞ2 
Oð1Þ, where h	 	 	i� is an

angular average. Much like in a disordered metal, such
anisotropy may be absorbed in a rescaling of coordinates,

ni ! ðD=DiÞ1=2ni, where D is the average value of the
diffusion coefficients. This rescaling does not affect the
principal conclusions on localization whence we assume
Di ¼ D for notational simplicity. Finally, @’i �
@ni þ i’½�3

AR; ��i0 is a covariant derivative accounting

for the coupling to an Aharonov-Bohm flux � in the
compact n direction.
Technically, Eq. (4) represents the main result of the

present Letter. We have described the low energy physics
of the QQKR in terms of a nonlinear � model mathemati-
cally equivalent to that of a disordered metal [15]. The
construction is parametrically controlled by the parameters
~h=K, ! � 1 and corrections to the effective action are
small in these parameters. In the following, we discuss a
number of physical predictions of Eq. (4).
Metal.—For d � 3, (q ¼ 1) or d � 4 (q finite) the

system supports an Anderson (metal-insulator) transition.

Above the transition, K=~h � 1, fluctuations are weak and
the action may be expanded to quadratic order in Z. Doing
the Gaussian integral over Z, one then obtains

Yð’;!Þ ¼ 1

D!’
2 � i!

; (5)

where D! ’ D is the diffusion constant weakly renormal-
ized by nonlinear and frequency dependent corrections.
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Substituting this result into the expression for EðtÞ, we
obtain diffusive growth EðtÞ �Dt, corresponding to a
finite optical conductivity (Table I, bottom).

Insulator.—For q ¼ 1, the system is in a localized
phase in low dimensions, d < 3, or below the Anderson

transition at K=~h ¼ Oð1Þ in d � 3. In these regimes, the
diffusion constant is undergoing strong renormalization,

D! !!!0
i!. This in turn leads to saturation EðtÞ !t!1

const,
and vanishing (static) conductivity (Table I, top left). For
d � 3, the condition of scale invariance at criticality pre-

dicts critical scaling, D! � ð�i!Þðd-2=dÞ and EðtÞ � tð2=dÞ,
in agreement with experiment [7].

Supermetal.—For d � 3 and q < �, the system is local-
ized in the virtual directions and delocalized along the real
angular momentum direction [cf. Fig. 1(c)]. Resonant
transmission through the discrete levels of the ensuing
system of effectively finite size then leads to supermetallic
growth EðtÞ ¼ Ct2 at large time scales corresponding
to a diverging conductivity (Table I, top right).
Phenomenological reasoning may be applied to estimate
both the coefficient, C, and the crossover time, t�, to

supermetallic scaling: at short times, the uncertainty in
quasilevel resolution,�t�1, is larger than the characteristic
quasilevel spacing �t � 1=ðqLd-1

t Þ of a fictitious system of

size q
 Ld-1
t , where Lt � ðDt�1 tÞ1=2 is the characteristic

extension of a diffusive process of duration t in the virtual
directions, and Dt�1 is a shorthand for the diffusion coef-
ficient renormalized down to frequency scales !� t�1.
The random mixing of a large number of levels reflects
diffusion and a growth behavior EðtÞ �Dt. The borderline
condition t�1

� ¼ �t� marks the crossover to long-time dy-

namics, t > t�, governed by localization effects. In this

regime, individual levels are no longer mixed by quantum
uncertainty. The coherent propagation through individual
states then leads to EðtÞ ¼ Ct2, where the coefficient
C is fixed by the matching conditionDt�t� ¼ Ct2�, i.e.,C ¼
Dt�=t�. The application of scaling arguments [8] leads to

t� � q2D and t� � expð2qDÞ in dimensions d ¼ 2 and

d ¼ 3, respectively. Finally, it is clear as a matter of
principle that for d � 4, the lowering of the bare value of

D� ðK=~hÞ2 will trigger an Anderson transition in the
(d-1)-dimensional virtual directions. At the critical point,
the system undergoes a metal-supermetal transition in the
long-time scaling of the observable E.

For d ¼ 2 the qualitative discussion above can be
backed up by a more sophisticated approach. In this case,
the theory is defined on an infinitely long cylinder, N ¼
ðn; n1Þ 2 Iq 
 R. Fluctuations of the field Q inhomoge-

neous in the n direction are gapped, reflecting
ergodic chaotic mixing in the transverse direction. For
frequency scales smaller than this gap, we are left with
the quasi-one-dimensional field QN ¼ Qn1 with effective

action S½Q� ¼ � q
8

R
dn1strfDð@n1QÞ2 þD’2½Q;�3

AR�2
þ2i!Q�3

ARg. The correlation function Yð’;!Þ of this

theory can be computed by adaption [13] of Efetov’s
transfer matrix technique [8]. The qualitative features
mentioned above then follow from scaling properties of
the corresponding solutions. For a quantitative discussion
including prefactors, we refer to Ref. [13].
Summarizing, we have introduced the first microscopic

theory of Anderson localization in the quasiperiodic kicked

rotor. For irrational values of ~h=ð4�Þ, the system is de-
scribed by a d-dimensional nonlinear � model which en-
tails a near perfect analogy to the physics of d-dimensional
disordered metals. However, for rational values, its effec-
tive topology changes, and a dimensional reduction to a
quasi (d-1)-dimensional system takes place. We discussed
the ensuing consequences, including the existence of a
metal-supermetal quantum phase transition in d � 4. The
results reported above should be applicable to the realistic
environment [6,7]. Our analysis analytically describes, for
the first time, the mechanisms by which the QQKR shows

critical behavior. The tuning to resonance conditions ~h ¼
4�p=q can be experimentally achieved by variation of the
kicking period [5]. We expect that the metal-supermetal
transition can be observed in the experimental atom optics
setup [6] where the condition d � 4 at sufficiently large q
can be met [16].
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