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Shear-induced rigidity of frictional particles: Analysis of emergent order in stress space
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Solids are distinguished from fluids by their ability to resist shear. In equilibrium systems, the resistance to
shear is associated with the emergence of broken translational symmetry as exhibited by a nonuniform density
pattern that is persistent, which in turn results from minimizing the free energy. In this work, we focus on a class
of systems where this paradigm is challenged. We show that shear-driven jamming in dry granular materials
is a collective process controlled by the constraints of mechanical equilibrium. We argue that these constraints
can lead to a persistent pattern in a dual space that encodes the statistics of contact forces and the topology of
the contact network. The shear-jamming transition is marked by the appearance of this persistent pattern. We
investigate the structure and behavior of patterns both in real space and the dual space as the system evolves
through the rigidity transition for a range of packing fractions and in two different shear protocols. We show that,
in the protocol that creates homogeneous jammed states without shear bands, measures of shear jamming do not
depend on strain and packing fraction independently but obey a scaling form with a packing-fraction-dependent
characteristic strain that goes to zero at the isotropic jamming point φJ . We demonstrate that it is possible to
define a protocol-independent order parameter in this dual space, which provides a quantitative measure of the
rigidity of shear-jammed states.
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I. INTRODUCTION

Solid packings of dry grains are amorphous structures that
are created through external driving at zero temperature. In
the last couple of decades, much progress has been made in
analyzing the problem of the glass transition [1–4], and the
nature of rigidity of disordered solids. In these systems, either
density or temperature changes induce a transition from a
fluid to an amorphous solid. The amorphous solid acquires
a shear rigidity because of a persistent pattern in the positions
of the particles [5]: a pattern that is difficult to quantify [6]
but is known to exist. In spite of their structural similarities to
amorphous solids at finite temperatures, the question of what
imparts rigidity to granular solids poses additional challenges
because of the absence of any cohesive interactions between
the grains and because of the absence of thermal fluctuations.
In this paper, we address the question of rigidity of dry grains
by analyzing the persistence of patterns in both positions and
contact forces.

Jamming of frictionless soft grains, which has been
extensively studied over the last two decades [7,8] occurs
deep in the glass phase and is characterized by the onset of
mechanical equilibrium. This phenomenon can be described
within the concept of isostaticity [8,9] and the jamming
transition occurs at some protocol-dependent density at which
the structure becomes isostatic [10]. “Jamming” has become
synonymous with this rigidity transition of frictionless grains.
An alternative picture of jamming was, however, proposed
in the late 1990s [11], prompted by observations in non-
Brownian suspensions of colloidal particles. This scenario
can be described as shear-induced solidification: a fluid to
solid transition where the solidity emerges solely as a result
of applied stresses. One expects that in such a transition

there is an organization in the space of forces that drives
or stabilizes the positional patterns. Moreover, the driving
mechanism for collective organization of the grains has to
be the constraints of mechanical stability subject to the
globally imposed stresses: a scenario that is different from
the density or temperature-driven glass transition. A crucial
feature that distinguishes the shear-jamming process from the
density-driven jamming process is its inherently anisotropic
character, and the presence of a bath of “spectator” grains that
do not bear any forces. The shear-jammed (SJ) structure forms
within this bath as more and more grains become incorporated
into the force-bearing network in response to the externally
imposed shear. In contrast, isotropic, density-driven jamming
occurs in the absence of a bath: Except for a vanishingly small
fraction in the thermodynamic limit, all grains are part of the
force-bearing network.

Analysis of recent experiments on shear jamming in dry
grains [12–14] and discontinuous shear thickening in dense,
non-Brownian suspensions [15–18] have found remarkable
similarities between experimental observations and the theo-
retical picture of stress transmission in shear-jammed solids
that was presented in the 1990s. In this paper, we present
a theoretical framework that quantifies the phenomenon of
shear-induced jamming. In particular, we construct an order
parameter that distinguishes these solids from fluids. The
theoretical framework is applied to experimental studies of
shear jamming in dry grains. Part of this work has been
published earlier in a concise form [19].

This paper is organized as follows. In Sec. II, we develop
a description of granular solids in a space that is “reciprocal”
to position space, in a sense to be defined below. In Sec. III,
we describe different experimental protocols and present an
algorithm for generating the reciprocal space representation
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from a knowledge of contact forces and positions of grains. In
Sec. IV, we propose an order parameter that can be identified
with shear-jammed states, which indicates that shear jamming
is associated with a broken symmetry in this reciprocal space.
In this section, we also analyze experimental data using the
theoretical perspective developed in the earlier sections, and in
Sec. V we present our conclusions and ideas for future work.

II. THEORETICAL FRAMEWORK

A collection of dry grains interacting via purely repulsive
contact interactions can be viewed in some respects as a system
of hard particles. Solidification of hard particles is entropic in
origin and requires the presence of thermal fluctuations. The
rigidity of these solids arises from an effective “cohesion”
caused by entropic forces. In contrast to such Brownian
systems of hard particles, the lack of thermal fluctuations in
dry grains imply that there are no intrinsic mechanisms to
heal broken contacts and generate cohesive interactions. An
alternative mechanism that can lead to a solidlike response to
shearing is the collective organization of grains arising from
the constraints of mechanical equilibrium.

A dry granular packing has to satisfy four types of
constraints that arise from the requirements of the mechanical
equilibrium at zero temperature. The constraints of force and
torque balance have to be satisfied for every grain. Since
the contacts are frictional, the Coulomb criterion of static
equilibrium has to be satisfied. This introduces an additional
constraint, |ft | � μ|fn|, where μ is the coefficient of friction
and ft(n) is the tangential (normal) component of the contact
force. The interaction between dry grains is purely repulsive,
hence the normal force has to be positive, which is an addi-
tional inequality constraint. As discussed below, the equality
constraint of force balance and the inequality constraint of
positive normal forces can be incorporated by resorting to a
geometric representation, dual to the real-space geometry. The
torque balance condition and the Coulomb inequality manifest
themselves by affecting the patterns in this dual space.

A. Mechanical equilibrium and height fields

The continuum analog of the force and the torque balance
conditions can be expressed in terms of the stress tensor σ̂ :
�∇ · σ̂ = �F,σ̂ = σ̂ T . In a two-dimensional packing with only
boundary loading ( �F = 0), �∇ · σ̂ = 0 can be enforced through
the introduction of a vector field of gauge potentials referred to
as height vectors, �h(�r) [20–24]: σ̂ = �∇ × �h. Here �∇× ≡ ε̂ · �∇,
and ε̂ is the two-dimensional (2D) Levi-Civita tensor; the “·”
refers to matrix multiplication [22]. Hence,

σ̂ = �∇ × �h (1)

= ε̂ · �∇ �h (2)

=
(

∂yhx ∂yhy

−∂xhx −∂xhy

)
. (3)

Since torque balance requires that the stress tensor is symmet-
ric, �∇ · �h = 0.

This two-dimensional continuum description can be de-
rived from an equivalent discrete formulation at the grain
level [20–24]. There, the heights are uniquely defined on the
dual space of the contact network or the voids surrounding the

FIG. 1. Illustration of invariants. (Left) The physical system, a
2D granular solid of size L × L, is outlined by the black box; also
shown are its images under PBC. The lines A and B represent the
two distinct classes of noncontractible loops in the system and C
represents a trivial loop. (Right) Representation of the system on the
surface of a torus. Loops A and B are noncontractible and correspond
to the same labeling as in the left panel. To change �Fx( �Fy), a change
has to be made on the noncontractible loop B (A).

grains. A geometric representation which omits the real space
geometry, but retains the topology of the contact network, ac-
curately represents the structure in the space of height vectors.
The vectors representing the heights appear as vertices of a
network in which, starting from an arbitrary origin (gauge free-
dom), force vectors are laid down to generate the edges con-
necting these vertices. Since we enforce force balance for each
and every grain, and two touching grains share an equal and op-
posite force (Newton’s third law), the heights form the vertices
of a tiling of the plane by polygons. This network of polygons
is equivalent to the Maxwell-Cremona tiling [25] or force
tiling [19,26], where each polygonal face represents a grain.

B. Structure of height space

Under periodic boundary condition, any 2D system can
be mapped to the surface of a torus [27]. The integral of
σ̂ over a topologically trivial (contractible) loop (Fig. 1,
curve C) vanishes identically because �∇ · σ̂ = 0. However,
for noncontractible loops (Fig. 1, curve A or B), which spans
the system, the integral is nonzero. These two integrals,

�Fx =
∫ Ly

0
dy

(
σ11(x,y)
σ12(x,y)

)
; �Fy =

∫ Lx

0
dx

(
σ21(x,y)
σ22(x,y)

)
, (4)

are topological invariants of the system. (Lx,Ly) are the size
of the system along the corresponding directions. Physically,
( �Fx, �Fy) amount to the total load along the two directions, and
are related to the force-moment tensor,

�̂ =
∑
〈ij〉

�rij ⊗ �fij =
(

Lx 0
0 Ly

)
×

( �Fx · x̂ �Fx · ŷ
�Fy · x̂ �Fy · ŷ

)
. (5)

Here, the sum defining the force-moment tensor is over all
contacts, �rij is the contact vector from the center of grain
i to the interparticle contact between grains i and j , and
�fij is the force associated with that particular contact. The

pressure P of the packing is given by (λ1 + λ2)/2, and
the anisotropy of the stresses is given by τ = |λ1 − λ2|/2,
where λ1,2 are the eigenvalues of the stress tensor of the entire
packing, σ̂global = �̂/N ; N is the total number of grains. The
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FIG. 2. Force tiles and {hi} of a typical experimental SJ state.
(a) The real-space configuration of grains. (b) Height field defined on
the voids (red points) around a single grain. Starting from an arbitrary
origin, and going around the grain in a counterclockwise direction,
the height �hν is incremented by the contact force �fi separating two
voids. The vectors �fi form a closed polygon when adjacent forces
are arranged head-to-tail. The vertices of this polygon (force tile)
are given by the values of the heights �hν . (c) The height vertices.
(d) The force tile network corresponding to the height vertices shown
in (c). �Fx and �Fy indicate the extent of the applied external stress.
The compressive direction (larger force) is chosen according to [12].
This figure has been reproduced from [19].

stress anisotropy of the global stress tensor is τ/P . Since
�∇ × �h = σ̂ ,( �Fx, �Fy) represent the net change of height across
the sample.1 Consequently, the force tiling in the height space
is confined within a parallelogram formed from ( �Fx, �Fy); only
a nonzero applied stress leads to a finite structure in the height
space. Since these two vectors are topological invariants of the
system, one can construct a statistical ensemble of all force
tiles confined within this parallelogram as the analog of a
microcanonical ensemble in equilibrium statistical mechanics.
In this ensemble, energy is replaced by the vectors ( �Fx, �Fy).
The force network ensemble (FNE) approach to granular
elasticity [26,28] is an example of such an ensemble, as is
the generalized Edwards ensemble [24,29]. This description
can be generalized to a finite system. The shape of the
confining region is, however, no longer a parallelogram. An
average parallelogram can be defined via the columns of the
force-tensor �̂, as shown in Fig. 2.

C. Positivity, Coulomb criterion, and convexity

Any force balanced configuration leads to a height pattern,
ρ(�h) = ∑

i δ(�h − �hi). If such a height pattern does not change
under small, continuous deformation of the boundary, we will
define such a structure to have persistent order in height space.

1This can be seen in the following way. Let’s consider �Fx =∫ L

0 [σ11(x,y),σ12(x,y)]T dy. Now, from Eq. (3), we know that σ11 =
∂yhx and σ12 = ∂yhy . Integrating we get �Fx = �h(x,L) − �h(x,0),
which is nothing but the difference of the height fields across the
sample in the y direction.

It is analogous to how one may define rigidity for an elastic
solid, where the rigidity measures the persistence of the density
field of the atoms of the material when the system is strained.
Since changes to the boundaries of the force tiling is equivalent
to changing the boundary load on the sample, a granular
assembly, created at a given ( �Fx, �Fy), will collectively resist
shear deformation, if it has persistent order. The question that
we ask is whether the condition of mechanical equilibrium can
lead to persistent order, and under what conditions.

Since forces can be arbitrarily small, the heights are
continuous variables. A set of heights confined within the
parallelogram bounded by ( �Fx, �Fy) represents a force-balanced
configuration. Thus, in the absence of any other constraints, the
heights should not show any correlation or broken symmetry.
The torque balance condition, the positivity of the normal
forces, and the Coulomb criterion, however, provide additional
constraints on the geometrical structure of the height space.

The positivity of the normal forces guarantees that the
height field increases monotonically. Therefore, there is only
a single height origin and therefore, a single sheet of tiles.
In the presence of attractive and repulsive interactions the
polygons would be organized on multiple sheets since there
would be multiple points in the packing where the height
would go to zero.

For a granular solid composed of frictionless grains of con-
vex shapes (circles or ellipses, for example) with only normal
forces between grains, a rotation of 90◦ converts all forces
to tangential. A convex polygon that exactly inscribes the
grain can be constructed by simply elongating the rotated force
vectors. This polygon is related to the force tile by a conformal
transformation. Hence, in the absence of frictional forces, all
force tiles are convex. This convexity constraint is equivalent
to the torque balance condition for frictionless grains, and of
course, the Coulomb condition is always satisfied.

It is possible to have nonconvex polygons as force tiles when
frictional forces exist. Two consecutive forces around a disk
can either form a convex vertex [Fig. 3(a)] or a concave one
depending on how frictional they are and the angular distance

FIG. 3. Convexity criterion for force tiles. (a) A typical case
where two consecutive forces form a part of a convex polygon.
(b) A rare case where two consecutive forces form a part of a concave
polygon. Convexity is determined by the sign of �f1 × �f2, which
depends upon the angular separation of adjacent contacts (θ2 − θ1),
and the magnitude of the tangential components of these forces. (c)
Convexity map for θ2 − θ1 � π/3 [Eq. (6)] and μ = 0.7 (packing
fraction φ = 0.805 and strain γ = 15%). Gray region denotes convex
and white concave. Experimental data from a typical SJ state are also
shown (points). This figure has been reproduced from [19].
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θ2 − θ1 between the contacts. Decomposing each force into a
tangential and a normal part, the condition for convexity can
be easily obtained:

1 + f1t f2t

f1nf2n

+
(

f1t

f1n

− f2t

f2n

)
cot(θ2 − θ1) � 0, (6)

where the tangential force and the normal force obey the
Coulomb criterion for a given static friction coefficient μ:
f1t

f1n
,

f2t

f2n
� μ. The angular distance between two contacts θ2 −

θ1 is constrained by geometry. In a monodispersed packing of
just-touching disks, for example, θ2 − θ1 cannot be smaller
than π/3. Using this as a lower bound, Eq. (6) gives the
range of values of tangential forces for which convexity
is possible for a given μ. A straightforward calculation
based on Eq. (6) shows that for any μ < 1/

√
3 
 0.58, the

convexity condition is never violated. For μ = 0.7, which is
the static friction coefficient of the particles studied in the
experiments [12,30], it is possible to have nonconvex polygons
when the two consecutive forces �f1 and �f2 are simultaneously
fully mobilized contacts (|ft | = μfn), or are close to being
fully mobilized. In Fig. 3(c), we perform this analysis on a
typical experimental shear-jammed state [12,31] created at
φ = 0.805 under a pure-shear strain of 15%, and for grains
with a friction coefficient of μ = 0.7. The rescaled tangential
forces for all pairs of consecutive contacts are represented
by a scatter plot. The convexity criterion given by Eq. (6) is
represented by the shaded region in Fig. 3(c). While a few
contact pairs form concave edges, they are rare occurrences
and we deduce that, statistically, in the shear-jammed states,
the force tiles are convex for typical physical values of μ.

The Coulomb criterion |ft | � μfn is the most difficult to
implement within the tiling representation [32]. The previous
discussion indicates that these constraints can be effectively
captured as a convexity constraint on the force tiles of stable
packings since nonconvex tiles occur only when the tangential
forces are close to the failure threshold. If unconstrained in
height space, the ensemble of all possible point patterns formed
by the vertices are trivially expected to have a liquidlike order
or 〈ρ(�h)〉 = const. With the requirements of convexity and the
strict edge-matching constraints of tiling, the vertices of a tile
cannot come arbitrarily close to each other. This requirement
constrains the possible point patterns formed by the vertices
of the tiles to a much smaller subset of configurations, hence
giving rise to the possibility of broken translational symmetry
in height space or 〈ρ(�h)〉 �= const. The constraints act as
effective springs that tie the vertices to their average positions.
If these springs constrain the position of every vertex in the
tile to a region that is small compared to the average force
(length of a link), then we expect to see correlations and
broken translational invariance in height space. The strengths
of the effective springs are not predetermined but emerge as a
consequence of the local constraints and the global constraints
through �Fx, �Fy , or �̂.

Based on the above points, we argue that broken transla-
tional symmetry and persistent order emerges in height space
as the number of vertices is increased through the creation
of force-bearing contacts between grains as a set of grains
is stressed. In the remainder of this paper, we construct and
analyze height patterns of experimentally generated shear-

jammed states, and show that rigidity is concurrent with
appearance of persistent patterns of heights and occurs at
a critical value of the fraction of force-bearing grains [12].
The appearance of the persistent pattern is also accompanied
by a decrease in the number of nonconvex polygons in
homogeneous shear-jammed states.

III. EXPERIMENTAL METHODS AND ANALYSIS
OF EXPERIMENTAL DATA

We apply the above-mentioned theoretical framework to ex-
perimental systems that exhibit shear jamming, and explore the
jamming dynamics from dual space representations. For this
purpose, we examine two different sets of shear experiments
on two-dimensional systems of photoelastic particles. These
experiments not only reliably demonstrate shear-jamming
behaviors according to force and stress analyses, as presented
elsewhere [12,31], but also provide full data sets of micro-
scopic location and contact forces of each particle, which can
be readily used in the dual-space construction.

For protocol I the shear apparatus, Figs. 4(a) and 4(b), acts
to deform a rectangular region into a parallelogram (simple
shear), while preserving the total system area. The basic
scenario of the experimental approach has been presented in
Ren et al. [14]. For protocol II, Figs. 4(d) and 4(e), the shear
apparatus starts from a square shape, then contracts along one
dimension and elongates along the other, while keeping the
total area constant (pure shear). The base of this apparatus is
a smooth Plexiglas plate that does not move, thus the shear is
purely boundary driven. Many details of the experiments have
been published elsewhere [12–14,30,33]. For completeness,
we provide additional relevant details on the experiments and
protocols in Appendix A.

A. Experimental protocols

These strain-controlled experiments involve two different
types of experimental apparatus, which apply shear strain γ

to the sample. The simple shear apparatus (protocol I) has
a special arrangement of slats on the bottom, as sketched in
Figs. 4(a) and 4(b), which shows an overhead schematic of the
apparatus. In this system, shear is applied at the walls, and also
uniformly through the base. This means that particles which are
rattlers or experience very weak forces from surround grains
are not left behind during the initial phases of shear. As a
result, the system exhibits locally coarse-grained shear strain
that corresponds to the global affine shear, with small, spatially
homogeneous, fluctuations [13], as shown in Fig. 4(c). Shear
bands or other macroscopic inhomogeneities do not develop
in this system.

An overhead schematic of the second shear apparatus
(protocol II) is sketched in Figs. 4(d) and 4(e). The boundaries
of this system are controlled so as to produce pure shear,
consisting of compression in one direction and dilation in the
orthogonal direction. The particles rest on a base consisting of
a smooth Plexiglas sheet and are confined by the boundaries,
whose positions are controlled by a pair of stepper motors (not
shown). The upper boundary is fixed in the frame of the base.
The three other walls move as indicated in Fig. 4(d). That is,
in order for the system to evolve from Fig. 4(c) to Fig. 4(d),
the three lower boundaries move in the indicated directions
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(a)

(d)

(b)

(e)

Protocol II

Protocol I

(c)

(f)

FIG. 4. Schematics of shear strain devices. The first device is sketched in (a) and (b). Photoelastic particles rest on a surface that consists of
smooth powder-coated slats cut from transparent Plexiglas. During an experiment, the walls and slats deform at constant area, and the whole
system undergoes simple shear, as indicated by the arrows of (b). (c) Incremental strain field (δεxx) between γ = 13.5% and 13.77% from the
first device shows small homogeneous fluctuation. The second device is sketched in (d) and (e). With this apparatus, we can independently
control the spacing between opposing walls to achieve arbitrary strains. For the present experiments, we only consider strains where the area
of the enclosed rectangle is constant, corresponding to pure shear strains. (f) Incremental strain field (δεxx) between γ = 9.24% and 9.57%,
from the second device shows macroscopic strain inhomogeneity.

relative to the base and top wall. The side walls are maintained
in a rectangular geometry by guides. This apparatus allows a
deformation of the boundaries in a continuous range of rect-
angular geometries. However, for the experiments described
here, the area of the interior, which contains the particles,
is held fixed. Thus, the strains correspond to pure shear. In
this device, the strain is applied strictly at the boundaries, as is
typical of most granular strain devices. Consequently, there is
no control over the local strain, and the system exhibits local,
macroscopic strain inhomogeneity [34], as shown in Fig. 4(f).
In particular, during the course of a strain experiment, it tends
to develop a shear band.

For both types of devices, the initial state is prepared by
placing the particles within the boundaries of the container,
with the particles lying on the corresponding base. In general,
there are residual forces acting between the grains after
the placement of the particles. We remove these by gently
tapping or massaging the grains by a small amount. Thus, the
initial state is force-free for the experiments described here.
Necessarily, that means that they lie below what we call φJ ;
for larger φ, all static states are jammed at nonzero pressure. In
a typical experiment, the system is subject to small quasistatic
strain steps, up to some maximum shear strain. For protocol I,
the strain step is 0.27% and for protocol II, it is 0.3%. After
each small step, the system is allowed to come to mechanical
equilibrium, after which we obtain images that characterize the
state of the system. We carry out different types of shear exper-
iments that include shear to some maximum strain, and cyclic
shear, where the system is (1) sheared from an initial state to
a maximum shear strain, then returned to its initial boundary
configuration, and (2) then subject to repeats of this protocol.

The particles are illuminated from below by a circularly
polarized uniform light source. They are also illuminated
from above by a low intensity UV light source. The systems

are imaged from above by a camera which obtains three
different images of each state, following a given small strain
step. One image is acquired with a crossed circular polarizer
in front of the camera, a second image is acquired without
that crossed polarizer, and a third is acquired with only the
UV light source. The first type of image gives the photoelastic
response of the system, the second gives the location and
boundaries of the particles, and the third shows the orientation
of small bars that have been drawn of each particle with UV
sensitive ink to track rotation.

Since protocol I creates homogeneous shear-jammed states
without shear bands, they are a much better candidate for
analyzing the nature of shear-jamming and shear-jammed
states. Analysis of inhomogeneous states with shear bands
such as those created by protocol II are more difficult to
characterize. Therefore, in this paper, we have focused most of
our analysis on the states created by protocol I. However, we
have compared some features of the shear-jamming transition
from the two protocols in Sec. IV C to demonstrate the
difference between the patterns in height space in states with
and without shear bands.

B. Analysis methods

1. Construction of force tiles

Topologically, the network of force tiles is the graph dual
to the real-space contact network (a graph with grains as
nodes and force-bearing contacts between grains as edges).
This duality is unique in two dimensions. Hence, given the
topology of the real-space network (RSN) and the information
about the minimal cycles of the RSN, the topology of the force
tile network (FTN) can be easily constructed in the form of
an adjacency matrix. The height points are then constructed
from the topological information as well as the information
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(a) (b) (c)

(f) (e) (d)

FIG. 5. A schematic of the force tiling algorithm. (a) A typical grain configuration. The colors are used to tag a grain and the corresponding
force tile, otherwise they have no physical significance. (b) The real space contact network. (c) A portion of the real space contact network.
(d) The faces (a point inside every face is marked by a red dot) of this portion of the real space contact network as obtained from the MCB
algorithm. (e) The dual graph (blue dashed line) topology obtained from the MCB. (f) The force tiling for this configuration. The color of the
force tile matches the color of the corresponding grain in (a).

about the forces that act through the contacts. The difficulty in
designing a numerical algorithm to construct the topology of a
dual graph is associated with the construction of the minimum
cycle basis (MCB). We adapted an existing algorithm [35] for
constructing MCBs to generate the adjacency matrix required
to construct the FTNs. As discussed in Sec. I.A, height vectors
are represented by the vertices of the FTN, whereas the edges
represent the forces acting through the contacts. The choice
of the height origin and, therefore, the choice of a particular
vertex as the origin of the FTN, is arbitrary. However, once this
is chosen, any force and torque balanced grain configuration
gives rise to a unique set of vertices. A metric (Euclidean) for
the FTN is defined by assigning a scalar weight (magnitude
of the force) and a direction (direction of the force through
a contact) to each edge in a FTN. The object that encodes
all of the information for constructing a FTN is, therefore,
a vector-weighted adjacency matrix. Using this adjacency
matrix, the FTN can be constructed iteratively. This iterative
construction process is analogous to constructing a lattice
from the primitive vectors. An important difference is that,
in the case of a two-dimensional lattice, there are only two
primitive vectors, whereas due to the disordered nature of the
FTN, there are as many primitive vectors as there are contacts,
which necessitates an iterative process. The entire construction
process is summarized below and in Fig. 5:

Obtain RSN from microscopic information.
Obtain the topology of the dual graph of the RSN. This is

also the topology of the FTN and is encoded in an adjacency
matrix with entries that are zero and unity.

Replace the nonzero entries of the adjacency matrix by
two numbers that correspond to the components of the force
vector acting through that particular contact.

Start from a trial configuration of the height space
vertices, and construct them iteratively using the adjacency

matrix with weights as described above. The iteration ends
when the final difference between two heights (vertices of
the FTN) is the same (within a small numerical tolerance)
as the vector weight of the entry in the adjacency matrix
corresponding to the edge connecting these two vertices.

From an algorithmic point of view the first step, obtaining
the RSN, is the easiest. The contacts and force at the granular
level are easily obtained from either simulation or experimental
data. Some amount of post-processing is required to obtain the
FTN for experimental data, since Newton’s third law may not
always be rigorously satisfied due to experimental limitations.
However, this shortcoming can be accommodated within the
framework of the algorithm to construct FTN. Since we already
have the contact topology for the FTN, it ensures force balance
by default. All the forces acting on a grain are forced to form
a closed polygon. Hence, we can enforce Newton’s third law
on a contact by taking the average of �fij , and �fji . This allows
us to construct an FTN, which is force-balanced and where
Newton’s third law is satisfied. The forces constructed this way
are accurate within the experimental errors. Data obtained from
simulations would be cleaner (margin of error much smaller),
and would satisfy both force balance and Newton’s third law.
Hence, no post-processing would be required to implement
the scheme. In this paper, we have analyzed only experimental
data obtained from the shearing experiments described in the
previous section.

IV. RESULTS

A. Shear-jamming transition

The mechanical properties of shear-jammed materials are
different from those of an elastic solid. Since by design (φ <

φJ ) the systems that we are studying have zero intergranular
forces at zero shear stress, unlike an elastic solid, this
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FIG. 6. Grain positions. The evolution of the grain positions in a shear-jamming experiment at φ = 0.8163. Bidisperse grains (dark orange,
larger and light orange, smaller grains) were used to avoid crystallization. As the system is sheared the positions of the grains remain virtually
unchanged (evinced by the overlap matrix of the real-space position in Fig. 8) apart from the global affine deformation, characterized by the
global strain marked on every snapshot.

zero-stress state in not a well-defined reference state. These
zero-shear states cannot resist any mechanical perturbation
and behave like a fluid: These are the unjammed states [8]. As
the external shear stress is increased, the granular material
transitions from being unjammed to a fragile solid to a
solid that can resist shear reversals [12]. This is quite unlike
an elastic solid, which deforms reversibly and ultimately
undergoes plastic failure at large enough shear stress: External
shear does not strengthen an elastic solid. The origin of this
strengthening in granular materials can be ultimately traced
back to the lack of cohesive forces, which leads to a differential
mechanical response of force chains in the dilational and
compressive directions. Our objective in this paper is to
understand the implication of these microscopic processes on
the collective behavior of grains. The primary question that we
are focusing on is what type of correlations develop during the
shear-jamming process that leads to the formation of jammed
states that can resist further shearing.

Rigidity of crystalline solids is associated with the emer-
gence of order and broken translational symmetry in the
averaged density field of the constituent particles. This
broken symmetry exists even in an amorphous solid: If one
measures the thermal average of the density field, it is uniform
for a liquid (〈ρ〉 = ρ0), but nonuniform (〈ρ〉 �= ρ0) for an
amorphous solid. The shear-jamming transition occurs at zero
temperature, and according to previous analysis [11,12] the
organization that leads to the emergence of rigidity is primarily
in the space of forces. As illustrated in Fig. 6, apart from the
global affine deformation, the positions of the grains remain
virtually unchanged throughout the shear-jamming process,
and any measure of the density field can at most reveal subtle
changes.

The situation is remarkably different for FTNs (Fig. 7) at
different strain steps: There is a clear evolution of both the
global shapes and the distribution of shapes of individual tiles.
At the beginning of the shear protocol, FTNs are not well
defined since very few grains form a force carrying network.
As the shear strain is increased, FTNs emerge but both their
global shape and local structure changes from one strain step
to another. In this regime, the global shapes are also more
needlelike (one-dimensional). As the shear strain is increased
further, the FTNs acquire a well-defined two-dimensional
structure, and deform uniformly as the strain is increased,
with only small changes in the local structures. The question
we address is whether the patterns in RSNs and FTNs become
persistent during the shear-jamming protocols.

1. Characterizing the order in SJ states

As mentioned earlier, characterizing the “order” in any type
of amorphous solid is a nontrivial problem. One of the ideas
that has been applied extensively in glassy systems is that
of measuring the persistence of patterns through an overlap
matrix. In lattice models such as spin glasses, for example [36],
similarity between two different replicas, α and β at a given
temperature, is measured by the overlap matrix Qα,β :

Q
α,β

i = 〈
sα
i s

β

i

〉
, α �= β, (7)

where si
α is the i th spin of the replica α. The angular bracket

denotes thermal average. Each element of the overlap matrix
varies between 0 and 1. In the high temperature phase, the
average overlap for a system of N spins, Q̄ = 1

N

∑
i Q

α,β

i ,
is zero, whereas in the spin-glass phase Q̄ is nonzero.
One can construct similar overlap matrices for continuum
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FIG. 7. Force tiling. The evolution of the shape of the force tiles in a shear-jamming experiment at φ = 0.8163. For the sake of clarity, we
have not shown the evolution of the size of the force tiles, which increases with increasing shear strain (marked on the snapshot). Each force
tile is colored according to its asphericity (see Appendix) κ2. In the unjammed state (a), the force tiling is very small (due to small forces) and
formless. In the fragile state (b)–(d) the force tiling are very anisotropic (as characterized by high asphericity of individual tiles) and begins
as a quasi-one-dimensional structure (b), which evolves towards a well-defined two-dimensional shape as the shear-jamming approaches (d).
In the jammed states (e)–(i), the tiling has a well-defined shape which remain preserved even when a large amount of strain is applied. Also,
individual tiles become more isotropic.

systems, and this has been done in the context of molecular
glasses [37,38], where one analyzes the overlap of coarse-
grained density fields corresponding to different free energy
minima. The overlap measure of order is similar to measuring
autocorrelation functions. The autocorrelation function is
an overlap of configurations at different times and thus
explicitly measures the persistence of patterns. A nonvanishing
correlation in the limit of infinite time is equivalent to a
finite overlap [36]. The Edwards-Anderson order parameter in
spin glasses is the large-time limit of the spin autocorrelation
function [39].

In this section we analyze whether an overlap matrix
measure can be used to identify the SJ transition. We first
define coarse-grained density fields corresponding to the point
pattern of vertices in the FTNs and the position of grains in
RSN. An overlap matrix between different strain steps can
then be constructed from these density fields in a manner
analogous to glassy systems. In analyzing the overlap of
FTNs, one of the complications that we need to address is
that in the shear-jamming experiments, the number of height
vertices increases with the shear strain and the shape and
the area of the box enclosing the height vertices changes.
For RSNs, the box only changes shape while the area and
the number of points (grains) remains fixed. We, therefore,
need to supplement the usual coarse-graining prescription by
constructing a grid that distorts affinely with the box, and

by normalizing the coarse-grained density field appropriately.
With these modifications, the overlap matrix is defined as

Qα,β = dα,β/
√

dα,αdβ,β, (8)

where dα,β = 1
N

∑N
m=1 ρα

mρ
β
m, and ρα

m is the value of the
coarse-grained density field of the αth point pattern (corre-
sponding to the αth strain step) at the mth grid point.

Overlap as a measure of rigidity. If one point pattern can
be obtained from the other solely through a series of affine
transformations, the overlap as defined by Eq. (8) between
those two patterns should be unity. As two point patterns,
modulo an affine transformation, deviate away from each other,
the overlap also decreases towards the minimum value of 0.
For example, a linearly elastic deformation of a crystalline
solid from the zero-shear reference state is a completely
affine process; the position of the atoms, which form the
point pattern, in one state can be obtained from the other
through a series of scaling, rotation, and translation. Thus, the
overlap between two such states will be unity. On the other
hand, if a liquid is sheared, the molecular displacements are
less restricted, and it is unlikely that the point pattern of the
sheared state is related to the unsheared state through any affine
transformation. This analogy suggests that shear rigidity can
be related to the overlap between configurations at different
shear strains.
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FIG. 8. The overlap matrix of the RSNs (left) and the FTNs (right)
for protocol I at φ = 0.8163. The black arrow marks the onset of the
shear-jamming transition, as detected from the saturation of fNR [12].

Associating shear rigidity with the properties of an overlap
matrix is particularly advantageous for the granular systems
that we are interested in, since we do not need to define a
zero-stress reference state. We measure the overlap of two
states at any two strain steps, α and β, and obtain one matrix
for every experimental run: The zero strain step is not treated
in any special way.

2. Emergence of rigidity

We calculate the overlap of the coarse-grained density fields
from RSNs and FTNs at different strains, γ . For all the analysis
in this paper, we have used a 30 × 30 grid to measure the
coarse-grained density field. To accommodate the change in
the sizes of the point pattern, we scale all the point patterns
to a 1 × 1 box, from which we calculate the density field by
counting the number of points in each of the boxes created
by the grid. The density field depends on the coarse-graining
size (grid size in this case) and, as the coarse-graining size is
increased (number of grid points is decreased), the density field
becomes more uniform across different grids. Consequently,
the overlap between two such patterns increases. However,
there is a range of coarse-graining sizes over which the pattern
is robust.

As seen from Fig. 8(a), the overlap matrix constructed from
the RSNs is relatively structureless and the majority of the
elements are ∼1. There is an initial small range of strains for
which the overlap decays to zero quickly with incremental
strain. Beyond γ ≈ 10%, however, the overlap between any
two strain steps is of order unity. The overlap matrices vary
from run to run but these broad features remain unchanged,
indicating that the RSN patterns are persistent over the whole
strain history, for the full range of φ values below φJ for
which shear jamming is observed. The implication of this
result is that from the perspective of a coarse-grained density
field, the assembly of grains at these packing fractions is in
an amorphous “solid” state. However, these amorphous solids
cannot resist shear deformations and, therefore, are not rigid.
They acquire shear rigidity only beyond a threshold of applied
shear. Remarkably, the overlap matrix obtained from FTNs
bears a signature of this rigidity transition.

The overlap matrix of the FTNs shown in Fig. 8(b) exhibits
a nontrivial pattern. The most remarkable feature of this pattern
is an increase in the range of strains, δγ = β − α, over which
the overlap remains significantly above zero. It is clear from
Fig. 8(b) that this range increases monotonically with the initial
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FIG. 9. Dependence of fNR (a)–(c) and ε∗ (d)–(f) on strain for
packing fractions: 0.8269 (gray, �), 0.8163 (blue, �), 0.8036 (red,
©), 0.7863 (turqoise, ♦), and 0.7728 (yellowish-green, �) in protocol
I. ε∗ measures the range of γ with 50% or more overlap as a function
of the strain γ itself. (a) and (d) Show variation of fNR and ε∗ with
strain γ . (b) and (e) Scaling of fNR and ε∗ with γ ; γ0 = (1 − φ/φJ )1.6.
(c) and (f) Scaling of fsc and εsc (see text for definitions) with γ ;
γ1 = (1 − φ/φJ )1.2.

strain α. The implication is that there is a clear signature of the
shear-jamming transition in FTNs: the persistence of the height
pattern. We can define an order parameter by thresholding the
entries of the overlap matrix : qα,β = 1 if Qα,β � 0.5, and
qα,β = 0 if Qα,β < 0.5. An “order parameter” ε∗(γ ) can then
be defined as the range δγ over which qα,β = 1. Although
different from the traditional definition of an order parameter,
we call ε∗(γ ) an order parameter for shear jamming since
it is zero in the fragile regime and nonzero in the shear-
jammed regime as seen from Fig. 9. Moreover, ε∗(γ ) offers a
quantitative measure of the rigidity of the SJ states: States that
have a larger value of ε∗(γ ) can sustain larger shear strains. As
we will discuss in the next sections, the behavior of ε∗(γ ) is
different for the two protocols. For protocol II, which creates
states with shear bands, ε∗(γ ) is nonmonotonic indicating that
the SJ states can become weaker under shearing. Experiments
show that the SJ states created by protocol II can undergo
failure through avalanches, and this feature is captured by
ε∗(γ ). As we will also show in the next section, ε∗(γ ) exhibits
a scaling behavior with packing fraction for the homogeneous
SJ states created by protocol I.

B. Role of the packing fraction

We observe shear jamming for a range of packing fractions
below φJ . In protocol I, we observe shear jamming for φ ∈
[0.74,0.8247] and in protocol II, we observe shear jamming for
φ ∈ [0.78,0.825]. In the following paragraphs we investigate
the role of the packing fractions in shear-jamming transition by
analyzing experimental data from protocol I. One of the main
results of this analysis is the deduction of a scaling form for
the nonrattler fraction and the order parameter, which indicates
that the structure of the shear-jammed states is controlled by a
scaling combination γ /γ (φ) with γ (φ) → 0 as φ → φJ .

We have investigated the dependence of the SJ transition
on φ by comparing the stress anisotropy τ/P , the nonrattler
fraction fNR, the order parameter ε∗, and the FTN overlap
matrices for five different packing fractions: 0.8269, 0.8163,
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FIG. 10. Shear-jamming experiments with protocol I. (a) and (b)
Show the evolution of, respectively, the fNR (reproduced from Fig. 9
for ease of comparison) and the stress anisotropy τ/P as a function
of strain γ , for five different packing fractions: 0.8269 (gray), 0.8163
(blue, �), 0.8036 (red, ©), 0.7863 (turquoise), and 0.7728 (yellowish-
green). The curves are arranged in the order of increasing packing
fraction from bottom to top. The solid line is the average from five
different runs at each packing fraction, whereas the shaded area shows
the standard deviation of the mean. The stress anisotropy peaks at
the jamming transition concomitant with the saturation of the fNR.
The strain at which this transition happens increases with decreasing
packing fraction. In the bottom panel, we compare the force space
overlap matrix for packing fractions 0.8163 (c) and 0.8036 (d). The
overlap matrices show that the onset of shear rigidity (regions with
high overlap) occurs at larger strains for smaller packing fractions.

0.8036, 0.7863, and 0.7728. We show the strain dependence of
fNR(γ,φ) and ε∗(γ,φ) in Fig. 9 and of (τ/P )(γ,φ) in Fig. 10(b)
for all five packing fractions. The data shown for each packing
fraction are averaged over five different runs. Furthermore, we
show the overlap matrix for φ1 = 0.8163 and φ2 = 0.8036 in
Figs. 10(c) and 10(d). We choose these two values of φ because
all three regimes of shear jamming—unjammed, fragile, and
jammed—are clearly captured in these packing fractions. For
larger packing fractions, the system very quickly transitions
into the jammed state, so the behavior of the system in the
fragile state is difficult to decipher. On the other hand, lower
packing fractions do not reach the shear-jammed state within
the range of γ explored.

Figures 10(b)–10(d) show that the strain required to reach
the jammed state is different for different packing fractions.
More precisely, the strain required to reach the jammed state
increases as the packing fraction decreases. Based on the
experimental observations, it has been postulated that the
strain required to reach the jammed state diverges at a packing
fraction φs [12,14,27]. The exact value of φs is not known.
However, experimental measurements estimate it to be around
0.74 for protocol I [13]. At this packing fraction, the system

does not jam even at the largest experimental strain (∼70%).
Simulations of frictionless disks investigating particle scale
reversibility find that there is a maximum strain that increases
with decreasing packing fraction, which demarcates regions
of point reversible and loop reversible dynamics [40]. The
similarity between this behavior of the maximal strain and the
strain required to reach shear jamming is intriguing and should
be explored further in simulations of frictional grains.

The upper limit of shear-jamming packing fractions is set by
φJ at which the strain required to create a jammed packing goes
to zero. The FTN overlap matrices show this trend, which can
be made quantitative by analyzing the order parameter ε∗(γ,φ).
A similar analysis can be performed for fNR. As shown in
Figs. 9(a) and 9(d), both fNR and ε∗ depend strongly on the
packing fraction. As the packing fraction increases towards φJ ,
the system transitions to the shear-jammed state at a smaller
strain. The strain dependence is particularly remarkable for ε∗
with the transition becoming sharper as the packing fraction is
increased.

The above observation suggests that there is a packing-
fraction-dependent strain γ0(φ) characterizing the shear-
jamming transition. Rescaling γ by γ0(φ) = (1 − φ/φJ )1.6

leads to a good scaling collapse of ε∗(γ,φ) and of fNR(γ,φ)
except in the very small γ regime [Figs. 9(b) and 9(e)]. The
insight that we gain from this scaling analysis is that although
the SJ transition is seemingly controlled by two parameters,
φ and γ , it is only the scaling combination γ /γ0(φ) that
is relevant. A scaling form for fNR(γ,φ) offers a natural
explanation for the observed increase in Reynolds pressure
with packing fraction [14].

Reynolds pressure is a consequence of the shear dilatancy of
the frictional grains. When frictional grains are sheared under
constant pressure, the granular packing dilates. In contrast,
in our experiments, the area of the granular packing is held
constant which frustrates the dilation of the packing leading
to an increase in the pressure of the granular packing. This
pressure is observed to increase as R(φ)γ 2 [14], where the
Reynolds coefficient R(φ) diverges as (1 − φ/φJ )−3.3±0.1. The
pressure, therefore, has a scaling form: P (φ,γ ) ∼ (γ /γ

p

0 (φ))2

with γ
p

0 (φ) ∼ (1 − φ/φJ )1.65±0.05. The similarity between the
observed scaling exponents of γ0(φ) and γ

p

0 (φ) is striking and
suggests that the pressure increase is a direct consequence of
the increase in fNR and that the divergence of R(φ) at φJ is
related to the scaling of γ (φ).

The scaling form shown in Figs. 9(b) and 9(e) fails to
collapse the data for fNR at low values of strain primarily
because the value of fNR at γ = 0 strongly depends on the
packing fraction as shown in Fig. 9(a). To account for this,
we have attempted a different scaling collapse by defining a
scaled variable ysc(γ ) ≡ y(γ )−y(0)

ymax−y(0) . Setting fmax = 1, we find

fsc ∼ γ /γ1(φ), where γ1(φ) = (1 − φ/φJ )1.2 [Fig. 9(c)]. ε∗
exhibits a similar scaling law if εmax is defined by the saturation
values of the ε∗ [Fig. 9(f)]. This form of scaling of fNR had
earlier been predicted by a phenomenological theory of the
shear-jamming transition [41].

C. Protocol dependence of the SJ transition

We observed shear jamming in both protocols I and II.
Even though the basic phenomenology—saturation of fNR,
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(a) (b)

FIG. 11. Force tiling from a shear-jammed configuration for
protocol I (a) and protocol II (b); the shaded tiles are the nonconvex
polygons. Due to the inhomogeneity of applied strain, the forces in
protocol II are also inhomogeneous and are larger at one boundary
compared to the other. This is reflected in the trapezoidal shape of the
force tiling in protocol II, where the tiles are larger on the right side
compared to the left.

percolation of the strong force network at the jamming
transition—is the same in both experiments, the difference
in the protocols affect the macroscopic variables significantly.
To recall, in protocol I, which we have discussed so far, shear
strain is applied homogeneously across the sample. On the
other hand, in protocol II, shear strain is applied from the
boundary and that leads to strain inhomogeneity in the system.
This strain inhomogeneity leads to formation of shear bands,
which affect the stability of the jammed structure. In particular,
these jammed states can fail under shear whereas those created
by protocol I do not generally show macroscopic failure. In
the following paragraphs, we provide some comparisons of
the different measures of shear jamming in the two protocols
at φ = 0.8036 (φJ ≈ 0.84 for both protocols) in order to
illustrate the effects of shear banding and failure on the order
parameter and the statistics of the FTNs.

We applied simple shear in protocol I and pure shear in
protocol II. The former does not preserve the compressive
and the extensile direction over the course of the experiment,
while the latter does. As a result, the FTNs change both shape
and orientation during the shearing process of protocol I.
In contrast, they just change shape in protocol II. Since the
system is sheared from the boundary in protocol II, the forces
can be higher near one boundary compared to the other. This
nonuniformity of forces is captured by the FTNs. As shown
in Fig. 11, the force tiles at the bottom left corner of the FTN
are much larger than the rest of the tiling. The shapes of the
individual tiles are also quite different. While the polygonal
tiles generated by protocol I are more or less regular in shape,
those generated by protocol II can be quite irregular. This
observation can be made more quantitative by measuring the
distribution of the asphericity (see appendix for definition) of
the polygons (Fig. 12). The mean asphericity of the tiles in
protocol II is always higher than protocol I.

The larger dispersion in tile shapes and sizes in the FTNs
from protocol II indicates a broader distribution of contact
forces and grain-level stresses. We see this feature in the
distribution of the magnitude of the contact forces. Even
in the SJ state, the distribution generated by protocol II
has an exponential tail [Fig. 13(c)], which is characteristic
of a marginally jammed state [8], whereas the distribution
generated by protocol I becomes narrower and develops a
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FIG. 12. Evolution of asphericity of tiles (see appendix) during
the shear-jamming process. The distribution of the asphericity of
the tiles at different shear strains (legend) during the shear-jamming
transition with (a) protocol I, φ = 0.8163; (b) protocol I, φ =
0.8036; and (c) protocol II, φ = 0.8036. Few representative tiles
are also shown. The asphericity peaks at 1 for all strains, but with
increasing strain, the peak strength decreases and the distribution
becomes broader, indicating proliferation of isotropic tiles. (d) Mean
asphericity as a function of strain at two different packing fractions
(legend) in protocol I. (e) Mean asphericity as a function of strain for
two different protocols at φ = 0.8036. Protocol II has higher mean
asphericity compared to protocol I.

well-defined peak as states become shear jammed [Figs. 13(a)
and 13(b)].

These broad distributions suggest that the SJ states created
via protocol II are less rigid than those created by protocol
I. Comparison of the FTN overlap matrices from the two
protocols support this view. Figures 14(c) and 14(d) illustrate
the differences between the persistence of FTN patterns
created by the two different protocols. The FTNs generated
by protocol II are much less persistent, and the structure of
the overlaps do not really evolve with γ . The order parameter
ε∗ shown in Fig. 14(e) provides a quantitative measure of the
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FIG. 13. Force distributions at φ = 0.8036. (a) Fragile and
(b) jammed packings generated by protocol I. (c) Jammed packing
generated by protocol II. The shear strain increases from blue to dark
red. Dark red states are jammed states.
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FIG. 14. Comparison of protocols. (a) fNR in protocol II saturates
at a lower strain compared to protocol I. The saturation value is smaller
also. (b) The stress anisotropy peaks at a lower strain and the peak
value of the stress anisotropy is lower in protocol II than protocol I.
The overlap matrix in protocol II (d) is distinctively different than
protocol I (c). Even though the overlap matrix for protocol II reaches
an overlap value of ∼0.5 pretty quickly, unlike protocol I it never
attains really high (>0.8) overlap, which suggests lack of persistent
order even in the jammed state. (e) ε∗ for protocol I (red circle) and
protocol II (green triangle) φ = 0.8036.

difference in rigidity between SJ states created by these two
protocols. In particular, ε∗ exhibits a nonmonotonic behavior
in protocol II reflecting the shear-induced failure of jammed
states created by this protocol. This result shows that shear
bands influence the persistence of patterns in FTNs and that
their effect can be measured by the order parameter ε∗. The
scaling of fNR and ε∗ in protocol I, shown in Fig. 9, is also not
observed for protocol II.

1. Percolation of force chains and force tilings

The original analysis of shear jamming [12] was based
on the structure of the force network formed as a function
of applied strain. It is known from earlier studies that force
networks in jammed packings of dry grains can be separated
into a strong network and a complementary weak network [42].
The shear-induced solidification framework [11] was also
based on characterization of the force network. Here, we
present a comparison of the force-network analysis with the
force-tiling analysis of the shear-jamming process in protocol
II. The tiling representation explicitly includes only nonrattlers
and it has only the information about the topology of the
fabric of granular contacts. The “spatial” information in the
tiling space represents the forces. In contrast, the percolation
analysis explicitly incorporates the real-space fabric [12] and
the percolation analysis is based on a thresholding of forces.

To perform the percolation analysis, we first define the
collection of grains that have at least one contact force �fij

where fij > 〈fij 〉 [12]: a strong force carrier. The strong
force carrier grains form multiple clusters in the system with
a distribution of sizes. In turn, we define the largest such
cluster the strong force cluster. Grains with contact forces
fij � 〈fij 〉 are part of a complementary force network or
weak force network. As shown earlier [12,42], the results of

FIG. 15. (Top) Plots of the cluster size to box dimension ratios
(ξ/L) vs strain for a shear-jamming process via protocol II at φ =
0.805. Pure shear strain (compression in the y direction and extension
x while total area is fixed) is applied to an initially unjammed system.
Red line corresponds to the y size of the largest contiguous cluster
with contact force f > 〈f 〉 in the system. Blue line corresponds
to the x size of the largest contiguous cluster with contact force
f > favg in the system. Snapshots of clusters are shown for γ =
0.01 (unjammed), γ = 0.066 (fragile), and γ = 0.15 (shear jammed).
(Bottom) Force tilings for same set of configurations. The force tilings
exhibit changes in global shape and local structure.

the percolation analysis are robust as long as the threshold is
chosen to be �0.8〈fij 〉.

In Fig. 15, we show the size of the cluster as a function of
strain in a typical strain cycle. Starting from an unjammed state,
as shown in Fig. 15, the strong force cluster undergoes two
sequential percolation transitions as a function of the strain.
Initially, the system is unjammed and the strong force cluster
does not percolate in either the compressive direction or the
extension direction, i.e., ξx < Lx and ξy < Ly . The reason that
an unjammed state with a a nonpercolating force network can
exist in this system is because there are contacts between the
grains and the substrate, which allows force and torque balance
to be satisfied for a subset of grains. At intermediate strain
values, the strong force cluster percolates in the compressive
direction but not transverse to it, i.e., ξy = Ly and ξx < Lx .
We call these states fragile [11,12]. At higher strain values, the
strong force cluster percolates in both directions ξy = Ly and
ξx = Lx and we call these states shear jammed.

The force tilings corresponding to these same strain steps
are shown in the bottom panel of Fig. 15, and the overlap
measure ε∗ is shown in Fig. 14(e). The persistence of tiling
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FIG. 16. The number of nonconvex polygons, normalized by the
maximum number reached during the strain history, and τ as a
function of shear strain for (a) protocol I at φ = 0.8163, (b) protocol I
at φ = 0.8036, and (c) protocol II at φ = 0.8036. In (a) and (b), both
τ and NNC peak at the strain value at which ε∗ reaches its maximum
value.

patterns, measured by the overlap function provides a direct
measure of the resistance to shear of the jammed state. If the
force network in a jammed state rearranges under shear, then
the overlap function is small. The magnitude of ε∗ measures
the range of shear strain over which the jammed state maintains
its rigidity. The percolation analysis, on the other hand, tells
us whether a particular jammed state has a force network that
has percolated in one or two directions (in two dimensions).
It is an observation that when the network has percolated in
two dimensions, it resists shear and is shear jammed. However,
the percolation measure does not tell us how much shear this
state can resist. This is precisely what the overlap function
does, as illustrated by the nonmonotonicity of ε∗ shown in
Fig. 14(e). To summarize, the percolation analysis is a binary
measure that does not provide information about how strong
a shear-jammed state is, i.e., how much shear it can resist.
The overlap function and ε∗ provides this information and,
therefore, they are not only complementary to the percolation
analysis but they provide additional useful information about
the shear-jammed states.

D. Convexity of tiles and the rigidity of the jammed packing

The discussions in the previous two subsections demon-
strate (Figs. 10 and 14) that the overlap matrix convincingly
captures the rigidity of the shear-jammed states and the lack
of the rigidity of the fragile states. We now inquire into the
origin of the rigidity in the shear-jammed states.

At the end of Sec. II, we hypothesized that the persistence of
patterns in FTNs has its origin in effective interactions between
height vertices created by the condition of convexity of tiles.
Although we do not have a complete understanding of the
nature of these interactions and the correlations they generate,
analysis of experiments show a strong correlation between the
persistence of the pattern and the statistics of convex tiles. In
Figs. 16(a) and 16(b), we show the variation of the anisotropic
stress (τ ) and the fraction of nonconvex polygons relative to
the maximum (NNC), as a function of the applied shear strain
for protocol I. The evolution of these two variables with strain
are remarkably similar. As seen from Figs. 16(a) and 16(b),
the position of the peak in NNC(γ ) coincides with that of
the peak in τ (γ ). Remarkably, the position of these peaks
coincide with the value of γ at which the order parameter
ε∗ reaches its maximum value (Fig. 9). We can, therefore,
conclude that NNC starts decreasing with γ in the SJ phase,

where the order parameter ε∗ is nonzero. These observations,
however, do not demonstrate a causal relationship between the
behavior of NNC and the development of the order parameter.
The shear-jamming process of protocol II does not lead to
a well-developed order parameter, and, therefore, to a well-
defined SJ state (Fig. 14). Consistent with our hypothesis, we
find that NNC does not decrease [Fig. 16(c)] with increasing
shear strain in protocol II.

V. DISCUSSION

Shear jamming of frictional grains is phenomenologically
very different from the traditionally studied jamming of
frictionless grains. Frictionless grains undergo a density-
induced jamming transition as the packing fraction is increased
to a characteristic value φJ , which can depend on the
protocol. Frictional grains exhibit a much richer jamming
phenomenology. In these systems, imposed shear strain can
induce a jamming transition over a range of packing fractions
below φJ . The primary focus of our work has been to
construct a rigorous theoretical framework for describing these
shear-jamming transitions.

In this paper, we have applied the dual-space formalism
based on the FTN representation of granular assemblies in
mechanical equilibrium to characterize shear-jamming transi-
tions observed under two different experimental protocols. Our
analysis clearly identifies signatures of the jamming transition
through the properties of an overlap matrix and a resulting
scalar order parameter. The overlap matrix and the order
parameter are sensitive to the nature of the jammed states
created by different protocols. A particularly striking result
of our analysis is that the strength of the order is weaker
in shear-jammed states with shear bands as demonstrated in
Fig. 14(e). Moreover, we find that for the homogeneous states
created by protocol I, the effect of the packing fraction can
be captured by rescaling the shear strain marking the onset of
shear jamming. These observations indicate that the dual-space
formalism is the natural representation for characterizing shear
jamming, which is difficult to detect in position space. The
FTN representation is equally applicable to density-driven
jamming in both frictional and frictionless grains. Hence, this
representation can be the common thread which unifies the
study of frictionless and frictional jamming.

The origin of the emergence of “order” in the FTNs is
the set of constraints of local mechanical equilibrium for dry
grains. The necessary condition for persistent order is the
geometrical constraint of convexity on the shape of force tiles
formed by connecting the heights corresponding to a single
grain. This geometrical constraint is a consequence of two
inequalities: positivity of the normal forces, and the static
equilibrium restriction on the range of the tangential forces.
Persistent order develops as more and more force bearing
contacts are introduced into a grain packing, which translates
to an increase in the number of height vertices. The process
is thus reminiscent of density-driven solidification, albeit in a
space that refers to forces and not positions of grains. We will
explore this analogy more carefully in the near future.

The FTN representation provides a description of elastic
and plastic behavior of assemblies of dry grains by referring
only to their stress state specified through �Fx and �Fy . This
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stress-only description avoids any reference to the concepts of
strain and energy, which are difficult to define unambiguously
in assemblies of dry grains [11].

Our analysis has been restricted to two dimensions. The
tiling picture does not extend to three dimensions. An analog
of the height fields does exist in three dimensions [20,32],
and a completely parallel structure can be constructed through
Delaunay triangulation of the grain network in real space [32].
It is, therefore, plausible that the general concept of order in
height space extends to three dimensions, and [32] provides a
mathematical framework for developing and testing a theory
of rigidity in three dimensions.
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APPENDIX A: EXPERIMENTAL METHODS

In both protocols, we tested dozens of packing densities,
and up to five runs at each density, within a range φS <

φ < φJ , where φJ 
 0.84 is the isotropic jamming point in
two dimensions, and φS 
 0.75 is the minimum density for
shear jamming [12,31]. This density range ensures that the
system starts from a completely stress-free state, while making
sure shear jamming will develop with increasing strain. At
the beginning of each experiment, we prepared a disordered
packing by manually rearranging the particles. We also gently
tapped or pushed particles to remove all forces in the system
in order to start the experiment from a stress-free state.

All experiments described here used particles, e.g., disks,
made of photoelastic material to obtain contact forces between
particles. The use of photoelasticity to obtain interparticle
forces was first described in Majmudar and Behringer [43], in
more detail in the Ph.D theses by Majmudar [44] and Ren [13],
and elsewhere [12,14,33,34,45]. In order to understand the
basic principle of the force-finding procedure, we note that if
a particle is subject to a known set of contact forces (which we
imagine are roughly point forces), then the stresses within
the particle are known. For instance, for a finite number
of pointlike contact forces acting on a disk, the stresses
within the disk are given in terms of a closed form solution
that involves the vector contact forces. Circularly polarized
light of intensity Io and wavelength λ that first traverses a
disk of thickness T along a ray that is normal to the plane
of the disk and then a crossed circular polarizer, has an
intensity I = Io sin2[CT π (σ2 − σ1)/λ]. Here C is the stress
optic coefficient of the photoelastic material and the σi are the

planar principle stresses at each point in the disk. Determining
the interparticle contact forces involves solving a nonlinear
inverse problem that seeks the contact forces which yield the
observed photoelastic response within the disk. This inverse
procedure is implemented on each disk independently, where
the algorithm expressly incorporates force and torque balance
on each particle.

Protocol I provides simple shear to collections of photoelas-
tic disks. Figures 4(a) and 4(b) show a schematic of this shear
protocol. The unique feature of this apparatus is its capability
to provide shear strain that is spatially very uniform, modulo
small local fluctuations. The base of the cell consists of 50
parallel narrow slats, each with width 12.7 mm. Each slat is
individually tied to, and co-moves with, the long opposing
walls of the cell. In its undeformed state, the apparatus has
interior dimensions of 30 cm by 60 cm. During shear, the
slats move uniformly and act to carry the particles sitting on
them, providing an affine shear background to the system.
The particles are 8.0 mm and 6.4 mm in diameter, with 1:3.3
large-to-small number ratio. Figure 4(c) demonstrates that the
resulting particle movement is largely uniform with small
and uncorrelated fluctuations, and that shear bands or other
macroscopic inhomogeneities are absent.

Protocol II is sketched in Figs. 4(d) and 4(e). The bound-
aries of this system are controlled so as to produce pure shear,
consisting of compression in one direction, and dilation in the
orthogonal direction. The particles rest on a base consisting of
a smooth Plexiglas sheet that is powder lubricated to reduce
the friction between the particles and the Plexiglas sheet, and
are confined by the boundaries, whose positions are controlled
by a pair of stepper motors (not shown). The particles are
bidisperse, 7.4 mm and 8.6 mm in diameter, with 1:1.5 large-
to-small number ratio in this apparatus. Figures 4(d) and 4(e)
represent protocol II, and the resulting particle movement of
this protocol [Fig. 4(f)] shows that the system exhibits local,
macroscopic strain inhomogeneity (shear banding). The upper
boundary is fixed in the frame of the base. The three other
walls move as indicated in Fig. 4(d). That is, in order for the
system to evolve from Fig. 4(c) to Fig. 4(d), the three lower
boundaries move in the indicated directions relative to the base
and top wall. The side walls are maintained in a rectangular
geometry by sliders. This apparatus allows a deformation of the
boundaries in a continuous range of rectangular geometries.
However, for the experiments described here, the area of the
interior, which contains the particles, is held fixed. Hence the
strains correspond to pure shear. In the device, the strain
is strictly applied at the boundaries, as is typical of most
granular strain devices. Consequently, there is no control over
the local strain, and the system exhibits local, macroscopic
strain inhomogeneity [33], as shown in Fig. 4(f). In particular,
during the course of a strain experiment, a shear band tends to
develop.

In the first protocol, we carried out multiple runs for 11
different packing fractions from φ 
 0.69 to φ 
 0.82. In each
case, the initial state was prepared stress-free. In the second
protocol, we prepared the stress-free and homogeneous initial
states in a total of 100 different packing fractions equally
spaced between φmin = 0.792 and φmax = 0.850. To eliminate
any potential correlations between run to run, the particle
configurations of each run were freshly prepared.
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In both types of experiments, a horizontal layer of frictional
photoelastic disks (particles) was quasistatically sheared in
small equal strain increments. The incremental strain step is
0.27% in protocol I and 0.3% in protocol II, chosen as the
minimum step that could be accurately and reliably achieved
with each apparatus. In each protocol, the system consisted
of roughly 1000 particles that were bi-disperse in size to
ensure disordered packing. The particle size selection was
slightly different for the two protocols because of the apparatus
dimensions and practical considerations.

After each increment, we took three photos using different
lighting conditions in order to record the position, orientation,
and photoelastic force response of all particles. Also, for both
types of devices, the initial state was prepared by placing
the particles within the boundaries of the container, with the
particles lying on the corresponding base. In general,
there were residual forces acting between the grains after
the placement of the particles. We removed these by gently
tapping or massaging the grains by a small amount. Thus, the
initial state was force-free for the experiments described here.

The mechanical and statistical analysis of shear-jamming
dynamics in these experiments have been reported elsewhere,
based on physical measures like the fraction of force-bearing
particles, pressure, fNR, the shear stress, and force statis-
tics [12,31]. In the main sections of this paper, we have
imported the particle position and contact forces into our force
tiling algorithm and carried out our theoretical analysis.

APPENDIX B: CORRESPONDENCE BETWEEN
FTN AND RSN

The construction of the FTN helps us evaluate the partition
function of a granular system from the geometry of the force
tiles. So, we expect to obtain the principal stress eigenvalues
or, equivalently, the pressure and the stress anisotropy from
the geometry of the FTN. This correspondence becomes
particularly simple in a 2D granular system with the periodic
boundary condition (PBC), which we describe here. We claim
that this result is far more general and works quite well for
experimental systems where PBC is not employed.

As we have seen in Sec. II.A.2, the extensive stress tensor
(also called the force-moment tensor) of the 2D system under
PBC can be written as

�̂ = L̂ × F̂ (B1)

=
(

Lx 0
0 Ly

)
×

(
Fxx Fxy

Fyx Fyy

)
(B2)

=
(

LxFxx LxFxy

LyFyx LyFyy

)
, (B3)

where the F̂ tensor codifies the global shape of the FTN.
The trace of the force-moment tensor �̂ is the “global
pressure” P or the isotropic component of the stress and
it is an invariant of the matrix. Hence, 2P = �1 + �2 =
LxFxx + LyFyy , where �1,2 are the eigenvalues of �̂.
On the other hand, the anisotropic stress τ = |�1 − �2| =√

P 2 − LxLy(FxxFyy − FxyFyx).

FIG. 17. Scatter plot of (a) pressure p of individual grains and the
perimeter of the corresponding force tile and (b) determinant of the
stress tensor of individual grains δ and the area of the corresponding
force tile. (c) The “global” pressure (sum of the pressures of all the
grains) P and the perimeter of the boundary of the force tiling, and
(d) determinant � of the force moment tensor and the area of the
force tiling as a function of strain. All variables in (c) and (d) are
scaled by their maximum value for easy comparison. The data are
from the experiment done at φ = 0.8163 using protocol I.

We start the geometric interpretation of these results by
noting that (FxxFyy − FxyFyx) is the area of the parallelogram
bounded by �Fx and �Fy . Additionally, if we assume that Lx =
Ly = L and Fxy = Fyx = 0, FTN and RSN become uncoupled
and then the geometric correspondence becomes more trans-
parent. Under this assumption, P = L(Fxx + Fyy)/2, which is
one-quarter of the perimeter of the rectangle bounded by the
�Fx,y vectors. Similarly, τ = L ∗ √

((Perimeter/4)2 − Area). In
the more general case, when FTN and RSN are coupled, the
perimeter of the FTN isn’t exactly equal to P , but provides a
good estimate as illustrated in Figs. 17(a) and 17(c). The area
of the tiles on the other hand provides an excellent estimate of
the determinant of the stress tensor Figs. 17(b) and 17(d). The
pressure, which is the average of the stress eigenvalues and the
determinant which is the product of the stress eigenvalues, can
be used to estimate the stress anisotropy τ , which measures
the difference in the eigenvalues.

Shape anisotropy. The anisotropy of the stress state may be
approximated by measuring the shape anisotropy of the tiles.
This is achieved through calculating the gyration tensor of the
tiles. The gyration tensor is defined as Smn = 1

N

∑N
i=1 r (i)

m r (i)
n .

The shape anisotropy is then measured through asphericity

κ2 = 2 λ4
1+λ4

2

(λ2
1+λ2

2)
2 − 1, where λ1 and λ2 are the eigenvalues of the

two-dimensional gyration tensor. For a regular polygon, the
relative shape anisotropy is zero, and for a line it’s exactly
one.
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