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The quantum kicked rotor �QKR� is known to exhibit dynamical localization in the space of its angular
momentum. The present paper is devoted to the systematic first-principles �without a regularizer� diagrammatic
calculations of the weak-localization corrections for the QKR. Our particular emphasis is on the Ehrenfest time
regime—the phenomena characteristic for the classical-to-quantum crossover of classically chaotic systems.
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I. INTRODUCTION

In recent years it has become abundantly clear that driven
quantum systems exhibit behavior that is qualitatively differ-
ent from their classical counterparts. Indeed, the average en-
ergy stored in a driven classically chaotic system linearly
increases at a steady rate. In other words, such behavior may
be characterized as a diffusion in the system’s phase space.
The remarkable feature of driven quantum systems is finite-
ness of their phase space motion �localization�. Such dy-
namical localization phenomena were discussed in the con-
text of pumped quantum dots,1 ultracold atomic gases,2,3 or
Bose-Einstein condensate4 subject to pulses of optical stand-
ing wave, optical microcavity,5 and other systems.

The simplest model that became a paradigm for studies of
the quantum dynamical localization is quantum kicked rotor
�QKR�. It was numerical discovery of localization in QKR
by Casati et al.6,7 in the late seventies that triggered the broad
interest in the subject. Recent progress in trapping of cold
atoms and optical manipulation with them led to experimen-
tal realization of the QKR with the unprecedented degree of
control.2,4 The kicked rotor is described by the time-
dependent Hamiltonian

Ĥ�t� =
l̂2

2
+ K cos �̂�

n

��t − n� , �1�

where angle �̂ and angular momentum l̂ are the pair of ca-
nonically conjugated variables. The amplitude of the kicks is
described by the dimensionless parameter K, also known as
the classical stochasticity parameter. It is the only parameter
of the corresponding classical problem. The quantum prob-
lem possesses another dimensionless parameter: the effective

Planck constant k–. The latter enters the problem through the

canonical commutation relation: ��̂ , l̂�= ik–. The two param-

eters K and k– are straightforwardly related to the optical
wavelength, amplitude, and atomic mass in cold atoms
experiments.2,3,8

Historically, the classical kicked rotor, or standard map-
ping, first introduced by Chirikov, served as the prototype
model for various transport processes in plasmas.9,10 It was
established that the classical dynamics of the kicked rotor
exhibits complicated behavior. For a generic classical param-

eter K, stable and chaotic regions coexist in the phase space.
The transition to the globally chaotic motion �with only iso-
lated islands of the regular motion� takes place at sufficiently
large K.9,10 In particular, for such large K the chaotic diffu-
sion takes place in the space of angular momentum.9,10 The
latter is associated with the unlimited diffusive expansion of
an initially narrow momenta distribution: ��l2�t��=2Dclt The
classical diffusion constant, Dcl, was a subject of numerous
studies9,10 and is well understood by now.11,12 For large sto-
chastisity parameter K�1, one finds Dcl�K2 /4+O�K3/2�,
where the omitted corrections possess an oscillatory depen-
dence on K.

The pioneering numerical studies of Casati et al.6,7 re-

vealed that the corresponding quantum system, k–�0, be-
haves in a dramatically different way. The initial diffusive
expansion �that is, heating� saturates after a certain time, tL.
At later time the momentum distribution width stabilizes at
��l2�t��	�2=DcltL. It was soon suggested in Ref. 13 that
similarly to Anderson localization, quantum phase interfer-
ence may lead to the suppression of classical diffusion for
long enough time. This heuristic idea was complemented by
mapping the QKR onto a one-dimensional tight-binding
Anderson model with the pseudorandom potential.13,14 Such
interpretation leads to the estimate of the localization length

as �=Dcl / k–, and thus tL=Dcl / k–2. The similarity was further
confirmed by studies of a perturbation that breaks the “time-
reversal symmetry” �TRS� of the QKR.15 Such perturbation
suppresses the survival probability by a factor of 2. This is
closely analogous to the doubling of the Anderson localiza-
tion length by the static magnetic field, destroying the inter-
ference between a trajectory and its time-reversal partner.16,20

If the momentum localization length, �, is much longer
than the “microscopic” scale of the angular momentum �that

is k–�, then K� k– and thus tL�1. In this case there is a para-
metrically long crossover regime from the classical diffu-
sion: ��l2�t���2Dclt for 1� t� tL to the strong localization:
��l2�t��=�2 for t� tL. One may be able to develop a system-
atic perturbation theory in powers of �t / tL��1, analogous to
the weak–localization loop expansion in the Anderson local-
ization theory.17 Such task was undertaken by Altland,18 who
found for the one–loop correction: ��l2�t��=2Dclt�1
−0.75
t / tL�. It was suggested furthermore that the universal
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long-time behavior of the QKR is described by the diffusive
supersymmetric nonlinear 	 model19 similar to those em-
ployed in the localization theory.20

These calculations essentially map the QKR on a quantum
particle in the field of a white-noise random potential. While
such analogy is reasonable at long time scales t	 tL�1, it
fails to recognize details of the classical to quantum cross-
over at intermediate time scales. Indeed, a quantized classi-
cally chaotic system requires a certain time scale, called the
Ehrenfest time, tE, to develop quantum interference effects.
This fact was realized independently in various contexts21,22

and nowadays is well documented in the literature.7,22–27 The
physics behind this fact is as follows. To experience the
quantum interference, two classical trajectories must con-

verge to a region of the phase space of the size �l��� k–.
Convergence �and divergence� of trajectories in a classically
chaotic system is governed by the Lyapunov instability ex-
ponent 
 as, e.g., ���t�	exp�−
t�. It thus takes time tE

	
−1 ln�1/ k–� before the interference effects can reveal
themselves.

As we show below, for K�1 the quantitative definition of
the Ehrenfest time for the QKR is given by

tE =
1



ln
K

k–
, �2�

while the classical Lyapunov exponent is 
=ln�K /2�.9

Therefore, there is the parametric regime 1�K� k–−1, or
more precisely

ln
1

k–
� � ln K � 0, �3�

where there exists a wide separation of the relevant time
scales

1 � tE � tL. �4�

One may expect that such regime is amenable for an analyti-
cal treatment of the classical-to-quantum crossover. This
problem was first tackled by Aleiner and Larkin27 in the con-
text of random classical �long-range� potential scattering
�e.g., random Lorentz gases�. However, due to the complex-
ity of the Lorentz gas classical dynamics, their treatment
required a regularization. The latter is essentially a weak
quantum scattering potential added to the Lorentz gas.

The purpose of this paper is to develop a systematic first-
principles analytic treatment of the QKR. In particular, we
are able to incorporate the semiclassical dynamics at the
scale of tE into the weak dynamical localization theory with-
out introducing any regularization. The QKR thus allows one
to demonstrate explicitly an essential point: existence of the
dynamical localization is an intrinsic property of quantized
classically chaotic systems—not an artifact of an extraneous
regularization. �Remarkably, the Ehrenfest time does not de-
pend on the regularizer strength.�28–30 This observation is
fully consistent with the early studies of Ehrenfest time,21,22

which suggested the existence of such time scale. For the
time interval t� tL, our approach fully encompasses the
Ehrenfest regime. The results were reported in Ref. 29. The

main result for the time–dependent spread of the wave
packet may be formulated as

��l2�t�� = 2Dcl�t −
4

3
�
��t − 4tE�

�t − 4tE�3/2

tL
1/2 � , �5�

where ��t� is the standard Heaviside step function. The first
term describes the classical diffusion, which is the main sub-
ject of Sec. III B. The second term is the essential result of
the present work and will be derived in Sec. IV B 3. At in-
termediate times, tE� t� tL, Eq. �5� crosses over to the stan-
dard weak-localization correction.18 At shorter times, t� tE,
there is a delay in developing localization given by 4tE. A
few comments are in order: �i� the actual delay is not abso-
lutely sharp, as suggested by Eq. �5�. There are exponentially
small deviations from the straight line 2Dclt even for t
�4tE, the exact shape of which is calculated below. �ii�
Equation �5� describes quantum correction linear in k– that
appears to be delayed by 4tE. As first noticed by

Shepelansky,31 quadratic in k– corrections show up at even
earlier time. However, for at least the first three kicks, they
may be fully absorbed into a renormalization of the diffusion

constant31 ��Dcl	 k–2, essentially due to the change in the
scattering cross section�. It is thus an oversimplification to
claim the absence of quantum effects at t�4tE. �iii� Equation
�5� constitutes the one-loop weak-localization correction. Be-
low, we report also the results of the two-loop calculation. It
brings the next-order correction 	��t−2mtE��t
−2mtE�2 / tL ,m=3,4, which also “protects” the early time
evolution from the localization effects. It is still an open
problem to sum up the entire series to develop a theory of
strong localization that accounts for the Ehrenfest time phe-
nomena.

Most of the existing experiments on atomic gases3,32,33 do

not fall into the parametric regime �3�, but rather have k–

�1. In this case tE�1 and our result, Eq. �5�, can only be
viewed as a qualitative one. We discuss below other possible
realizations of the QKR that utilize driven Josephson
junctions.34,35 Such systems may prove to be more suitable
for exploring the parametric regime �3� and thus for a quan-
titative comparison with the theory.

The outline of the rest of this paper is as follows: Sec. II
is devoted to a qualitative semiclassical picture of the weak-
dynamical localizations and the Lyapunov regime. Sections
III–V serve to quantify these ideas. In Sec. III the diffusion
in the phase space of the kicked rotor is obtained as a clas-
sical approximation to the full quantum propagation. Section
IV is the central part of the present work. It formulates a
general framework to deal with the weak-dynamical localiza-
tion at the semiclassical level. In particular, we calculate the
frequency-dependent one-loop correction to the classical dif-
fusion coefficient, and study its effect on the momentum dis-
persion. This formalism is applied in Sec. V to a modified
QKR with broken time–reversal symmetry. The frequency-
dependent quantum corrections are calculated at the two-
loop level. Experimental realizations of some driven quan-
tum systems are discussed in Sec. VI. The effects of noise
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and dephasing are the subject of Sec. VII. We conclude in
Sec. VIII. Some technical details are delegated the Appen-
dixes.

II. QUALITATIVE CONSIDERATIONS

The physics of the weak-localization corrections is tradi-
tionally discussed in the language of classical trajectories.
The classical motion of a particle in the random potential is
characterized by a rapid randomization of momenta and dif-
fusion spreading of the coordinate. It is thus customary to
visualize a trajectory in the coordinate space as a random
motion between static impurities. It is straightforward to de-
velop a similar approach for the QKR. In the kicked rotor
problem the roles of coordinate and �angular� momentum are
interchanged. Indeed, for K�1 the angular coordinate � is
rapidly randomized �over the interval �−� ,���, while the an-
gular momentum l acquires a �quasi� random change
��−K ,K�. The latter results in the diffusion in the space of
angular momentum �see below�. We shall thus visualize a
“trajectory” as a sequence of values of the angular momen-
tum that kicked rotor “visits” upon successive kicks, Fig.
1�b�.

For a quantitative description of the classical motion, it is
convenient to monitor pairs of angle and angular momentum
in discrete moments of time. This maps the classical dynam-
ics onto a so-called standard map

ln+1 = ln + K sin �n,

�n+1 = �n + ln+1. �6�

Notice that ln stands for the angular momentum immediately
after the �n−1�-th kick, and �n for the angle before the nth
kick. It is now obvious that the two successive points of the
trajectory, ln and ln+1, differ by K sin �n. As a first approxi-
mation one may treat �n as uniformly distributed over
�0,2�� and thus ��ln+1− ln�2�=K2�sin2 ��=K2 /2. As a result,
��ln− l0�2�=2Dcln with Dcl=K2 /4. An account of the residual
correlations between successive �n’s, leads to a renormaliza-

tion of Dcl with the next term scaling as K3/2, etc.10,11 For
completeness of the presentation we shall derive the full re-
sult for the classical diffusion constant in Appendix A. For
the current qualitative discussion it is enough to appreciate
that a trajectory of the classical kicked rotor exhibits random
hops in the space of angular momentum, leading to

��l2�t�� 	 2Dclt . �7�

This result has a simple physical interpretation: the average
energy of the kicked rotor linearly increases with time, re-
flecting a constant rate Joel’s heating. It is exactly this prop-
erty of the classical kicked rotor that made it useful in accel-
erator physics.9,10

In the quantum problem an amplitude to evolve from an
initial to a finite point in the angular momentum space is
given by the sum of amplitudes of all classically allowed
trajectories passing through these two points. Generically,
different trajectories come with random and uncorrelated
phases and thus do not produce a systematic interference
contribution. An exception to this rule comes from the tra-

jectories having almost �up to k–� exactly the same geometri-
cal length and thus the same phase. This situation takes place
if a trajectory contains a self–intersection point in the angular
momentum space. Then, another trajectory may exist that is
identical to the initial one safe for the direction of propaga-
tion along the loop; see Fig. 1�b�. The fact that the backward
propagation along the loop is consistent with the equations of
motion is guaranteed by the time-reversal symmetry of the
Hamiltonian

l → l, � → − �, t → − t, H → H . �8�

�Compare it with the time-reversal symmetry in the random
potential problem: r→r ,p→−p , t→−t.� It is thus easy to
see that we are interested in the loops that not only have
�almost� coinciding initial and finite momenta: l1� l0, but
also �almost� opposite initial and finite angles: �1�−�0. The
allowed uncertainty is limited by the effective Planck con-

stant: �l1− l0���1+�0�� k–.
Since such two trajectories have �almost� the same phase,

they interfere constructively and thus lead to a systematic
�localization� quantum correction. The probability to com-
plete the loop in time t is called cooperon and denoted as
C�l0 ,�0 ; l1 ,�1 ; t�. With the above-mentioned conditions on
the initial and finite points, one may estimate it as C�t�
	
Dcl / t �this must be multiplied by k– to take into account
the phase area of the allowed uncertainty�. This estimate
translates �basically by the double integration over time� to

the −k–
Dclt
3/2 correction1,18 to the classical law: ��l2�t��

=2Dclt. At t	 tL=Dcl / k–2 the correction exceeds the classical
result and the QKR crosses over to the strong localization
regime.

The qualitative reasoning given above is identical to the
one employed in the discussion of a particle in the field of
the “quantum” white-noise random potential. However, the
kicked rotor dynamics possesses a very important distinction
from that of the white-noise potential problem. The latter is
the process without a memory. Indeed, two classical trajec-

FIG. 1. The first quantum correction to the density-density cor-
relator: �a� one–loop weak localization diagram; �b� trajectory in the
momentum space; �c� Hikami box along with Lyapunov portions of
the cooperon and diffusons.
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tories that identically retrace each other up to a certain point
may take completely different roots �in particular, counter-
propagating ones� after a single “quantum” scattering event.
After completing the loop in the opposite directions accord-
ing to the classical random walk dynamics, another single
quantum scattering makes the two trajectories identical
again. These two �actually four, since there are two trajecto-
ries involved� quantum scattering events constitute the so-
called, Hikami box,36 denoted by X in Fig. 1�a�.

Contrary to this scenario, the kicked rotor scattering
events are purely classical, namely the free rotation of the
angle. Indeed the trajectory is uniquely defined by the stan-
dard map, Eq. �6�, sequence. If two trajectories coincide ex-
actly at some point ��n , ln�, they continue to be identical
�determined by Eq. �6�� forever. This seemingly precludes
any possibility to develop the weak-localization scenario out-
lined above. The way out of this apparent paradox is to recall
that the loop may be completed not exactly, but rather up to

a small uncertainty: �l��� k–. This small initial difference is
magnified �more precisely, exponentially increases� upon
successive kicking �Lyapunov instability�, leading eventually
to the two counterpropagating diffusive roots. The situation
is rather similar to the localization in the field of the classical
large-scale random potential �so-called random Lorentz gas�.
The latter was considered by Aliener and Larkin some time
ago.27 Due to the complexity of the Lorentz gas dynamics,
they had to introduce quantum impurities �essentially a weak
white-noise component of the scattering potential� to treat
the problem analytically. The beauty of the QKR is in the
simplicity of its classical dynamics, Eq. �6�, that allows one
to treat the Lyapunov regime exactly without involving an
artificial quantum scattering.

To proceed in this direction, consider two trajectories that
initially happen to be at a small distance from each other in
the phase space: ��� ,�l�. Taking variation of Eq. �6�, we find
that the angle difference evolves as ��n=��n−1�1
+K cos �n−1�+�ln−1. In the limit K�1 it leads to ��n= ���
+�l /K� �k=0

n−1�1+K cos �k�����+�l /K�e
n, where 
 is the
Lyapunov exponent. For K�1 one finds 
= �ln�K cos ���
=ln�K /2�,9,10 with the residual term 	O�1/K�. For ���l

� k–, the optimal value of ���+�l /K� is 
k– /K. It thus takes

time n= tE=
−1 ln 
K / k–, cf. Eq. �2�, to evolve from the ini-

tial angular uncertainty ���
k– /K�1 up to ��n�1, when
the diffusive motion takes over. Once this deviation is
reached, the usual diffusive spread of the two trajectories
takes place. The time-reversal invariance dictates that the
aforementioned divergence of the two trajectories is pre-
ceded by their convergence. The latter takes another tE kicks
to be completed. The total duration of the one-way travel
through the Lyapunov region is thus 2tE. The entire weak-
localization loop construction requires two such travels �each
including convergence and divergence� through the
Lyapunov regime. As a result, the localization corrections are
delayed by �cannot be developed in time less than� 4tE; see
Eq. �5�.

Technically there are two equivalent ways to incorporate
the Lyapunov region into the weak-localization calculations;
see Fig. 1�c�. One approach, adopted in Ref. 27, is to rede-

fine the Hikami box to contain 4tE scattering events �kicks�
instead of the conventional four. Then, cooperon �and the
diffusons� is just a conventional diffusive propagator in the
momentum space. In the present paper we find it convenient
to follow the traditional treatment of the Hikami box as con-
sisting of the four kicks. These four kicks are treated exactly
by multiplying the corresponding quantum evolution opera-
tors. It is the analytical expression for the Hikami box that
dictates allowed deviations of the �l�� product. The
Lyapunov regimes are delegated to the “legs” of the coop-
eron �and diffusons�. The latter is now understood as a
propagator that includes both Lyapunov-type divergence-
convergence of the close trajectories along with the normal
diffusion once a macroscopic deviation between them is
reached. As we show below, the choice of the four kicks in
the Lyapunov regime, coined to be the Hikami box is imma-
terial. For any such choice the quantum correction, linear in

k–, is delayed by 4tE. It is important to mention that the time
interval 0� t�4tE is protected from the higher-order loop
corrections as well. To demonstrate this fact we performed
the two-loop weak-localization calculation, and found that
the corresponding contribution consists of two parts: ��l2�
	Dcl��t−2mtE��t−2mtE�2 / tL ,m=3,4, which are delayed by
6tE and 8tE, respectively.

The delay is not absolutely sharp, but rather is slightly
smeared by �tE�

2tE /
2� tE number of kicks. The reason
for this smearing is in fluctuations of the exponent 
. Such
fluctuations are due to the fact that one follows the Lyapunov
instability for a finite number of kicks only. �Indeed, unlike

classical problems, the minimal deviation is limited by k– and
thus the time to leave the Lyapunov regime is finite and may
fluctuate between the trajectories.� Following Ref. 27, we
characterize fluctuations of the Lyapunov exponent by the
other exponent, 
2 �for QKR with K�1 one finds 
2
�0.82�. In the case tE�1, cf. Eq. �3�, the effect of smearing
due to 
2 is rather small.

The predicted time-dependent momentum dispersion
graph is plotted in Fig. 2. The following sections serve to
quantify the qualitative semiclassical picture outlined above.

III. CLASSICAL LIMIT: DIFFUSON AND COOPERON

We proceed now to develop the qualitative considerations
outlined above into an accurate theory of the QKR. The es-

FIG. 2. The momentum dispersion for K=6.1 and k–=0.6 �4tE

=4.2�—full line; the classical limit �k–→0�—dashed line; standard
weak localization �tE=0�—dashed-dotted line; the limit 
2→0, Eq.
�5�—long-dashed line.
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sential starting point is the classical diffusion in the angular
momentum direction of the classical phase space: �−� ,
+��
 �−� , +��. We will clarify first how to find the classi-
cal diffusion from the exact quantum correlator. One starts
by introducing the exact one period quantum evolution op-
erator as

Û � V̂Ĵ ,

V̂ = exp�il̂2/2k–�, Ĵ = exp�iK cos �̂/k–� . �9�

All physical quantities may be expressed in terms of the

matrix elements of Ûn, where n stands for the number of
kicks �time�. We are particularly interested in the four-point
“density-density” correlator, defined as

D�l+,l−;l+�,l−� ;n,n�� � �l+�Ûneil̂2/2k–�l+���l−�Ûn�eil̂2/2k–�l−��*,

�10�

where �l±� denotes the basis of discrete momentum eigen-
states of K=0 quantum Hamiltonian. Note that the forward
and backward trajectories in this expression are, in general,
different. However, it is natural to expect, after some tran-
sient processes, the correlator will be dominated by the case
of n=n�. This is easy to see by Fourier transforming the
correlator with respect to n ,n�, passing to the frequency
��+ ,�−� representation

D�l+,l−;l+�,l−� ;�+,�−� = �
n,n�=0

ei��+n−�−n��D�l+,l−;l+�,l−� ;n,n��

�11�

and subsequent averaging over ��++�−� /2. Let us denote
such correlator thereby obtained as D�l+ , l− ; l+� , l−� ;��, where
�=�+−�−. From Eq. �10� one may check that it satisfies

D�l+,l−;l+�,l−� ;�� = e�i�l+
2−l−

2��/2k–�l+,l+�
�l−,l−�

+ ei� �
l+�,l−�

�l+�Û�l+��


�l−�Û�l−��*D�l+�,l−� ;l+�,l−� ;�� . �12�

The matrix elements �l+�Û�l+�� and �l−�Û�l−��* may be explic-
itly written as

�l+�Û�l+���l−�Û�l−��* =� � d�+

2�

d�−

2�
exp� il+

2

2k–
+

iK cos �+

k–

+
i�+

k–
�l+ − l+���exp�−

il−
2

2k–
−

iK cos �−

k–

−
i�−

k–
�l− − l−��� . �13�

For what follows, it is convenient to introduce the Wigner
transform representation as

D�l,�;l�,��;�� � �
l+−l−

�
l+�−l−�

exp
−
i

k–
��l+ − l−��

− �l+� − l−������D�l+,l−;l+�,l−� ;�� , �14�

where we define l��l++ l−� /2 and l���l+�+ l−�� /2.

A. Frobenius-Perron-Ruelle equation: Classical kicked rotor

Let us consider a solution of Eq. �12�. As we will see
below, the integral over �± in Eq. �13� is dominated by

��+−�−�	 k– /K�1. This then allows for a perturbative expan-
sion of ��+−�−� in the exponent of Eq. �13�. In this subsec-
tion we show that the leading term in such expansion leads to
the classical equation of motion �standard map�, Eq. �6� �so-
called “semiclassical approximation”�. The semiclassical so-
lution thereby obtained is denoted as D0. It should be em-
phasized that the classical diffusive propagator cannot be
recovered at this stage. To achieve this goal, the further ap-
proximation must be used, which will be clarified in Sec.
III B.

The semiclassical treatment employs the following ap-

proximation for �l+�Û�l+���l−�Û�l−��* matrix elements:

cos �+ − cos �− = − 2 sin
�+ − �−

2
sin

�+ + �−

2

� − ��+ − �−�sin
�+ + �−

2
�15�

in the limit ��+−�−��1. With this approximation, Eq. �13� is
simplified as

�l+�Û�l+���l−�Û�l−��* �� � d�+

2�

d�−

2�
exp� i�l+ + l−��l+ − l−�

2k–

−
iK

k–
sin

�+ + �−

2
��+ − �−��


 exp� i

k–
��+ − �−�
 l+ + l−

2
−

l+� + l−�

2
�

+
i

k–

�+ + �−

2
��l+ − l−� − �l+� − l−���� .

�16�

Let us insert it into Eq. �12� and perform the Wigner trans-
form. We also define ����++�−� /2 and �����+�+�−�� /2 to

simplify the notations. Then, with ��+−�−� / k–, �l+− l−� / k–,

�l+�− l−�� / k–, and �l+�− l−�� / k– integrated out, we obtain

D0�l,�;l�,��;�� = 2�k–��l − l����� − �� − l�

+ ei�P�D0�l,�;l�,��;�� , �17�

where P� is the Frobenius-Perron-Ruelle �FPR� operator, act-
ing on the nearest two arguments from the left according to
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P� f�l,�;l�,��� � � � dl1d�1��l − l1 − K sin �1���� − �1 − l�


 f�l1,�1;l�,��� , �18�

where f�l ,� ; l� ,��� is an arbitrary function. The kernel above
implies that the correlator thereby obtained describes the de-
terministic motion of classical kicked rotor, i.e., standard
mapping. Note that, in the time representation, D0 is normal-

ized, namely �2�k–�−1��dld�D0�l ,� ; l� ,�� ;n�=1.

B. Diffusion approximation

To recover the classical diffusion, the procedure of deriv-
ing the FPR equation must be appropriately
regularized.11,12,37 Indeed, in the presence of noises one is
able to do so and find the proper diffusion constant. We shall
not follow this procedure here, but rather refer the reader to
Refs. 11 and 12.

We shall show below, however, that a regularization is
consistent with the generalization of Altland’s18 diagram-
matic method. The latter starts from the exact quantum
density-density correlator, Eq. �10�, and leads to the classical
diffusion with the correct diffusion constant. The basic idea
is that the normal diffusion implies the existence of some
time scale, �c, and results from the evolution �determined by
the standard mapping� taking place at this time scale. In
other words, �c is the longest time the memory about initial
conditions of a generic classical trajectory is kept. For ex-
ample, in the case of �c=1 �see below�, only the one-step
process contributes to the diffusion constant, which in fact
occurs at the limit K→�. For smaller K, �c becomes longer
�for example, say �c=2; see Appendix A for a detailed dis-
cussion�. In such a case, the diffusion constant is contributed
by the one-step and two-step process. Technically, comple-
menting the semiclassical approximation: ��n+

−�n−
��1,n

=1,2 , . . ., it is further required that l+= l−� l and l+�= l−�� l� at
two ends, as well as l+�= l−�� l� for the intermediate variables
at multiple times of �c.

For �c=1 the angular memory is lost after every kick �cf.
the first diagram on the right-hand side of Fig. 3�b��. In this
approximation Eq. �12� is reduced to

D0�l,l�;�� = �l,l� + ei��
l�

�l�Û�l���l�Û�l��*D0�l�,l�;�� ,

�19�

where the matrix element �l�Û�l���l�Û�l��* is explicitly writ-
ten as

�l�Û�l���l�Û�l��* = �l�Ĵ�l���l�Ĵ�l��*

=� � d�+

2�

d�−

2�
exp� iK

k–
�cos �+ − cos �−��


 exp� i��+ − �−��l − l��

k–
�

=� � d�+

2�

d�−

2�
exp�−

2iK

k–


sin
�+ + �−

2
sin

�+ − �−

2 �

 exp� i��+ − �−��l − l��

k–
� . �20�

From this we see �as mentioned above� that the integral is

dominated by ��+−�−�	 k– /K. Making the change of vari-

ables: ��+ ,�−�→ ���++�−� /2 ,�+−�−� k–�� and integrating
out ��++�−� /2, we simplify Eq. �20� as18

�l�Û�l���l�Û�l��* �� d�

2�
J0� 2K

k–
sin

k–�

2 �ei��l−l��. �21�

Here, Jn�x� is the Bessel function of order n. Turning to the

Fourier representation: D0�� ;����l−l�e
−i��l−l��D0�l− l� ;��,

Eq. �19� gives the classical propagator as

D0��;�� =
1

1 − ei�J0� 2K

k–
sin

k–�

2 �
. �22�

In the limit ��1,K��1, it is reduced to the usual diffuson
�Fig. 3�

D0��;�� �
1

− i� + Dcl�
2 , �23�

with the diffusion constant Dcl�K�=K2 /4.
In Ref. 11, it was shown that the higher-order correlations,

namely �c�1 �e.g., the second, third, etc. diagrams on the
right-hand side of Fig. 3�b�� lead to the modification of the
diffusion constant according to

Dcl�K� =
K2

4
�1 − 2J2�K� − 2J1

2�K� + 2J2
2�K� + ¯ � . �24�

It is worth pointing out that, although the original derivation
is based on pure classical considerations, it is fully compat-
ible with the general formalism developed in this paper. For
clarification, we reproduce Eq. �24� from the exact quantum

FIG. 3. Schematic representation for the diffusion approxima-
tion of classical density-density correlator—the solution of
Frobenius-Perron-Ruelle equation �a�, with the self-energy �b�. The
structure of the self-energy is such that the beginning and ending
�after �c kicks� pairs of the angular momenta are the same �denoted
by vertical dot-dashed line�, while the other pairs are not.
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density-density correlator, Eq. �12�, in Appendix A. We em-
phasize that throughout the paper all the higher-order terms
in Eq. �24� may be reproduced wherever the classical con-
stant Dcl is involved. However, for sufficiently large K,
which is of interest in the present work, these corrections are
unimportant and thereby neglected.

In the long time limit, the validity of a diffusion descrip-
tion for the classical dynamics is affected by two factors,
namely values of K and initial data in the phase space. It is
believed that in general, for sufficiently large K there exist
stable islands in the phase space, starting from which a tra-
jectory exhibits quasiperiodic motion.9,10 It has been esti-
mated, however, that the total area of these islands on the
phase space is exponentially small in the limit K�1.9,23 Our
approximation, being an expansion in powers of 1 /K, is
bound to lose information about these islands. It is also
known �see, e.g., Ref. 12� that even a trajectory starting from
the chaotic region may stick to these islands beyond some
classical time scale. However, for most values of K��1� this
time scale is extremely large and thereby opens a large re-
gion where classical normal diffusion takes place. On the
other hand, for some parametric regions of K, there appear
some peculiar islands �so-called “accelerator mode”9,10�,
starting from or near which a trajectory will be boosted,
faster than the normal diffusion.38 �Similar phenomena exist
also in a generic model.10,32� To conclude, throughout the
paper we will focus on sufficiently large K and stay away
from those parametric regions exhibiting the accelerator
modes. It thereby becomes a reasonable assumption that the
sticking time is much longer than any other time scales that
are relevant for the present work.

C. Classical cooperon

Starting from the exact quantum density-density cor-
relator, one may see that the classical diffuson is defined
diagrammatically as the sum over all diagrams such as ��1+
−�1−�	��2+−�2−�¯ 	��n+−�n−��1. In this part, we turn to
the discussion of another family of diagrams defining the
cooperon. To this end we focus on the sum over all the dia-
grams such as ��1++�n−�	��2++��n−1�−�¯ 	��n++�1−��1
�cf. Fig. 4 for notations�. Notice that the cooperon essentially

is a classical object since it becomes identical to the diffuson
under the TRS operation: �k+→�k+� =�k+ and �k−→�k−� =
−��n+1−k�−.

1. Diffusion approximation of the solution of FPR equation

To find the density-density correlator in this limit, let us
turn to the Wigner representation �notice the crucial differ-
ence from Eq. �14��

C�l,�;l�,��;�� � �
l+−l−�

�
l+�−l−

exp
−
i

k–
��l+ − l−��� − �l+� − l−�����


 C�l+,l−;l+�,l−� ;�� , �25�

where we define l��l++ l−�� /2 and l���l+�+ l−� /2. The key
observation is that the diffuson diagram may be retrieved
with the bottom �advanced Green function� line �Fig. 4�a��
rotated. This is due to the fact that such a procedure simply
leads to the time reversal of the series: �1−→�2−→¯

→�n− such that it becomes −�n−→−�n−1−→¯→−�1−. For
this reason, we call it cooperon, as introduced in Sec. II.
Since ��1++�n−��1, we may proceed along the lines of deri-
vation of Eq. �17� from Eqs. �12� and �14�, and arrive at

C0�l,�;l�,��;�� = 2�k–��l − l����� − �� − l�

+ ei�P�C0�l,�;l�,��;�� . �26�

That is, the classical cooperon is also a solution of the FPR
equation.

The only difference with the diffuson is that, instead of

having poles at k–���+−�−, the Cooperon has poles at k–�

��++�− �i.e., k–���1++�n−=�2++��n−1�−= ¯ =�n++�1−�.
One concludes, thus, that the diffusive form, Eq. �23�, holds
in the limit ��1,K��1 �cf. Fig. 4� for the cooperon as
well. In particular, in the case of ��+���	1, the averaging
over ��+��� /2 may be performed. Furthermore, if �l− l��
�K, then C0 does not depend on the angular momenta. In
other words

C0�l,�;l�,− ��;�� = �C0�l,�;l�,− ��;�����+���/2

=� d�

2�

k–

− i� + Dcl�
2 � �C0���� ,

�27�

where �l− l���K, and ��−���	1.

2. Treatment of the Lyapunov instability regime

The above general solution for the classical cooperon,
C0�l ,� ; l� ,−�� ;n�, characterizes the probability for a trajec-
tory, initiating from �l ,��, to end at �l� ,−���. From now on
we focus on a special case, where �l0� l− l� ;��0��−�� are
small such that ��l0��K , ���0��1. In this part we show that
it differs from �C0���� by a renormalization factor.

Without loss of generality, we assume that C0�l ,� ; l� ,
−�� ;n� evolves from some initial distribution f�l ,� ; l� ,−���,
bearing the symmetry of f�l ,� ; l� ,−���= f�l� ,�� ; l ,−��. Then,

FIG. 4. The diffusive cooperon approximation for the classical
density-density correlator. Typical diagrammatic representation for
the classical cooperon ���1++�n−� , ��2++��n−1�−� , . . . �1� �a�. Rotat-
ing the bottom line of �a� retrieves classical diffuson with �k− re-
placed by −�k− �k=1,2 , . . . ,n� �b�.
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the formal solution of the FPR equation is given by

C0�l,�;l�,− ��;n� = P� nf�l,�;l�,− ��� . �28�

To simplify the notations, we rewrite the action of the
FPR operator on C0 as

P�C0�l,�;l�,��� = C0�S−1�l,��;l�,��� , �29�

where S and S−1 are defined as

S�l,�� � „l + K sin�� + l�,� + l… ,

S−1�l,�� � „l − K sin�� − l�,� − l… , �30�

respectively. Moreover, we introduce the time reversal of the

FPR operator, P� T, as

f�l,�;l�,���P� T �� � dl1d�1f�l,�;l1,�1���l1 − l�

− K sin �1����1 − �� − l� . �31�

Owing to the symmetry of f , mentioned above, one may
introduce the following identity:

P� f�l,�;l�,��� = f�l,�;l�,���P� T; �32�

its proof is given in Appendix B. Applying this relation re-
peatedly to the formal solution, Eq. �28�, we obtain

C0�l,�;l�,− ��;n� = P� n−2n��P� n�f�l,�;l�,− ���P� T
n��

= P� n−2n�f�S−n��l,��;Sn��l�,− ���� ,

�33�

for an arbitrary integer number n� such that 2n��n. Con-
sider two nearby trajectories described by �l1 ,�1� and �l1� ,�1��,
respectively. Their motion is induced by S−n�l ,�� and
Sn�l� ,−���, following

�l1,�1� � S−n�l,�� ,

�l1�,− �1�� � Sn�l�,− ��� . �34�

Associated with the exponential separation of these two
nearby trajectories, the time, say nc, is defined such that

�lnc
− lnc

� � � K, ��nc
− �nc

� � � 1. �35�

At such a moment the separation reaches some macroscopic
size. After this time the separation experiences the usual dif-
fusion in the angular momentum space, while the angle dif-
ference is uniformly distributed. We substitute then n�=nc
into Eq. �33�, and arrive at

C0�l,�;l�,− ��;n� = ��n − 2nc��C0�n − 2nc�� , �36�

where �C0�n�� is the Fourier transform of �C0����. Conse-
quently, the Fourier transform of Eq. �33� with respect to n is
reduced to

C0�l,�;l�,− ��;�� = e2i�nc� d�

2�

k–

− i� + Dcl�
2 . �37�

In general, nc is determined by the initial condition,
namely the center of mass: ��l+ l�� /2 , ��+��� /2� and the ini-
tial deviation: ��l ,���. One can perform the change of vari-
ables with respect to general separation ��l ,��� according to
z� ln����, ���l /��. In what follows, z and � are identified
as slow and fast variables, correspondingly. If the initial de-
viation is small enough such that the typical nc�1, the fluc-
tuations of nc at this time scale are small. As a result, after
averaging over initial �, as well as the center of mass, one
may cast exp�2i�nc� into the renormalization factor �with the
logarithmic accuracy� as �see Appendix C for details�

WC�2�� � �exp�2i�nc�� = exp
2i�tC −
2�2
2tC


2 � ,

�38�

with

tC �
1



�ln

1

��2 + �l2/K2� , �39�

in the limit �
2 /
2�1. Consequently, Eq. �37� is reduced to

C0�l,�;l�,− ��;�� = k–WC�2�� � d�

2�

1

− i� + Dcl�
2 . �40�

IV. WEAK-DYNAMICAL LOCALIZATION IN KICKED
ROTOR: ONE-LOOP CORRECTION

As explained above, the weak-dynamical localization in-
volves couplings between the diffusons and the cooperon
�Fig. 5�. Therefore, one needs a technique to treat two differ-
ent kinds of the Wigner transforms introduced for diffusons,
Eq. �14�, and for cooperons, Eq. �25�, in a unified way. To
develop such a technique is the central task of this section.
We show then that the constructive interference between two
counterpropagating trajectories leads to the usual one-loop
quantum correction, which is a precursor of the dynamical
localization. In particular, the one-loop correction to the dif-
fusion constant will be calculated.

A. Exact interaction vertex

We will show in Appendix D 1 that the one-loop correc-
tion to the density-density correlator reads as

�D̂ = D̂�ei�P̂T − 1�Ĉ�ei�P̂ − 1�D̂ , �41�

with

FIG. 5. Sketch of a general diagram, leading to one-loop
approximation.

TIAN, KAMENEV, AND LARKIN PHYSICAL REVIEW B 72, 045108 �2005�

045108-8



Ĉ � ei�P̂JĈ0ei�P̂J, �42�

in the exact quantum operator representation. Here, P̂
� P̂VP̂J and P̂T� P̂JP̂V. The matrix elements of P̂V and P̂J
are explicitly written as

�l+,l−�P̂V�l+�,l−�� = exp� i�l+
2 − l−

2�

2k–
��l+,l+�

�l−,l−�
,

��+,�−�P̂J��+�,�−�� = exp� iK�cos �+ − cos �−�

k–
�


���+ − �+�����− − �−�� , �43�

in the representation of the angular momentum and the
angle, correspondingly. Since we are ultimately interested in
the long time effects and therefore in the low frequencies, the
ei� factors in Eqs. �41� and �42� may be safely omitted from
now on. Thus, we shall not write them hereafter.

1. Minimal wave packet

In order to calculate �D̂ explicitly, we consider a general

quantity, say Îq�ÂĈB̂ �understanding that Â=D̂�P̂T−1�,
B̂= �P̂−1�D̂ for �D̂�, and write it explicitly as �for simplicity
we omit the � argument�

Iq�l+,l−;l+�,l−�� = �
l1,l1�

�
l2,l2�

�
l3,l3�

�
l4,l4�


 A�l+,l−;l1,l1��XC0


�l2,l3;l2�,l3��B�l4,l4�;l+�,l−�� , �44�

in the angular momentum representation, where X is

X = �l1�ei�K/k–�cos �̂�l2��l1��e
i�K/k–�cos �̂�l2��

* 
 �l3�ei�K/k–�cos �̂�l4�


�l3��e
i�K/k–�cos �̂�l4��

*. �45�

Furthermore, we write explicitly the matrix elements of X,
Eq. �45�, as

X =� � � � d�1

2�

d�1�

2�

d�2

2�

d�2�

2�
exp� i

k–
�Skin + Sp�� ,

�46�

where Skin and Sp are defined as

Skin = − �1�l1 − l2� + �1��l1� − l2�� − �2�l3 − l4� + �2��l3� − l4�� ,

�47�

and

Sp = K�cos �1 − cos �1� + cos �2 − cos �2�� , �48�

respectively. For the discussions below, we make the follow-
ing change of variables:

� = ��1 − �1�� − ��2 − �2�� ,

�l1 =
l2 + l3�

2
−

l3 + l2�

2
, ��1 =

�1 + �1�

2
+

�2 + �2�

2
,

�l2 =
l1 + l1�

2
−

l4 + l4�

2
,

��2 = −
1

2
���1 − �1�� + ��2 − �2��� . �49�

Then, Skin may be rewritten as

Skin =
�

2
�
 l2 + l3�

2
+

l3 + l2�

2
� − 
 l1 + l1�

2
+

l4 + l4�

2
�� + ��1�l1

+ ��2�l2 −
1

2

�1 + �1�

2
−

�2 + �2�

2
����l1 − l1�� + �l4 − l4���

− ��l2 − l3�� + �l3 − l2���� −
��1

2
��l1 − l1�� − �l4 − l4���

−
��2

2
��l2 − l3�� − �l3 − l2��� . �50�

On the other hand, with the semiclassical approximation
�i.e., �1,2��1,2� � taken into account, Sp may be written as

Sp � − 2K��2 sin
��1

2
�cos�1

2

�1 + �1�

2
−

�2 + �2�

2
��

− K� cos�1

2

�1 + �1�

2
−

�2 + �2�

2
�� . �51�

For sufficiently large K, we may average the exponent over
the phase ���1+�1��− ��2+�2��� /4. Moreover, ��1,2�0. Fi-
nally, we employ the conventional hydrodynamic approxi-
mation, i.e., take into account the leading term in the K�
expansion only, to arrive at

exp
 iSp

k–
� →�exp
 iSp

k–
��

��exp�−
iK��1��2

k–


cos�1

2

�1 + �1�

2
−

�2 + �2�

2
����

= J0
K��1��2

k–
� . �52�

Let us insert Eqs. �46�, �50�, and �52�, as well as the
Wigner transform of A, B �cf. Eq. �14��, and C0 �cf. Eq. �25��
into Eq. �44�, and integrate out �l1− l1�� / k–, �l4− l4�� / k–, �l2

− l3�� / k–, �l3− l2�� / k–, �l+− l−� / k–, �l+�− l−�� / k–, and � / k–. As a result,
we find that the semiclassical approximation for Iq is
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Iq�l,�;l�,��� = V̂�AW
l,�;l� +
�l2

2
,�� +

��1

2
�


BW
l� −
�l2

2
,− �� +

��1

2
;l�,���� ,

�53�

where the vertex operator V̂ is an integral operator:

V̂f�l ,� ; l� ,�� ; l� ,�� ;�l2 ,��1�→ �V̂f��l ,� ; l� ,��� �note that the
variables: l�, ��, �l2, and ��1 in the function f are integrated
out�, and is defined as

�V̂f��l,�;l�,���

� � dl�d��

2�k–
� d�l1d��1

2�k–
� d�l2d��2

2�k–
X��l1,��1;�l2,��2�


C0
l� +
�l1

2
,�� −

��2

2
;l� −

�l1

2
,− �� −

��2

2
�


f�l,�;l�,��;l�,��;�l2,��1� , �54�

with

X��l1,��1;�l2,��2� = J0
K��1��2

k–
�


exp� i

k–
��l1��1 + �l2��2�� .

�55�

In Eq. �53� we introduced the following notations:

l� �
1

2

 l2 + l3�

2
+

l3 + l2�

2
�;

�� �
1

2

�1 + �1�

2
−

�2 + �2�

2
� , �56�

while the subscript W stands for Wigner transformation.
The phase difference of the two counterpropagating paths

underlying the cooperon gives rise to the interference factor
appearing in Eq. �55�. Technically, it results from the differ-
ent definitions of Wigner transform for the diffuson and the
cooperon �see Eqs. �14� and �25��. The minimal quantum

wave packet possesses the uncertainty �l1��1	 k– and

�l2��2	 k–, as indicated in Eq. �55�. Moreover, ��1��2

	 k– /K. Such quantum wave packet determines the initial
scale of the deviation of two nearby trajectories involved in
the cooperon �cf. Eq. �39��.

2. Interaction vertex at the semiclassical level

Applying the general expression Eq. �53� to Eq. �41�, we
find

�D�l,�;l�,��� = V̂�D0
l,�;l� +
�l2

2
,�� +

��1

2
��P� T − 1�


�P� − 1�D0
l� −
�l2

2
,− �� +

��1

2
;l�,���� .

�57�

Remarkably, this exact vertex �D is obtained without intro-
ducing any explicit regularization. In the next subsection we
will show that it leads to the weak-localization correction to
diffusion constant, which is similar to earlier findings for
ballistic quantum dots.27 In Appendix E we show that it is
possible to introduce some artificial quantum disorder to
QKR and the results obtained in the present work may be
reproduced following the formalism of Ref. 27.

B. Weak-localization correction to diffusion constant

In this part, we show that the exact one-loop quantum
correction, Eq. �57�, may be cast into the conventional
Hikami box structure with an additional factor due to the
Lyapunov region. As a result, the one-loop correction affects
the diffusion equation through a frequency-dependent renor-
malization of the diffusion coefficient: D���=Dcl+�D���.
That is

�− i� − D����l
2�D0 = k–��l − l�� . �58�

We calculate then the quantum correction �D��� and find
how it affects the angular momentum dispersion.

1. Effects of the Lyapunov instability on the interaction vertex

Since our aim is to describe the long-time phenomena, we
expect that the typical scale of the angular momentum dis-
persion, say LH, is large: LH�K. Indeed, the angular mo-
mentum is randomly spread in the interval ��−K ,K� in a
single kick. It is thus natural to expect much broader distri-
bution after many kicks. This consideration justifies the ex-
pansion with respect to K�l �hydrodynamic approximation�.
With such approximation, the exact vertex can be cast into
the Hikami box.

With the help of the identity P�D0=D0P� T, which is proven
in Appendix B, Eq. �57� may be rewritten as

�D�l,�;l�,��� = V̂���P� − 1�D0
l,�;l� +
�l2

2
,�� +

��1

2
��


�D0
l� −
�l2

2
,− �� +

��1

2
;l�,���


�P� T − 1��� . �59�

Since XC0 has no dependence on �l� ,���, Eq. �59� contains

I =� dl�d��

2�k–
D0
l,�;l� +

�l2

2
,�� +

��1

2
�


D0
l� −
�l2

2
,− �� +

��1

2
;l�,��� . �60�

To proceed further, we employ the following relation:
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D0�l,�;l�,��� = D0�l�,− ��;l,− �� , �61�

which reflects the time reversibility; its derivation is given in
Appendix B. The remaining procedure is fully analogous to
calculation of the cooperon developed in Sec. III C. The only
difference is in the boundary conditions. In fact, the angular
deviation of two traveling nearby trajectories, ��, reaches a
classical size ������1 at some point in the phase space, say
�lnc

,�nc
�. The later evolutions are independent. That is, the

two diffusons become self-averaging over the �random�
paths connecting two remote ends, resulting in the factoriza-
tion of the two averaged diffusons as

�D0
l� +
�l2

2
,− �� −

��1

2
;l,− ��


D0
l� −
�l2

2
,− �� +

��1

2
;l�,����

→ �D0
l1 +
�l�

2
,− �1 −

���

2
;l,− ���


�D0
l1 −
�l�

2
,− �1 +

���

2
;l�,���� . �62�

Taking this boundary condition into account, we obtain

I = WD�2�� � dl1d�1

2�k–
�D0
l,�;l1 +

�l�

2
,�1 +

���

2
��


 �D0
l1 −
�l�

2
,− �1 +

���

2
;l�,���� . �63�

Note that the two intermediate angular momenta deviate as
�l� /2. Such deviation is unimportant because the distribution
with respect to the angular momentum fluctuates over the
large scale LH�K��l� /2. In Eq. �63� WD��� is the same as
WC���, except that tC is replaced by �with the logarithmic
accuracy�

tD =
1



�ln

1

��2 + �l2/K2� , �64�

where �� is the initial angular separation of two nearby tra-
jectories involved in the diffuson side of the Lyapunov re-
gion. It is determined by the minimal quantum wave packet,
i.e., by X �see Eq. �55��. We then substitute Eqs. �54� and
�63� into Eq. �59�, and restore the operator under the average.
As a result, we obtain

�D�l,�;l�,��� = V� dl1d�1

2�k–
��D0
l,�;l1 +

�l�

2
,�1 +

���

2
�


�P� T − 1����P� − 1�D0
l1 −
�l�

2
,− �1

+
���

2
;l�,����� , �65�

where

V �� d�l1d��1

2�k–
� d�l2d��2

2�k–
WD�2��X��l1,��1;�l2,��2�


 C0
l� +
�l1

2
,�� −

��2

2
;l� −

�l1

2
,− �� −

��2

2
� . �66�

Here, V may be regarded as the renormalized interaction
strength. To further calculate it, we substitute Eq. �40� into
Eq. �66�. As a result, V is found to be

V = ���� � d�

2�

k–

− i� + Dcl�
2 , �67�

where

���� � � d�l1d��1

2�k–
� d�l2d��2

2�k–
WC�2��WD�2��X

=� d�l1d��1

2�k–
� d�l2d��2

2�k–


 J0
K��1��2

k–
�exp� i

k–
��l1��1 + �l2��2��


 exp�
2i� −
2�2
2


2 ��z1 + z2�� , �68�

with

z1 = ln 
��1
2 + �l2

2/K2, z2 = ln 
��2
2 + �l1

2/K2. �69�

Rescaling ��1,2 and �l1,2 as

��1,2 → ��1,2/
k–/K, �l1,2 → �l1,2/
k–K �70�

leads to

���� = exp
4i�tE −
4�2
2tE


2 �F��� , �71�

where F��� is

F��� =� dl1d�1

2�
� dl2d�2

2�
J0��1�2�exp�i�l1�1 + l2�2��


 exp�
2i� −
2�2
2


2 ��z̃1 + z̃2�� ,

z̃1 = ln 
�1
2 + l2

2, z̃2 = ln 
�2
2 + l1

2. �72�

Here, tE= �tC+ tD� /2, which is Eq. �2�. Since z̃1,2	1, in the
limit �, �
2 /
2�1, the last exponent in Eq. �72� may be
considered to be 1. As a result, F���=1. Thus, we obtain

���� = exp
4i�tE −
4�2
2tE


2 � . �73�

We point out that the position of the minimal wave
packet–Hikami box cannot be exactly located within the
Lyapunov region. Indeed, this is reflected in the fact that the
total duration within the Lyapunov region, i.e., 4tE, actually
does not depend on the exact boundary between cooperon
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and diffuson. Such feature originates from the chaotic nature
of the classical motion in the phase space. At each full travel,
the initial deviation, �l1,2 ���1,2� with respect to the reference
trajectory expands in the backward �forward� time direction.
Eventually �l1��1 ��l2��2� reaches some classical action K
�the typical scale of the classical action�. Therefore, the total
duration is

4tE =
1



ln

K

�l1��1
+

1



ln

K

�l2��2
. �74�

Taking into account the uncertainty relation �l1��1��l2��2

� k–, we find the total duration to be 4tE=4
−1 ln
K / k–.

2. Frequency-dependent diffusion coefficient

The renormalized interaction vertex, Eq. �65�, may be fur-
ther cast into the conventional �diffusive� Hikami box upon
further simplifications. As discussed above, the hydrody-
namic expansion may be performed because K /LH�1. This
allows the further simplification of Eq. �65�. One finds to the
first order in the hydrodynamic expansion

�P�D0
l1 −
�l�

2
,− �1 +

���

2
;l�,���� = �D0
l1 −

�l�

2
+ K sin��1 −

���

2
+ l1 −

�l�

2
�,− ��1 −

���

2
+ l1 −

�l�

2
� ;l�,����

� ��1 + K sin
�1 −
���

2
+ l1 −

�l�

2
��l1�D0
l1 −

�l�

2
,− ��1 −

���

2
+ l1 −

�l�

2
� ;l�,����

� �1 + K sin
�1 −
���

2
+ l1 −

�l�

2
��l1��D0
l1 −

�l�

2
,− ��1 −

���

2
+ l1 −

�l�

2
� ;l�,���� .

�75�

The last line results from the fact that �D0� has weaker de-
pendence on the angle compared to the sinusoidal term for
sufficiently large K. Similarly

�D0
l,�;l1 +
�l�

2
,�1 +

���

2
�P� T�

� �1 + K sin
�1 +
���

2
+ l1 +

�l�

2
��l1�


�D0
l,�;l1 +
�l�

2
,�1 +

���

2
+ l1 −

�l�

2
�� . �76�

On the other hand, by shifting the overall angle factor

� dl1d�1

2�k–
�D0
l1 −

�l�

2
,− ��1 −

���

2
+ l1 −

�l�

2
� ;l�,����


�D0
l,�;l1 +
�l�

2
,�1 +

���

2
+ l1 −

�l�

2
��

=� dl1d�1

2�k–
�D0
l1 +

�l�

2
,− �1 +

���

2
;l�,����


�D0
l,�;l1 +
�l�

2
,�1 +

���

2
�� . �77�

This arises from the uniform distribution with respect to the
common angle in the product of the two averaged diffusons.

We then substitute these two expansions, Eqs. �75� and
�76�, as well as Eq. �77�, into Eq. �65�. For sufficiently large

K, the sinusoidal term is quasirandom and may be averaged
over the angular region �0,2��. As a result, the linear term in
the hydrodynamic expansion does not survive upon this av-
eraging, and the second-order term must be kept. Finally, we
obtain

�D�l,�;l�,���

= V� dl1d�1

2�k–
K2�sin
�1 −

���

2
�


sin
�1 +
���

2
���l1�

�l1�


���D0
l,�;l1� +
�l�

2
,�1 +

���

2
��


�D0
l1� −
�l�

2
,− �1 +

���

2
;l�,������

l1�=l1�=l1

.

�78�

Since ����1	�1

K2�sin
�1 −
���

2
�sin
�1 +

���

2
�� � K2�sin2 �1� = 2Dcl.

�79�

On the other hand, the diffuson is smooth over the scale 	K;
hence, we may also drop out �l� /2 in Eq. �78�. Finally �D is
cast into
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�D�l,�;l�,��� = 2V� dl1d�1

2�k–
Dcl�l1�

�l1�
���D0�l,�;l1�,�1��


�D0�l1�,− �1;l�,������l1�=l1�=l1
. �80�

In the calculation of the Hikami box given above, we set
�c=1. As a result, the diffusion coefficient appearing in Eq.
�80� is Dcl=K2 /4. However, we emphasize that if more kicks

are reserved for the Hikami box, i.e., P̂n, n�1, then the
diffusion coefficient will acquire the same higher-order cor-
rections as described by Eq. �24�. Therefore, the assumption
�c=1 does not restrict generality of the result.

With the angle averaged out, diffusion is retrieved. As a
result, the one-loop correction, Eq. �80�, is simplified as

�D0�l,l�� = k–−1� dl1VDcl��l1�
2 + �l1�

2 �


 ��D0�l,l1��D0�l1�,l����l1�=l1�=l1
. �81�

Denote the Fourier transform of D0�l , l��, with respect to l
− l� as D0�� ;��. Substituting Eq. �67� into Eq. �81�, we find
the Fourier transform one-loop correction

�D0��;�� =
k–����Dcl�

2

�− i� + Dcl�
2�2 � d�

�

1

− i� + Dcl�
2 , �82�

which leads to the one-loop quantum correction to the diffu-
sion coefficient as

�D��� = −
k–Dcl

�
���� � d�

− i� + Dcl�
2 . �83�

3. Dispersion function

One may express the time evolution of the angular mo-
mentum dispersion as ��l2�t�����l�t�− l�0��2� in terms of the
frequency-dependent diffusion coefficient. In fact, by aver-
aging over the angle, we may write ��l2�t�� as

��l2�t�� = �
l

�l − l��2�D0�l,l�;t� − D0�l,l�;0��

= −
�2

��2 ��D0��;t� − D0��;0����→0. �84�

Substituting Eq. �58� into it, we obtain

��l2�t�� = �
−�

� d�

�

1 − e−i�t

�2 D��� . �85�

For sufficiently large K, one may ignore the fluctuation of


, i.e., set 
2=0. Consequently, in the leading order in k– the
momentum dispersion is found to be

��l2�t�� = 2Dclt −
8k–
Dcl

3
�
��t − 4tE��t − 4tE�3/2, �86�

where ��t� is the step function �long-dashed line in Fig. 2�.
The singularity at t=4tE is rounded by the Ehrenfest time
fluctuations arising from finite 
2 �full line in Fig. 2�. Sub-

stituting Eqs. �73� and �83� into Eq. �85�, we arrive at

��l2�t�� − 2Dclt = −
4k–
Dcl

3�
��tE�3/2�

−�

�

d��
 t − 4tE

�tE
− ��



 t − 4tE

�tE
− ��3/2

e−�2/16, �87�

where �tE=

2tE /
2. As a result

��l2�t�� = 2Dclt −

�
5

4
�k–

3�/64

Dcl��tE�3/2f
4tE − t

�tE
� , �88�

where f�0�=1 and

f�x� =�
8
2�
7

2
�

�
5

4
� x−5/2e−x2/16 for x � 1.

1

8�
5

4
� �− x�3/2

for − x � 1.� �89�

This result completes the calculations of the one-loop weak-
localization correction.

V. WEAK-DYNAMICAL LOCALIZATION OF QKR
WITH BROKEN TIME-REVERSAL SYMMETRY

To exploit further similarities and differences of the dy-
namical localization of the QKR and the Anderson localiza-
tion, we discuss here effects of breaking the time-reversal
symmetry �TRS�. In the case of Anderson localization in a
random potential the TRS may be broken, for example, by a
static magnetic field. The latter provides different phases for
clockwise and anticlockwise propagating trajectories, thus
destroying the systematic interference correction discussed
in Sec. II. It does not, though, ruin, the Anderson localization
completely. Indeed, higher-order corrections �the minimum
possible is the two-loop one� may be interpreted as interfer-
ence of trajectories traveling the loops in the same direction
only �diffuson-only diagrams with no cooperons�. The static
magnetic field does not affect such diagrams. As a result, the
Anderson localization exists even in this case, albeit with
somewhat larger localization length.

It has thus long been of interest to show that an analogous
phenomenon exists for the QKR as well.23,34,39–41 Our addi-
tional motivation comes from consideration of the Lyapunov
regime and its sensitivity to the TRS breaking. In particular,
the one-loop �TRS-invariant� correction was found to be de-
layed by 4tE. Does this time interval remain to be protected
against perturbative corrections in higher loop processes? Is
the delay time still the same? These questions are of particu-
lar interest if and when the leading one–loop correction is
destroyed by TRS breaking.

To answer these questions, we investigate the model, de-
scribed by the following Hamiltonian:
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Ĥ =
l̂2

2
+ K�

n

�cos �̂��t − 2n� + cos��̂ + ����t − �2n + 1��� .

�90�

Here, the time-reversal symmetry is broken for generic �
except for �=0, �. First, we analyze suppression of the
cooperon �and thus the one–loop diagram� arising from �.
We then calculate the two-loop correction. In contrast to the
one-loop correction, the two-loop one is robust against �
because it contains �among others� diagrams without the
cooperons. If the TRS is broken, the long–time correction is
given by the two-loop diagrams depicted in Fig. 6 and Fig.
7,42–44 which involve the 6-leg and 4-leg Hikami box, re-
spectively. They differ from Fig. 1 in that the two interfering
paths propagate together in the same direction, except inside
the Hikami box, where they switch from one to the other.
Due to such geometry, the two-loop correction is not sensi-
tive to �. It requires several successive traveling �three for
Fig. 6, while four for Fig. 7� through the Lyapunov region
�each taken 2tE time�. We show thus that the weak localiza-
tion corrections, given by this diagram, are delayed by 6tE
and 8tE,44 respectively.

A. Suppression of one-loop correction

In the modified KR model, Eq. �90�, the period is doubled
and includes two kicks. The effective kicking operator ap-

pearing in the one-step evolution operator Û �cf. Eq. �13�� is
replaced by

P̂J� � exp�i
K

k–
cos �̂�exp� il̂2

2k–
�exp�i

K

k–
cos��̂ + ��� .

�91�

In the angular momentum representation, the matrix ele-
ments read as

�l+�P̂J��l+�� = �
l1

� d�+

2�
� d�1

2�
e−�i/k–��+�l+−l1�ei�K/k–�cos �+


 eil1
2/2k–e−�i/k–��1�l1−l+��e�iK/k–�cos��1+��, �92�

while its complex conjugation is

�l−�P̂J��l−��* = �
l1�
� d�−

2�
� d�1�

2�
e�i/k–��−�l−−l1��e−i�K/k–�cos �−


 e−�il1�
2/2k–�e�i/k–��1��l1�−l−��e−�iK/k–�cos��1�+��. �93�

First, we investigate the effects of � on the diffusive parts
of diffusons and cooperons. To simplify the discussion we
assume that K is sufficiently large, implying that the memory
about the angle is lost after a single kick. To find the self-
energy of the diffuson, we replace the kicking operator J in

Eq. �20� with P̂J�. Then, we insert Eqs. �92� and �93� into it,
putting l1= l1�. Consequently, the diffusive pole is retrieved as

�+−�−=�1−�1�� k–�, and the self-energy of the diffuson is

�l�P̂J��l���l�P̂J��l��
* =� d�

2�
J0

2
2K

k–
sin

k–�

2 �ei��l−l��. �94�

This expression demonstrates the period doubling �Bessel
function is squared� and implies that the diffuson is not af-
fected by �.

For the diffusive cooperon, the self-energy is �l�P̂J��l��

�l��P̂J��l�

*. Inserting Eqs. �92� and �93� into it, and putting
l1= l1�, we find that the Cooperon has diffusive pole at

�+ + �− = �1 + �1� � k–� , �95�

and the self-energy is

�l�P̂J��l���l��P̂J��l�
* =� d�

2�
ei��l−l��J0
2K

k–
sin

k–�

2 �

J0� 2K

k–
sin
 k–�

2
+ ��� . �96�

In the derivation above, we used the fact that for sufficiently
large K, ��+−�−� /2 and ��1−�1�� /2 is quasirandom and the
self-averaging may be performed. With the Fourier transform

FIG. 6. The leading quantum correction to the density-density
correlator in the absence of the time-reversal symmetry �6-leg
Hikami box�: �a� two-loop weak localization diagram; �b� its image
in the momentum space; �c� Hikami box.

FIG. 7. The leading quantum correction to the density-density
correlator in the absence of the time-reversal symmetry �4-leg
Hikami box�: �a� two-loop weak localization diagram; �b� its image
in the momentum space.
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with respect to time, the self-energy leads to the diffusive
cooperon of the form

�C0�l,�;l�,− ��;��� = k–� d�

2�

1

− i� +
1

2
Dcl��2 + �� + 2�/k–�2�

�97�

in the limit K�, K� / k–�1. Here, �l− l���K, ��−���	1. Ac-
cording to Eq. �97� the relaxation time of the cooperon is

��= �Dcl�
2 / k–2�−1. At �� k– /
Dcl	 k– /K, ��	1 the cooperon

is completely suppressed.
The propagation in the Lyapunov region involves deter-

ministic motion, which is also affected by �. Therefore, the
Lyapunov exponent 
, as well as its fluctuations 
2, acquires
some � dependence. However, since the propagator has no
dependence on the center of mass, the functional form of
WC,D�2�� remains unchanged. Thus, the procedure of Sec.
IV B can be employed to show that the dispersion function is
given by

��l2�t�� = 2Dclt −
4k–
Dcl


�
��t − 4tE���

3/2h
 t − 4tE

��
� , �98�

where the function h�x� is

h�x� = �
0

x

dy1�
0


y1

dy2e−y2
2
. �99�

Notice that here tE is a function of �, i.e., tE���

=
���−1 ln
K / k–. For simplicity, we neglected the fluctua-
tions of 
���, i.e., we set 
2=0. In the region t−4tE���, the
one-loop correction is exponentially suppressed. One is re-
quired, thus, to consider the higher-loop corrections. The
two-loop corrections �Fig. 6 and Fig. 7� give the leading
weak-dynamical localization corrections.

B. Two-loop correction

In principle, the technique developed at the one-loop level
can be employed to treat the two-loop case. However, this is
technically quite involved and is not discussed here. To read
out the frequency-dependent diffusion coefficient in an eco-
nomical way, let us renormalize the standard results of the
weak localization20 with an appropriate tE-dependent factor
�this procedure indeed is transparent at the one-loop level,
Eq. �83��. The renormalization factors for the two-loop ge-
ometries �see Fig. 6 and Fig. 7� were calculated before28,44 in
the context of chaotic quantum billiards. They are �3��� and
�2���, respectively, where

�3��� = exp
6i�tE −
9�2
2tE


2 � . �100�

Adopting the analogy between chaotic quantum billiards and
the QKR, verified above on the one-loop level, one finds for
the two-loop frequency-dependent correction to the diffusion
coefficient

�D��� = − 2k–Dcl��3��� − 2�2������ d�

2��− i� + Dcl�
2��2

.

�101�

As a result, the leading correction to the momentum disper-
sion in the case of broken TRS is given by

��l2�t�� = 2Dclt −
1

4
k–2��t − 6tE��t − 6tE�2 +

1

2
k–2��t − 8tE�


�t − 8tE�2. �102�

Again we ignore 
2 for simplicity. To develop the two-loop
geometry, a minimal quantum wave packet must take time tE
to expand into some macroscopic size, and vice versa.
Within the logarithmic accuracy tE appearing here is the
same as that in the one-loop correction. Therefore, the dura-
tion for a full travel through the Lyapunov region remains
the same as the one-loop case, namely 2tE time. The two-
loop geometries �see Fig. 6 and Fig. 7� involve three and four
successive visits, respectively. As a result the weak-
localization corrections, given by these two diagrams, are
delayed by 6tE and 8tE, respectively.44

VI. OBSERVATIONS OF CLASSICAL-TO-QUANTUM
CROSSOVER IN REALISTIC DRIVEN SYSTEMS

In this section, we discuss some possibilities for experi-
mental observations of the predicted tE dependence of the
classical-to-quantum crossover. The quantity to be measured
is the dispersion function ��l2�t��.

A. Energy growth in cold atomic gases

In the 90’s unprecedented degree of control reached in
experiments with ultracold atomic gases45 allowed investiga-
tion of various fundamental quantum phenomena. The ad-
vent of laser-cooled atomic gases and standing wave optical
pulses2,3,8 has opened the door to study quantum chaos ex-
perimentally. In an insightful paper,46 Graham, Schlautmann,
and Zoller pointed out that atom optics may serve as a testing
ground for quantum chaos. Shortly after, the idea came into
realization with sodium atoms being cooled and trapped us-
ing the magneto-optical trap, subjected to a phase-modulated
standing wave.47 Later on, a realization of the QKR in atom
optics was accomplished with the phase-modulated standing
wave replaced by a pulsed standing wave.2

In an atom-optical experiment, typically 106 sodium or
cesium atoms are trapped and cooled down to 10 �K using
the conventional magneto-optical trap. After turning off the
trapping fields, two linearly polarized, counterpropagated op-
tical beams with the frequency �L are switched on, creating
a spatially periodic potential: V0 cos�2kLx�. Here, kL=�L /c is
the laser wave number. Such optical lattice is controlled by
the acousto-optical modulator as a pulse sequence with a
profile f�t�. The pulse length �p may be much smaller than
the period T. The atomic cloud exposed to this pulsed optical
lattice thereby experiences a series of kicks. The evolution of
the atomic momenta distribution is monitored after a certain
number of kicks.
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In experiments, the laser detuning �L��L−�0 from the
resonance frequency �0 is large compared to the excited-
state decay rate. The dipole force due to the Stark effect
leads to the spatially dependent shift of atomic levels. This
results in an effective periodic potential imposed on the
atomic cloud. One may model the center-of-mass motion of
atoms with the single-particle time-dependent Hamiltonian
as

Ĥ =
p̂2

2m
+ V0 cos�2kLx̂��

n=0

N

f�t − nT� , �103�

where m is the atomic mass, and kL is the laser wave number.
The effective potential, V0, is determined by the maximum
Rabi frequency � as V0=��2 /8�L. The position x̂, and the
momentum p̂ operators are canonically conjugated: �x̂ , p̂�
= i�. The effective kicking strength K, and the Planck con-

stant k– may be expressed then as

K = 8�rT
2�pV0/�, k– = 8�rT , �104�

with the recoil frequency �r=�kL
2 /2m. With the rescaling x

→��2kLx, p→ l��k– /2�kL�p, t→ t /T, f�t�→ f�t� /�p, H

→ �k–T /��H, one casts the Hamiltonian into Eq. �1� in the
limit �p /T→0 �with K fixed�.48

So far, many experimental efforts2,8 have been focused on

the parameter range where k–�2, and thus tE�1. The dy-
namical localization has been observed as the saturation of
the time-dependent momentum distribution width �i.e., en-
ergy absorption�. To extract accurately the tE-dependent
crossover, one needs a large separation between the relevant

time scales: 1� tE� tL. This requires decreasing k– down to
0.1–1, which we hope to be soon within reach for cold
atomic gases experiments.32,33

B. Charge fluctuations on Josephson grains

The experimental realization of the QKR also may be
feasible in experiments involving small nonequilibrium su-
perconducting systems. One example is a small supercon-
ductive dot in contact with a bulk superconductor through
two Josephson junctions �see Fig. 8�.49 The bare Josephson
coupling, EJ0, is modulated via the external magnetic flux
threading the SQUID loop:50–52 EJ=EJ0�cos��BAloop /�0��,

where Aloop is the area of the SQUID loop, and �0�h /2e is
the superconducting flux quantum. If B is modulated in a
meander way, with the pulse length much smaller than the
period T, the system may be modeled by the Hamiltonian

Ĥ =
�Q̂ − CVg�2

2C
− ĒJT cos ��

n

��t − nT� . �105�

Here, �̂ and Q̂ are the relative phase of the superconducting
order parameter on the grain, and its charge, correspond-

ingly. They are canonically conjugated: ��̂ , Q̂�=2ei. In Eq.

�105� C is the capacitance, Vg is the gate voltage, and ĒJ is
the time-average Josephson coupling. Making change of the

variables: Q̂→ l̂��Q̂ /2e and rescaling the relevant quanti-

ties as t→ t /T , Ĥ→8EcT
2Ĥ /�2, and CVg→vg��CVg /2e

�Ec=e2 /2C�, we cast the Hamiltonian above into QKR

Ĥ =
1

2
�l̂ − vg�2 − K cos ��

n

��t − n� . �106�

Note that the sign difference in the kicking term is immate-
rial. Here, the effective Planck’s constant and kicking
strength are

k– = 8EcT/�, K = 8EcĒJT
2/�2, �107�

respectively.
The charge fluctuations are described by the charge dis-

persion: 	��l2�t��. For sufficiently large K and t�4tE it is
expected to increase linearly in time. At t�4tE, it should
deviate from the linearity.29 At longer time, t�4tE, the t3/2

power-law correction develops following the conventional
weak-localization theory.1,18,19 This signals the onset of the

localization phenomena. Eventually, at t	Dcl / k–2� tE the
charge fluctuations saturate and do not grow any more upon
further kicking.

C. Charge fluctuations in superconducting nanocircuits

Recent work34 suggested another kind of time-modulated
small superconducting system. It is proposed that a mechani-
cally driven superconducting single-electron transistor
�SSET� may serve as a realization of the QKR. The system is
based on a Cooper pair shuttle—a small superconducting
island, periodically traveling between two macroscopic su-
perconducting leads with the phases �L and �R, respectively
�Fig. 9�a��. Twice during each period, T, the shuttle meets
one of the leads, experiencing a sudden Josephson coupling

�cf. Fig. 9�b��. The average coupling energy ĒJ is assumed to
be much larger than the charging energy Ec. If the two leads
are far enough from each other, the island never couples to
both leads simultaneously. If the switching time is short, the
time-dependent Josephson coupling may be mimicked by
delta pulses. Therefore, one may model the system with the
following Hamiltonian:

FIG. 8. The scheme of the driven Josephson grain: a supercon-
ducting dot �left� is coupled to a bulk superconductor �right� via a
SQUID loop �middle�. The flux � piercing the SQUID loop is time
dependent. It effectively modifies the bare Josephson coupling EJ0

of the two junctions.

TIAN, KAMENEV, AND LARKIN PHYSICAL REVIEW B 72, 045108 �2005�

045108-16



Ĥ = − 4Ec
�2

��2 − ĒJT�
n

�cos ���t − 2nT� + cos�� + ��


��t − �2n + 1�T�� . �108�

Here, � is the relative phase of the superconducting island
with respect to the right lead. Remarkably, the phase differ-
ence across the two superconducting leads, ���R−�L
breaks the “time-reversal” symmetry, Eq. �8�. The effective
Planck constant and kicking strength remain the same as in
Eq. �107�. With the same rescaling as in Sec. VI B, Eq. �108�
is rewritten as Eq. �90�.

The classical-to-quantum crossover is reflected in the
nonequilibrium charge fluctuations of the superconducting
island. In the case of �=0, the situation is the same as Sec.
VI B. In the presence of a small phase bias across the two

superconducting leads, i.e., ���� k– /K, the charge fluctua-
tions are described by Eq. �98�. For larger phase bias ���
� k– /K, the charge fluctuations are given by Eq. �102�.

VII. WEAK-DYNAMICAL LOCALIZATION IN PRESENCE
OF NOISE

Due to the quantum interference nature of the weak-
dynamical localization, the effect may be strongly sensitive
to noise. Indeed, noise effects are known to be of importance
for the dynamical localization.32,53–55 So far, both experimen-
tal and theoretical studies have been primarily focused on
tE�1. Below, we shall consider how an external noise af-
fects classical-to-quantum crossover at time scales t� tE. To
this end, we will employ the technique of Sec. IV to inves-
tigate a noise sensitivity of the weak-dynamical localization
cooperon and Hikami box.

A. Phase noises

In proposed experiments involving small superconducting
systems, the phase may fluctuate due to the influence of the
dissipative measurement circuit. For the analytical treatment
we focus on the particular kind of noises—the Gaussian
phase noise. That is, the phase is assumed to fluctuate ran-

domly in time: �n→�n+�n. Here, �n��t is the noise that is
assumed to be uncorrelated at different kicks ��n�n��=0 for
n�n�. At a given kick the random phase � is supposed to be
drawn from some periodic distribution function P���
= �2��−1�mPmeim�. For simplicity, we shall assume that

Pm = e−	�m2
, �109�

where 	� characterizes the strength of the noise.

1. Strong phase noise

The strong noise limit is characterized by 	�→�, and
thus P���=1/2� being uniform distribution on �� �0,2��.
We show first that the classical diffusion �without localiza-
tion� is restored in this limit. The quantum density-density
correlator satisfies �cf. Eq. �10��

D��l+,l−;l+�,l−�� = ei�l+
2−l−

2�/2k–�l+,l+�
�l−,l−�

+ ei� �
l+�,l−�

�l+�Û�l+���l−�Û�l−��*


D��l+�,l−� ;l+�,l−� ;�� , �110�

where the long bar stands for the average over the phase
noise with respect to the uniform distribution, i.e.,

�l+�Û�l+���l−�Û�l−��*

�� d�

2�

d�+

2�

d�−

2�
exp� iK

k–
�cos��+ + �� − cos��− + ����


exp� i�l+
2 − l−

2�

2k–
+

i�+

k–
�l+ − l+�� −

i�−

k–
�l− − l−���

= exp� i�l+ + l−��l+ − l−�

2k–
� f�l+ − l+���l+−l−,l+�−l−�

. �111�

In the last line, f�l� is defined as

f�l� � � d�

2�
J2l
2K

k–
sin

k–�

2 � . �112�

With the definition l��l++ l−� /2, l���l+�+ l−�� /2, and �l
� l+− l−, the solution of Eq. �110� may be formally written as

D��l,l�;�l�

= exp� il�l

2k–
��l,l� + �

n=1

�

ei�n �
l1,. . .,ln−1

exp� i�l

2k–
�
k=1

n

lk�

f�l − l1�f�l1 − l2� ¯ f�ln−1 − l�� , �113�

where ln� l�. As a result of the averaging over noises, D� has
no � dependence. In the large K limit, we expect the solution
to be independent of �l+ l�� /2. Thus, taking the average over
�l+ l�� /2, one finds

FIG. 9. A superconducting shuttle periodically travels between
two superconducting leads with the phase �L and �R, respectively
�a�. At every other period 2T, the shuttle experiences a sudden
Josephson coupling with the left �right� lead. The power strength P

is proportional to ĒJT �b�. At times which are odd multiples of T,
the phase of the superconducting shuttle is shifted by ����R

−�L�.
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�D��l,l��� = �l,l� + �
n=1

�

ei�n �
l1,. . .,ln−1

f�l − l1�


f�l1 − l2� ¯ f�ln−1 − l�� . �114�

Passing to Fourier representation, we find that it is nothing
but the classical diffuson, Eq. �22�. It is worth mentioning
that in the strong noise limit the diffusion constant is exactly
K2 /4. This is due to the fact that higher-order corrections11 as
well as quantum renormalization31,62 result from long-time
correlation effects �cf. Appendix A�. The latter is completely
destroyed by the strong noise.

2. Weak phase noise limit

We turn now to a more interesting case, relevant to the
context discussed here, i.e., 	��1, where the noise only
slightly suppresses the weak-dynamical localization. For
��2�		��1, cos��+���cos �−� sin �.

Let us concentrate on the effect of the noise on the coop-
eron. Upon every kicking, cooperon acquires an additional

phase: K��t cos �+−�t� cos �−� / k–. Recall that t , t� are counted
from the two opposite ends of the loop trajectory, and t+ t�
�Tt, with Tt being the total duration of the loop. Since �t and
�t� stand for noises at different moments, they are uncorre-
lated. Averaging the phase factor over them leads to the ex-
ponential suppression of of every step of the cooperon ladder

�exp
 iK�t

k–
cos �+�exp
−

iK�t�

k–
cos �−��

�t,�t�

= e−K2	�/2k–2
I0

2
K2	�

4k–2 � . �115�

�I0�x� is the modified Bessel function.� This implies that the
cooperon is suppressed as

C0�t� → C0�t�e−t/t�, �116�

with the dephasing time defined as t�=2k–2 / �K2	��. For 	�

� �k– /K�2, t�	1, the cooperon mode is suppressed com-
pletely. It does not mean, however, that the classical diffu-
sion is restored for such small 	�. Indeed, the higher-order
loop corrections, that include the diffusons only �cf. Fig. 6�
may still survive such level of the noise and lead to the
dynamical localization. To verify if this is the case, one
needs to study the effect of the weak noise on Hikami box.

Starting from Eqs. �49� and �56�, we observe that ��1 and
�� are independently shifted by the noise, i.e., ��1→��1�
���1+�1 ,��→��+�2. As a result, instead of Eq. �55�, X is
given by

X��l1,��1;�l2,��2� → exp
 iK���1���2

k–
sin ���


X��l1,��1�;�l2,��2� . �117�

Upon averaging over �, Eq. �117� leads to the exponential
suppression of the minimal quantum wave packet �Hikami
box� as

exp�− 
K��1���2

2k–
�2

	��X��l1,��1�;�l2,��2� . �118�

From here we see that the weak phase noises �	��1� do not
substantially affect the Hikami box. Indeed, the interaction
vertex is significantly suppressed only at 	�	1. This means
that the effect of phase noises on Hikami box may be ignored
compared to the dephasing of cooperon.

As a result, the intermediate intensity noise �k– /K�2�	�

�1 acts, to a large extent, as a TRS breaking perturbation. It
suppresses the cooperon corrections, leaving the diffuson
ones �the simplest being the two-loop one, Fig. 6� intact.

Above, we find that the diffuson-cooperon coupling-
minimal wave packet is suppressed by large enough phase
noises. This picture is naturally expected to be applicable for
higher-order interaction vertex also. The latter is essentially
responsible for the onset of the weak-dynamical localization
in diffuson-only diagrams. This picture may be considered to
be the precursor of the restoration of diffusion for larger
noises.

B. Amplitude noise

In cold atoms experiments, the optical pulse power may
fluctuate with time and thus the series is not perfectly peri-
odic. This then leads to the noise in the kicking amplitude,
i.e., the stochastic parameter K is replaced by K+�n, where
�n=�t is a random amplitude fluctuation. The effects on dy-
namical localization of such kind of noise have been under
intensified experimental investigations.32,54,55 A central issue
addressed is whether the dynamical localization is destroyed
completely by the noise. We concentrate here on a weak
noise limit.

To simplify analytical estimations below, let us assume
that �n is the white-noise Gaussian noise, namely ��n�n��
=	K�nn�. Here, 	K characterizes the strength of the noise.
Below, we consider the limiting case of 	K�1, where the
amplitude noise only slightly suppresses the weak-dynamical
localization.

For the diffuson the one-step quantum propagator ac-
quires an additional phase as �t�cos �+−cos �−�. Here, �+, �−

stand for the phases of retarded and advanced Green’s func-
tions at the kicks. Passing to the semiclassical limit, i.e.,
��+−�−��1 and averaging over the noise, we find that the
diffuson is affected via renormalization of Dcl by a small
correction, �Dcl		K�Dcl. �A detailed study in this direc-
tion was presented in Ref. 3.� This correction is not respon-
sible for the destruction of the dynamical localization. It is
the effect of the noise on the cooperon and Hikami box that
eventually may lead to the restoration of the classical diffu-
sion.

In the case of the amplitude noise, the effect on the coop-
eron is fully analogous to the case of the phase noise, i.e.,
dephasing. Upon every kicking, the Cooperon acquires an

additional phase: ��t cos �+−�t� cos �−� / k–, with t , t� counted
from the opposite ends, respectively, such that t+ t��Tt, with
Tt being the total duration of the loop. Upon averaging over
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the independent noises �t and �t�, this phase factor leads to
the exponential suppression of a single step of the cooperon
as

�exp
 i�t

k–
cos �+�exp
−

i�t�

k–
cos �−��

�t,�t�

= exp�−
	K

2k–2�I0
2
 	K

4k–2� . �119�

This implies that the cooperon is dephased as Eq. �116� with

the dephasing time being �K=2k–2 /	K. For 	K� k–2, �K	1,
the cooperon mode is suppressed completely; thus, only
higher-order terms �diffusons only� may be responsible for
the dynamical localization. It remains open to estimate the
noise amplitude that destroys diffuson-only weak dynamical
localization.

C. Effects of finite dephasing time

We saw above that every realization of the QKR may
involve various noises in realistic experimental environ-
ments. As a result, there exist various dephasing mecha-
nisms. The effective dephasing rate is the sum over all
dephasing rates, namely

1

��

= �
k

1

�k
. �120�

To simplify qualitative discussions, in this part we focus
on effects arising from weak dephsing such that 4tE���.
First, we show that the effective Ehrenfest time is shortened.
In fact, the additional weak noises enhance the rate of angu-
lar deviation spread according to

d

dt
��2�t� = 2
��2�t� +

1

��

. �121�

Recall that the first term on the right-hand side results from
the Lyapunov instability. The solution is easily found, i.e.,
��2�t�= ���1,2+ �2
���−1�e
t− �2
���−1. Here, ��1,2 are the
initial angular deviation of diffuson and cooperon, respec-
tively. At tD� �or tC��, ��	1. The solution then gives

tD,C* �
1



�ln

1


��1,2
2 + �2
���−1� . �122�

Thus, the effective duration of a full travel through the
Lyapunov region is found to be

tD* + tC*

=
1



�ln

1


���1��2�2 + ���1
2 + ��2

2��2
���−1 + �2
���−2�
�

1



�ln

1

���1��2� + �2
���−1�
	

2


�ln
1


 k–

K
+ �2
���−1� = 2tE

* . �123�

The effective Ehrenfest time tE
* � tE. With tE

* substituted
into the renormalization factors WC and WD, and taking into
account the dephasing of diffusive cooperon, the one-loop
correction, Eq. �83�, is modified as

�D��� = −
k–Dcl

�
WD�2��WC�2�� � d�

− i� + Dcl�
2 +

1

��

.

�124�

Taking the Fourier transform with respect to �, one find the
momentum dispersion to be

��l2�t�� = 2Dclt −
8k–
Dcl

3
�
��t − 4tE

*��t − 4tE
*�3/2e−�t−4tE

* �/��.

�125�

Again, 
2=0. According to Eq. �125� the quantum correction
is suppressed at t�4tE

* +��.
One should keep in mind that in realistic experiments, like

atom-optical ones the Hamiltonian of QKR, Eq. �1� may be
an oversimplification. Therefore, some restriction on the va-
lidity of the present result will be imposed. For example, the
cold atoms experiment involves collisions between the at-
oms, which leads to another dephasing mechanism. Let us
estimate the corresponding collision dephasing time, �s. The
two-particle scattering mean free path is known to be ls
�1/ �na2�, where n is the atomic concentration and a is the
s-wave scattering length. The corresponding dimensionless
scattering time is �s= ls / �Tv�, where v is a typical atomic

velocity that may be estimated as v��kL�l� / k–m

��kL

Dcl�s / k–m. This leads to the self-consistent estimate of

the dimensionless dephasing time

�s � �lskL/K�2/3. �126�

Once again, to observe the classical-to-quantum crossover
the inequality 4tE��s should be valid. Another important
factor leading to dephasing in atom-optical experiments is
spontaneous emission.56 It may quantitatively affect the
dephasing rate according to Eq. �120�. However, the qualita-
tive result, i.e., Eq. �125�, remains unchanged.

VIII. CONCLUSIONS

In this paper, we developed an analytical theory that sys-
tematically incorporates the Ehrenfest time, tE, into the
weak-dynamical localization. We map the loop expansion,
central to the theory of the weak-dynamical localization,
onto the interference of paths in the configuration space with
a certain loop geometry. To propagate along such paths a
time longer than 2mtE�m=2,3 , . . . � �where m is determined
by a specific loop geometry� is needed. Thus, we establish
that the onset of the dynamical localization is delayed by the
multiples of 2tE. In particular, for QKR the delay is 4tE,
while for systems with broken time-reversal symmetry it is
6tE. At shorter times, quantum corrections to the linear dis-
persion �classical diffusion� do exist. However, they lead to
the renormalization of the frequency-independent diffusion
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coefficient only. Thus, they are not responsible for the onset
of the dynamical localization.

Our quantitative predictions are based on the loop expan-
sion and are essentially perturbative. The perturbative correc-
tions are responsible only for the early evolution of the dis-
persion function, i.e., the suppression of the classical
diffusion. They are closely analogous to the weak Anderson
localization in ballistic systems. At longer time t� tL, there is
a long-standing conjecture claiming that the strong dynami-
cal localization is expected to develop.13 This conjecture was
supported by arguments based on supersymmetric diffusive
	 model and in part has been proven rigorously by Bourgain
and Jitomirskaya recently.57 The present work may be con-
sidered as a further support for the similarity between the
dynamical localization and Anderson localization.

The quantum dynamics of kicked rotor is very compli-
cated. In particular, it exhibits the so-called quantum reso-

nances at the rational values of k– /4� �see Ref. 23 for a

review�. At such resonance points k– /4�= p /q, where p ,q are
coprime natural numbers, the long-time momentum disper-
sion grows quadratically with time. Our theory is certainly
not applicable to this situation. However, the characteristic
time scale for the quadratic growth to become dominant in-
creases drastically with increasing q;23 thus, we still expect
the present theory to be applicable for sufficiently large p
and q. Unfortunately, we are not able to further give the
quantitative restriction.

The result presented in this work may be extended to
more general quantum driven systems. The essential require-
ments imposed on the dynamics of an underlying classical
system are: �i� area preserving; and �ii� the existence of clas-
sical stochastic diffusion �subject to a certain symmetry�.
Provided �i� and �ii� are satisfied, we expect the functional
form of the weak localization corrections to be the same as
derived above. The specific nature of the chaotic motion en-
ters through the classical quantities such as diffusion coeffi-
cient, Lyapunov exponent, and its fluctuations. These three
purely classical objects, in general, may be found �say nu-
merically� and substituted into the derived expressions for
the localization corrections. In particular, the present result
may be relevant to studies of the energy growth near quan-
tum resonance in ultracold atomic gases.58 It was shown58,59

that the quantum dynamics with k– /4� close to a rational
number may be mapped back onto the classical standard

map. In this case a small deviation of k– /4� from the rational
number plays a role of the effective Planck’s constant. Our
formalism may prove to be useful to study localization in the
proximity to a rational value situation.

The analytical treatment developed here may be appli-
cable to other chaotic systems. In particular, there exist sys-
tems where the weak localization is found while the strong
localization is not observed. In general, the underlying phase
space of such systems is not one-dimensional or quasi-one-
dimensional. Along these directions a refined diagrammatic
technique has been employed recently by two of us to show
the deterministic weak localization for periodic Lorentz
gases with a finite horizon.60 The analytical tool developed in
the present work may be also adapted to explore problems
where the weak localization corrections can be found but

traditionally are described by the random matrix theory, such
as the level statistics in chaotic quantum billiards.44,61

Technically, the most important part of this work is the
derivation of the one-loop vertex �Hikami box� without in-
troduction of a regularization. This allows us to analyze ac-
curately the minimal quantum wave packet. As a result, the
Ehrenfest time is quantitatively defined �with the logarithmic
accuracy� as the time needed to expand an initial minimal
wave packet up to a macroscopic size.21,22 Alternatively, the
minimal wave packet may be analyzed within the Moyal
formalism.37,63 A study along these lines has been reported
recently in the context of ballistic supersymmetric 	
model.30 This supports the conjecture of Ref. 27 that the
Ehrenfest time should not depend on the regularization, since
the latter is only intended to mimic the effect of quantum
diffraction. Indeed, in accord with Ref. 27, our current re-
sults may be fully reproduced by introducing a proper
regularization37 to the supersymmetric 	 model developed
for QKR.19

The quantitative predictions made for the tE-dependent
classical-to-quantum crossover in QKR may be suitable for
experimental verifications in various contexts. In particular,
already-existing experiments on the dynamical localization
in the energy growth of ultracold atomic gases have greatly
contributed to understanding of this crossover. Our quantita-
tive predictions are expected to be accurate in the asymptotic

regime k–�1�K. For their quantitative verification, it is thus

highly desirable to decrease k– down to 0.1–1. We also
pointed out that some periodically driven mesoscopic super-
conducting structures may be suitable for realizations of the
QKR. The dynamical localization and classical-to-quantum
crossover in these systems are observable by monitoring
charge fluctuations of the superconducting island. It is im-
portant to mention that all realistic experiments introduce
noise and thus a finite dephasing time ��. We have shown
here that for an observation of the tE-dependent crossover,
the condition 4tE��� must be satisfied.
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APPENDIX A: FINITE TIME-CORRELATION EFFECTS
ON THE SELF-ENERGY

In this appendix we study the higher-order time correla-
tion effects, starting from the exact quantum density-density
correlator, Eq. �12�. In particular, we clarify that in the semi-
classical limit, the higher-order corrections, namely Eq. �24�,
�see Ref. 11� to the diffusion constant, i.e., K2 /4 are found.

For an arbitrary �c�1, Eq. �19� is replaced by
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D0�l,l�� = �l,l� + �
l�

��l,l��D0�l�,l�� . �A1�

Here, the self-energy, ��l , l��, is given by

��l,l�� = �
n=1

�c

ei�n�l�Ûn�l���l�Ûn�l��*

= ei�Ul,l�Ul,l�
* +


�
n=2

�c

ei�n �
l1+,l1−

¯ �
l�n−1�+,l�n−1�−


�
k=1

n−1

Ulk+,l�k+1�+
Ulk−,l�k+1�−

* . �A2�

Note that l0= l0�� l, ln= ln�� l�, and lk� lk� for 0�k�n. Here,
in order to simplify the notation we denote the matrix ele-

ments �lk+�Û�l�k+1�+� as Ulk+,l�k+1�+
, and similarly for their com-

plex conjugates. These matrix elements may be written ex-
plicitly as

Ulk+,l�k+1�+
=� d��k+1�+

2�
exp� il�k+1�+

2

2k–
+

iK

k–
cos ��k+1�+

−
i

k–
�lk+ − l�k+1�+���k+1�+� ,

Ulk−,l�k+1�−

* =� d��k+1�−

2�
exp�−

il�k+1�−
2

2k–
−

iK

k–
cos ��k+1�−

+
i

k–
�lk− − l�k+1�−���k+1�−� . �A3�

To proceed further, we introduce the following quantities:

mk = �lk+ − lk−�/k–,qk = ��k+ − �k−�/k–. �A4�

Then, with the substitution of Eq. �A3� we rewrite
Ulk+,l�k+1�+

Ulk−,l�k+1�−

* as

Ulk+,l�k+1�+
Ulk−,l�k+1�−

*

=� � d��k+1�+

2�

d��k+1�−

2�
exp�imk+1

l�k+1�+ + l�k+1�−

2
−

2iK

k–


sin
k–qk+1

2
sin

��k+1�+ + ��k+1�−

2
− iqk+1


� lk+ + lk−

2
−

l�k+1�+ + l�k+1�−

2
� + i�mk

− mk+1�
��k+1�+ + ��k+1�−

2 � . �A5�

Furthermore, we insert the Fourier transform

exp� 2iK

k–
sin � sin

k–q

2 � = �
n

Jn sgn q
2K

k–
sin

k–q

2 �ein�

�A6�

into it with sgn denoting the sign of q. Then, Eq. �A5� is
substituted into Eq. �A2�. With the sum with respect to �lk+

+ lk−� /2 �k=0,1 ,2 , . . . � and the integral with respect to ��k+

+�k−� /2 performed, eventually Eq. �A2� is reduced to

��l,l�� = ei�J0
2K

k–
sin k–q0�

+ �
r=2

�c

ei�r �
n1,n2,. . .,,nr

�
m1,m2,. . .,mr−1

�
q0,q1,. . .,qr−1

�
k=1

r


 Jnk sgn qk−1
2K

k–
�sin

k–qk−1

2
��


 �qk−qk−1,−mk
�mk−mk−1,−nk sgn qk−1

. �A7�

Shortly, we will see that the following relations, implied by
the two Kroneck’s symbols:

qk = qk−1 − mk, �A8�

and

mk = mk−1 − nk sgn qk−1, �A9�

are essential for the derivation of higher-order corrections to
the diffusion constant.11 It is in order to emphasize that they
are exact even at the quantum-mechanical level, although
originally found in the classical context.11

Note that above m0=mn=0. So far, the discussions above
are formally accurate. We assume now that the correlator,
D0�l , l��, does not depend on the center of mass, namely
D0�l , l��=D0�l− l��. This is supplemented by performing
Fourier transformation for D0�l− l��

D0�l − l�� =� d�

2�
D0���ei��l−l��, �A10�

and imposing the boundary condition as �resulting from fi-
nite �c

11�
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q0 = qr−1 = � → 0, �A11�

with � denoting the Fourier component. Then, Fourier trans-
forming ��l− l�� leads to

���� = ei�J0
2K

k–
sin

k–�

2 �
+ �

r=2

�c

ei�r �
n1�0

�
n2,. . .,nr

�
m1,m2,. . .,mr−1

�
q1,. . .,qr−2

�
k=1

r


 Jn1
2K

k–
sin

k–�

2 �Jnr
2K

k–
sin

k–�

2 �

 Jnk sgn qk−1
2K

k–
�sin

k–qk−1

2
�� . �A12�

Note that above we suppressed the two Kroneck’s symbols to
simplify the expression. One should keep in mind that the
sum over m’s, q’s, and n’s is restricted by the two “motion”
equations, i.e., Eq. �A8� and �A9�.

Let us make the semiclassical approximation, i.e., �k–qk�
�1 in Eq. �A12� and focus on the limit K��1. The first
term in the self-energy leads to the diffusion constant as
K2 /4, as discussed in Sec. III B. The second term gives
higher-order oscillatory corrections. In fact, up to �K��2, the
sum is contributed by a particular series of �qk ,mk� �k
=0,1 ,2 , . . . � �so-called Fourier paths�11 as �� ,0�
→ ± �0,1�¯ ± �1,−1�→ �� ,0�. Here, ¯ is shorthand for
product of Bessel functions, which is an expansion in powers
of K−1/2. Since for K��1, Jn�K��	�K��n6

, therefore, n1,r

= ±1 is the only contribution to the order �K��2. This then
leads to ���� as11

���� = ei�J0�K��

+ �
r=2

�c

ei�r �
n1,nr=±1

�
n2,. . .,nr−1

�
m1,m2,. . .,mr−1

�
q1,. . .,qr−2

�
k=1

r


 Jn1
�K��Jnr

�K��Jnk sgn qk−1
�2K�qk−1�� . �A13�

In the limit ��c�1, K��1, one recovers the diffuson Eq.
�23� with the diffusion constant given by Eq. �24� up to O�1�
�for K�1�.11

Proceeding along this line, we may reproduce Shepelan-
sky’s result for the quantum diffusion constant of an early
evolution �i.e., �c�4�.31,62 The basic observation is that if the
number of kicks is less than 4, then qk=1. Based on Eq.
�A12�, this implies that Eq. �24� still holds except that K is

replaced by 2K sin�k– /2� / k–.

APPENDIX B: TWO RELATIONS RESULTING FROM TRS

In this appendix we show two exact relations reflecting
TRS. In the first, for any n�0

D0�l,�;l�,��;n� = D0�l�,− ��;l,− �;n� . �B1�

Proof. Use the mathematical deduction. For n=1

D0�l,�;l�,��;1� = P� ��l − l����� − �� − l��

= ��l − K sin�� − l� − l����� − l − �� − l�� .

�B2�

On the other hand

D0�l�,− ��;l,− �;1� = P� ��l� − l���− �� + � − l�

= ��l� + K sin��� + l�� − l�


��− �� − l� + � − l�

= ��l� + K sin�� − l� − l�


��� − l − �� − l�� . �B3�

Comparing the last two lines of Eqs. �B2� and �B3�, we
immediately see that Eq. �B1� holds for n=1. Next, we as-
sume that Eq. �B1� holds for arbitrary n=k�1. Then, for n
=k+1, we obtain

D0�l�,− ��;l,− �;k + 1� = P�D0�l�,− ��;l,− �;k�

= P�D0�l,�;l�,��;k�

� D0�l,�;l�,��;k + 1� . �B4�

Thus, Eq. �B1� also holds for n=k+1. Q.E.D.
Now, we turn to show the other relation. That is, if

f�l,�;l�,��� = f�l�,− ��;l,− �� , �B5�

then

P� f�l,�;l�,��� = f�l,�;l�,���P� T. �B6�

Proof

f�l,�;l�,���P� T = f�l,�;l� + K sin��� + l��,�� + l��

= f�l� + K sin��� + l��,− ��� + l��;l,− ��

= P� f�l�,− ��;l,− ��

= P� f�l,�;l�,��� , �B7�

where we used the definition, Eq. �31�, in the second line,
Eq. �B5� in the third and fifth lines, and the definition, Eq.
�18�, in the fourth line. Q.E.D.

APPENDIX C: DERIVATION OF RENORMALIZATION
FACTOR OF DIFFUSIVE COOPERON

In this appendix, we derive the renormalization factor, Eq.
�38�, describing modification of the diffusive cooperon due
to the propagation through the Lyapunov region. We first
analyze the asymptotic instability of a generic chaotic trajec-
tory.

1. Asymptotic instability

By varying the equations of motion of the classical kicked
rotor

d�

dt
= l ,
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dl

dt
= K sin ��

n

��t − n� , �C1�

and defining the variables z� ln����, ���l /��, we obtain

dz

dt
= � ,

d�

dt
+ �2 = K cos ��

n

��t − n� , �C2�

which describes the evolution of separation of two nearby
trajectories along a reference trajectory, initiated from
�l0 ,�0�. From Eq. �C2� we see that � is a fast-changing vari-
able. That is, the dynamics of � introduces some classical
time scale, beyond which the slow-changing variable—z is
independent of initial �. Let us further introduce the vari-
ables: �n—denoting � right after the nth kicking, and
zn—denoting z at the nth kicking. Equivalently, we rewrite
Eq. �C2� as

zn+1 − zn = ln�1 + �n� ,

���n+1 =
1

��−1�n + 1
+ K cos �n+1. �C3�

For n�1, �zn�=
n, ��zn−
n�2�=2
2n. Thus, the Lyapunov
exponent 
 and its fluctuation 
2, characterizing the long-
time instability, are defined as


 = lim
n→�


�n�, 
2 = lim
n→�


2�n� ,


�n� =
1

n
�

n�=0

n−1

ln�1 + ���n�� ,


2�n� =
1

n� �
n�=0

n−1

ln�1 + ���n�� − n
�2

, �C4�

respectively. Note that at finite times, they are trajectory de-
pendent. In the limit n→�, the time average is expected to
be equivalent to the average over �, as well as the initial
conditions located in the stochastic region.

The estimation of 
 and 
2 in the limit K�1 may be
made as follows based on the simple analysis above:


 � �ln�K cos ��� = ln�K/2�;


2 � �ln2�K cos ��� − 
2 = ��3� − ln22 � 0.82, �C5�

where the angular brackets imply uniform averaging over the
angle.

2. Renormalization factor

According to the definition of nc, Eq. �35� it is the kick
number when z�0 with the logarithmic accuracy. That is

0 = z0 + �
j=0

nc−1

ln�1 + ��� j� , �C6�

equivalently

nc = −
1


�nc�
�z0 + �

j=0

nc−1

�ln�1 + ��� j� − 
�nc��� . �C7�

Here, z0 is some function of the initial deviations ��l0 ,��0�.
The exact form of z0 is unessential. For an estimate, we
notice that in the limit K�1 the evolution of ��n may be
approximated as ���0+�l0 /K cos �0��k=0

n−1K cos �k. Therefore

z0 = ln���0 + �l0/K cos �0� � ln 
��0
2 + �l0

2/K2. �C8�

Substituting Eq. �C7� into exp�2i�nc�, we obtain

e2i�nc = exp�−
2i�z0


�nc�
�


exp�−
2i�


�nc�
�
j=0

nc−1

�ln�1 + ��� j� − 
�nc���
� exp�−

2i�z0


�nc�
�exp�−

2�2
2�nc�z0


2�nc�
� , �C9�

where in the second line we use the fact that
�
2�nc�nc /
2�nc��1. In the limit nc�1, 
�nc�→
, 
2�nc�
→
2. Moreover, from Eq. �C7� we see that nc→ tC�−z0 /
.
Thus, Eq. �C9� is reduced to Eq. �38�.

APPENDIX D: THE EXACT INTERACTION VERTEX

In this appendix we discuss the exact interaction vertex
appearing in the one-loop calculation. The general diagram,
sketched in Fig. 5, may be categorized into three classes,
Figs. 10�a�–10�c�. In order to make the formula compact, let
us write them in the operator representation as

�D̂1 = �ei�P̂D̂�Ĉ�ei�P̂D̂� , �D1�

�D̂2 = P̂VĈD̂ , �D2�

�D̂3 = D̂ĈP̂V. �D3�

We then insert the identity

FIG. 10. Diagrams that lead to the interaction vertex with the

particle conservation law respected: �a� �D̂1; �b� �D̂2; and �c� �D̂3.
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ei�P̂ � 1 + �ei�P̂ − 1� , �D4�

into Eq. �D1� and rewrite �D̂1 as

�D̂1 � D̂ĈD̂ + �D̂1� + �D̂4, �D5�

with

�D̂1� = ��ei�P̂ − 1�D̂�ĈD̂ + D̂Ĉ��ei�P̂ − 1�D̂� ,

�D̂4 = ��ei�P̂ − 1�D̂�Ĉ��ei�P̂ − 1�D̂� . �D6�

For the first term in Eq. �D5�, it was proved by Altland18 that

it vanishes in the quantum limit, i.e., k–�1. In the next sec-
tion, we show that this term is indeed pure classical, and
does not contribute to the quantum interference correction.
We also show that the loop expansion does not violate the
particle conservation law. As a result, the form of the inter-
action vertex implies that the quantum corrections may be
reduced to the renormalization of the diffusion coefficient.

1. Semiclassical analysis on D̂ĈD̂

Under appropriate approximation, it was proved that

D̂ĈD̂ is included in the classical diffusive propagator.18

Thus, it does not violate the diffusion equation. Since we are
interested in the dynamics involving Ehrenfest time, the dif-
fusive propagator cannot serve as a starting point of the for-
malism developed here. A natural question is whether this
conclusion may still be applicable. Although it remains a
challenge to prove at the accurate level, here we present a
physical interpretation. We conclude that this term is pure
classical, included in the exact classical propagator solution
of the FPR equation.

For quantitative discussions below, let us denote the an-
gular momenta and angles, appearing in the retarded and
advanced propagator lines of cooperon as l1± , l2± , . . . , ln± and
�1± ,�2± , . . . ,��n−1�± following the forward time direction of
the retarded line �see Fig. 5 for notations�. Counting from the
left-most side of the Cooperon and following the backward
time direction of the retarded line, we denote those as
l0± , l−1± , l−2± , . . ., and �0± ,�−1± ,�−2± , . . .. Semiclassically, only
the constraint below

��1+ + ��n−1�−� 	 ��2+ + ��n−2�−� ¯ ���n−1�+ + �1−� � k–,

�D7�

is imposed.
According to the exact Eq. �A8�, at the boundary of coop-

eron and �left� diffuson

��1+ − �1−� = ��0+ − �0−� − �l1+ − �1−� . �D8�

On the other hand, Eq. �D7� does not impose any constraints

on �1+−�1−. If it is order k–, the usual Wigner transform may
be performed �see Eq. �14��. That is to say, the left-most
kicks of the cooperon may be incorporated into the left dif-
fuson.

This discussion remains applicable for all successive pairs
of kicks of the cooperon, until we meet some k�1, where

�k+−�k−	1−a typical feature of the cooperon. This is
equivalent to the validity of Eq. �D8� with the right-hand side
of order 1. In fact, ��0+−�0−� and �l1+−�1−� develop from the
left �classical� diffuson following Eqs. �A8� and �A9�. In the
diffuson side, ��k+−�k−��k=−1,−2, . . . � , �lk+− lk−��k=0,−1,

−2, . . . � are of order k–. Moreover, any evolution can last at
most finite classical correlation time �c. Thus, ��1+−�1−�
must be of order k–. Thus, Eq. �D8� cannot be satisfied if
��1+−�1−�	O�1�.

Thus, we may conclude that D̂ĈD̂ is pure classical. It
characterizes the classical probability of trajectories with a

peculiar feature. Since ��1−+�n+�� k–�1, �1+	�1−	−�n+,
the trajectory switches its angle to the direction �almost� op-
posite to the initial.

2. A cancellation mechanism

Having the general expression Eq. �53� at hand, we turn to

show that �D̂1�, �D̂2, �D̂3 cancel each other at the semiclas-
sical level, namely

�D1� + �D2 + �D3 � 0. �D9�

Indeed, employing identity, Eq. �B6�, we obtain

�D1��l,�;l�,��� = V̂�D0
l,�;l� +
�l2

2
,�� +

��1

2
�


��ei�P� T − 1� + �ei�P� − 1��


D0
l� −
�l2

2
,− �� +

��1

2
;l�,���� ,

�D10�

�D2�l,�;l�,��� = V̂�2�k–��l − 
l� +
�l2

2
����� − 
�� +

��1

2
�

− l� 
 D0
l� −
�l2

2
,− �� +

��1

2
;l�,���� ,

�D11�

and

�D3�l,�;l�,��� = V̂�D0
l,�;l� +
�l2

2
,�� +

��1

2
�


2�k–�
l� −
�l2

2
− l��


�
− �� +
��1

2
− �� − l� −

�l2

2
�� .

�D12�

Since D0 is the solution of the FPR equation, i.e., Eq. �17�,
these three terms cancel each other. Therefore, we find that
only �D4 leads to the nonvanishing one-loop correction to
the classical density-density correlator.
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APPENDIX E: ALEINER-LARKIN REGULARIZATION
IN KICKED ROTOR

It is easy to see that in the classical limit k–→0, the func-
tional form of �D1� and �D2,3, i.e., Eqs. �D10�–�D12� are
identical to what have been found for classical Lorentz gas
�leaving the feature of standard map aside�. These terms can-
cel each other, leading to the absence of the weak-
localization correction. Remarkably, this cancellation still
holds, even if the initial minimal wave packet is taken into
account. On the other hand, the weak-localization correction
does exist, given by the exact vertex �D4, which is absent in
the expansion of ballistic supersymmetric 	 model �without
a regularizer�. In this way, one may wonder whether an ap-
propriate regularization may lead to a physical description of
weak localization in semiclassical chaotic systems. This, in-
deed, was developed by Aleiner and Larkin for ballistic elec-
tronic problems.27,61 However, an important issue remains
open whether and to what extent the physical results depend
on the regularizer, rather than on the intrinsic quantum nature
of the problem. The exact interaction vertex may serve as a
testing ground of this regularization.

In fact, the regularization introduced in Refs. 27 and 61 is
also applicable for QKR. To this end we try to mimic the
“Born impurity” by modifying the �quantum� free rotation

operator P̂V in the following way:

P̂V → P̂V exp
 i�Ŝ

k–
� . �E1�

Here, �Ŝ is some stationary random perturbation that com-

mutes with P̂V, i.e., ��Ŝ , P̂V�=0. Moreover, we assume that it
is short-ranged correlated in the angular momentum space

��l�Sl�l��Sl�� =
2

�q
�l,l�. �E2�

In the classical limit, this additional stationary random per-
turbations leads to the modification of the standard mapping
in the following way:

ln+1 = ln + K sin �n,

�n+1 = �n + ln+1 + �ln+1
�Sln+1

. �E3�

Then, following the same procedure as in Ref. 27, we find
the one-loop correction to the density-density correlator to be

�D�l,�;l�,��� =
2

�q
� dl1d�1

2�k–
C�ll,�1;l1,− �1�


� �

��1
ei�P�D�l,�;l1,�1��


� �

��1
ei�P�D�l1,− �1;l�,���� , �E4�

with the regularized diffuson D and the cooperon C satisfy-
ing the following equation:

�1 − 
1 +
1

�q

�2

��2�ei�P���D�l,�;l�,���

C�l,�;l�,��� �
= 2�k–��l − l����� − ��� . �E5�

Equations �E4� and �E5� are fully analogous to those found
for ballistic electronic systems. In Eq. �E5�, the regularizer of
the FRP equation mimics the spread of the minimal wave
packet arising from intrinsic quantum diffractions. Origi-
nally, it was expected27 that the only physical effect arising
from this regularizer is to determine the Ehrenfest time since
it smears the sharp classical propagator. Indeed, one may
further follow the procedure of Ref. 27 to calculate the weak-
localization correction to the diffusion constant. As a result,
the functional form of Eq. �83� is reproduced with tE acquir-

ing explicit �q-dependence.27 At �
�q�−1	 k– /K, the result
thereby obtained are identical to Eq. �83�. This reflects a
basic belief previously anticipated.27,28,44 That is, a physical
regularizer strength must match the minimal quantum wave
packet.
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