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We study the transport of electrons through a long quantum wire connecting two bulk leads. As the electron
density in the wire is lowered, the Coulomb interactions lead to short-range crystalline ordering of electrons. In
this Wigner crystal state the spins of electrons form an antiferromagnetic Heisenberg spin chain with expo-
nentially small exchange couplingJ. Inhomogeneity of the electron density due to the coupling of the wire to
the leads results in violation of spin-charge separation in the device. As a result the spins affect the conductance
of the wire. At zero temperature the low-energy spin excitations propagate freely through the wire, and
its conductance remains 2e2/h. Since the energy of the elementary excitations in the spin chain(spinons)
cannot exceedpJ/2, the conductance of the wire acquires an exponentially small negative correctiond G
~−exps−pJ/2Td at low temperaturesT!J. At higher temperatures,T@J, most of the spin excitations in the
leads are reflected by the wire, and the conductance levels off at a new universal valuee2/h.
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I. INTRODUCTION

The quantization of conductance of one-dimensional(1D)
electron systems in units of 2e2/h was first observed in ex-
periments with quantum point contacts.1,2 The latter consist
of a short(well under 1mm) 1D constriction connecting two
bulk two-dimensional leads. Further progress in fabrication
of low-disorder devices resulted in observation3,4 of similar
conductance quantization in quantum wires of several mi-
crons in length. Experimentally the quantization is observed
as very flat plateaus in the dependence of linear conductance
on the voltage at the gate controlling the electron density in
the wire.

In a number of recent experiments5–13 deviations of con-
ductance from perfect quantization have been observed at
low electron density. These deviations manifest themselves
as negative corrections to the conductance at the beginning
of the first quantized plateau. The correction is usually small
at the lowest temperatures available, but becomes significant
at T,1 K. In typical samples5–7 the conductance levels off
at high temperatures and forms a quasiplateau at about
0.73 s2e2/hd. This phenomenon is often referred to as the
0.7 structure. Despite the numerous theoretical attempts14–26

at the interpretation of the 0.7 structure, its origin remains
unclear.

The analysis of the existing experimental data shows that
the 0.7 structure is sensitive to the length of the one-
dimensional region connecting the two-dimensional leads.
The structure tends to be relatively weak in the short
contacts,8,9 where no quasiplateau is observed even at high
temperatures. On the other hand, in longer samples10–13 the
plateau is observed even at the lowest temperatures avail-
able. The effect is also somewhat stronger, with the quasipla-
teau moving to a lower value of conductanceG<0.5
3 s2e2/hd.

In this paper we consider conductance of a long quantum
wire in the regime of low electron densityn. Focusing on the
case of a GaAs device, we assume quadratic energy spectrum

for free electronsespd=p2/2m, wherem is the effective mass
of the electrons. The typical kinetic energy of an electron at
zero temperature is of the order of the Fermi energy,EF
=sp"nd2/8m. It is important to note that at low densityn
!aB

−1 the kinetic energy is small compared to the typical
energy e2n/« of Coulomb interaction between electrons,
where « is the dielectric constant, andaB=«"2/me2 is the
effective Bohr radius of the material. Thus in the limit of low
density the electrons can be viewed as classical particles
placed at equidistant positions to minimize the Coulomb re-
pulsion, see Fig. 1. Such a picture was first proposed by
Wigner27 and will be referred to as theWigner crystal.

Although the quantum fluctuations of electrons near their
equilibrium positions destroy the long-range order in the
Wigner crystal, its short-range structure strongly affects the
transport through the wire. In particular, the electrons occu-
pying well-defined sites of a Wigner lattice can be viewed as
an antiferromagnetic spin chain with exponentially small ex-
change constantJ. The appearance of a new energy scale
J!EF significantly affects the physics of the electronic
transport through the wire. This effect is most important at
intermediate temperatures,J!T!EF, where it results in a
considerable suppression of the conductance of the wire.

FIG. 1. Sketch of electron density in a quantum wire formed by
confining two-dimensional electrons with gates(shaded). The den-
sity n of one-dimensional electrons in the wire is controlled by the
gate voltageVg. At low density n!aB

−1 the electrons in the wire
form a Wigner crystal.
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The physics of this phenomenon is controlled by the ef-
fect of spin-charge separation in one-dimensional interacting
electron systems. The latter refers to the fact that fermionic
quasiparticles cannot be viewed as elementary excitations of
the system, i.e., it no longer behaves as a Fermi liquid. In-
stead, the system displays Luttinger liquid behavior, and the
elementary excitations are bosonic waves of charge and spin
densities propagating at different velocities. As a result,
when an electron enters the one-dimensional region from one
of the leads, it is decomposed into charge and spin waves. At
low temperatureT!J both waves pass through the wire, and
upon reaching the other lead they reassemble into a fermi-
onic quasiparticle. This process can be interpreted as perfect
transmission of electrons through the wire and gives the stan-
dard value of conductanceG=2e2/h. On the other hand, at
T@J, the bandwidthDs,J of the spin excitations in the
wire is small compared to their typical energyT. As a result,
only the charge excitations pass through the wire, whereas
the spin ones are reflected back to the lead. We show below
that this additional scattering of spin excitations by the wire
reduces its conductance toe2/h.

In Sec. II we study the applicability of the Luttinger liquid
description to the 1D Wigner crystal and show that it is only
valid at energy scales belowJ. On the other hand, the prop-
erty of spin-charge separation is more general and persists at
energy scales aboveJ. We review the known results for the
conductance of a quantum wire in Sec. III. The most impor-
tant consequence of the spin-charge separation in quantum
wires is the conclusion that spin degrees of freedom do not
affect the conductance, which remains quantized at 2e2/h. In
Sec. IV we show that the spin-charge separation is violated
when the wire is connected to the leads. As a result the spin
subsystem affects the propagation of electric charge through
the wire and contributes to its resistance. This contribution is
studied in Sec. V, where we find that atJ!T the conduc-
tance of the device reduces from 2e2/h to e2/h. The relation
of our results to experimental measurements of conductance
of quantum wires is discussed in Sec. VI. A brief summary of
some of our results has been reported in Ref. 28.

II. SPIN-CHARGE SEPARATION IN QUANTUM WIRES

It has been known since the 1970s(Ref. 29) that the low-
energy excitations of a 1D system of interacting electrons are
the charge and spin waves propagating independently of each
other at different velocities. This result is valid at the energy
scales low compared to the bandwidthsDr and Ds of the
charge and spin excitations. In the case of not very strong
interactions both bandwidths are of the order of the Fermi
energy, and the picture of completely separated charge and
spin excitations is appropriate atT!EF.

At low electron densityn!aB
−1 the interactions between

electrons are strong. We show below that as a result the
velocity of the spin excitations is greatly reduced, and their
bandwidthDs,J becomes much smaller thanEF. A similar
effect is known to occur in the strong interaction limit of
some lattice models, such as the Hubbard model.30 In this
regime, the description of the spin excitations in the lan-
guage of noninteracting spin waves is applicable only at very

low temperaturesT!J. We show in this section that a gen-
eralized picture of decoupled charge and spin excitations re-
mains valid even atT*J. In this picture the charge excita-
tions are still given by the waves of charge density
(plasmons), and the spin waves are replaced with the excita-
tions of a Heisenberg spin chain.

A. Luttinger-liquid picture of one-dimensional
electrons systems

The problems involving low-energy properties of interact-
ing 1D electron systems are conveniently described in the
framework of the bosonization technique.31,32 The first step
in this approach is to linearize the spectrum of electrons near
the Fermi level, thereby replacing the quadratic dispersion
law eskd="2k2/2m with the linear one. In thisTomonaga-
Luttinger modelthe electrons are separated in two branches,
the left- and right-movers, with energieseL,Rskd="vFs7k
−kFd, where vF and kF are the Fermi velocity and Fermi
wave vector. One can then present the fermionic field opera-
tors cL,l and cR,l in terms of fieldsfl and ul satisfying
bosonic commutation relationsfflsxd ,]yul8sydg= ipdsx
−yddll8 using the following rule:

cL,lsxd =
hL,l

Î2pa
e−ikFxeiflsxd−iulsxd, s1ad

cR,lsxd =
hR,l

Î2pa
eikFxe−iflsxd−iulsxd. s1bd

Herel= ↑ ,↓ is the spin index,a is the short distance cutoff,
andhL,l andhR,l are Majorana fermion operators.32

In terms of the bosonic variables the Hamiltonian of an
interacting 1D electron system takes the form32,33

H = Hr + Hs, s2d

where the two termsHr and Hs describe the excitations of
the charge and spin degrees of freedom, respectively, and
have the forms

Hr =E "ur

2p
fp2KrPr

2 + Kr
−1s]xfrd2gdx, s3d

Hs =E "us

2p
fp2KsPs

2 + Ks
−1s]xfsd2gdx

+
2g1'

s2pad2 E cosfÎ8fssxdgdx. s4d

Here the new bosonic fieldsfr,s=sf↑±f↓d /Î2 and Pr,s

=]xsu↑±u↓d /pÎ2 satisfy the standard commutation relations
ffasxd ,Pa8sydg= idsx−yddaa8 and represent the excitations
of the charge and spin degrees of freedom. The Hamiltonian
(2)–(4) depends on five parameters determined by the inter-
actions between electrons: velocitiesur andus of the charge
and spin excitations, dimensionless parametersKr and Ks,
and the matrix elementg1' of spin-flip scattering of a left-
moving electron and a right-moving one. In the absence of
interactions, ur=us=vF, Kr=Ks=1, and g1'=0. The
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bosonized Hamiltonian correctly describes the charge and
spin excitations of the system with energies below the re-
spective bandwidthsDr,s,"nur,s.

The most interesting case of repulsive interactions corre-
sponds toKr,1. The coupling constantg1' is positive and
scales to zero32,33 at low energy scalesD,

g1' =
g1'

1 +
g1'

pus

ln
Ds

D

. s5d

The parameterKs renormalizes along withg1', approaching
the valueKs=1 required by the SU(2) symmetry asKs=1
+g1' /2pus, Refs. 32 and 33.

Since the sine-Gordon term in Eq.(4) vanishes atD /Ds

→0, the Hamiltonian(2) becomes quadratic and describes a
Luttinger liquid.31 The latter represents a stable fixed point of
the problem, so the description of the system based upon the
Hamiltonian(2)–(4) is expected to be valid in a broad range
of interaction strengths. It is not immediately obvious, how-
ever, that the above picture is applicable at low electron den-
sity n, i.e., when the interactions are so strong that the elec-
trons form a Wigner crystal. Indeed, a Fourier expansion of
the wave function of an electron localized in a small region
of size a!n−1 near a given lattice site involves the wave
vectors in a broad rangedk,1/a@n,kF. Thus the standard
procedure of linearization of the electronic spectrum nearkF
leading to the Tomonaga-Luttinger model is not justified in
this case. In addition, each electron is constructed out of
waves with both positive and negative wave vectors, and the
picture of two separate branches of left- and right-moving
particles is not applicable to the Wigner crystal. We show
now that even though the conventional derivation leading to
Eqs. (2)–(4) is not justified, this Hamiltonian does describe
the low-energy properties of a 1D Wigner crystal.

B. Charge and spin excitations in a Wigner crystal

At low electron density,naB!1, the properties of the sys-
tem are dominated by the Coulomb repulsion, and the elec-
trons occupy fixed positions on the Wigner lattice. The first
correction to this picture is due to the small vibrations of the
lattice, analogous to phonons in conventional crystals. In the
long-wavelength limit these phonons can be described in the
framework of elasticity theory. In this approach the crystal is
viewed as an elastic medium. Its motion is described in terms
of the displacementusxd of the medium at pointx from its
equilibrium position and the momentum densitypsxd. The
energy of the system can then be written as a sum of kinetic
and potential energies,

H =E F p2

2mn
+

1

2
mns2s]xud2Gdx. s6d

The second term here is 1/2s]2E/]n2dsdnd2, whereE is the
energy of the resting medium per unit length, and the density
perturbationdn is proportional to the deformation of the me-
dium,dn=−n]xu. The parameters=Îsn/mds]2E/]n2d has the
meaning of the speed of density waves(plasmons) in the
Wigner crystal.

The speed of plasmons in a 1D system with true Coulomb
interactions between electrons diverges in the limit of long
wavelength. In practice, however, the interactions between
electrons are usually screened at large distances by a remote
metal gate. In the model where the gate is a conducting plane
at a large distanced@n−1 from the Wigner crystal, the speed
of plasmons is

s=Î2e2n

«m
lnszndd, s7d

wherez<8.0, Ref. 34.
The classical Hamilton function(6) can be quantized by

imposing commutation relationsfusxd ,psydg= i"dsx−yd. The
resulting Hamiltonian describes the propagation of the elec-
tron density excitations in a Wigner crystal, and is com-
pletely analogous to the termHr in the Hamiltonian(2)–(4)
of the Luttinger liquid. Comparing the commutation relations
of the bosonic fields entering Hamiltonians(3) and (6), and
taking into account the expressions for the density perturba-
tion dn=−sÎ2/pd]xfr=−n]xu, we identify the fields as

usxd =
Î2

pn
frsxd, psxd =

pn"

Î2
Prsxd. s8d

Using these expressions we can relate the parameters in the
Hamiltonian Hr to the properties of the Wigner crystal as
follows

ur = s, Kr =
vF

s
. s9d

Here vF=p"n/2m is the Fermi velocity in a noninteracting
Fermi gas of densityn.

The electrons in a Wigner crystal are repelled from each
other by strong Coulomb forces. In the harmonic chain ap-
proximation we used so far the electrons are allowed to
move about their equilibrium positions; however, the ampli-
tude of these oscillations remains small. As a result the elec-
trons never move from one site on the Wigner lattice to an-
other, and can be viewed as distinguishable particles.
Therefore the energy of the Wigner crystal state in this ap-
proximation does not depend on the electron spins.

To account for the spin dependence, one has to include the
processes in which electrons tunnel through the Coulomb
potential repelling them. Considering a pair of electrons at
two neighboring sites of the Wigner lattice, one notices that
depending on their total spin, the two electrons occupy either
a symmetric or an antisymmetric state in the respective
double-well potential. Thus the energy of the pair contains a
term JS1·S2, whereJ.0 is the difference of energies of the
antisymmetric and symmetric states, andSi are the operators
of electron spins.35 Taking into account all the nearest neigh-
bor sites, we find that the spin properties of the Wigner crys-
tal are described by the Hamiltonian of an antiferromagnetic
Heisenberg spin chain
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Hs = o
l

JSl ·Sl+1. s10d

Since the exchange is due to tunneling, the constantJ is
exponentially small,

J = J * expS−
h

ÎnaB
D . s11d

To accurately evaluateJ one has to take into account the fact
that when two neighboring electrons tunnel through the Cou-
lomb barrier separating them, all other electrons also move.
Häusler36 suggested an approximation that neglects the mo-
tion of other electrons; his result corresponds to the value of
h<2.87 in a finite chain of 15 electrons. We solve this
model in the case of an infinite chain in Appendix A and
obtain the value ofh<2.82. We also estimate the prefactor
as

J * < 1.79
EF

snaBd3/4, s12d

whereEF=sp"nd2/8m is the Fermi energy of a noninteract-
ing electron gas of densityn.

The spin part(10) of the Hamiltonian of a 1D Wigner
crystal is very different from that of a weakly interacting
electron gas, Eq.(4). It is easy to show, however, that at low
energiesD!J the two Hamiltonians are equivalent. To ac-
complish that we use the standard procedure32,33of bosoniza-
tion of spin chains. The first step is to perform the Jordan-
Wigner transformation

Sl
z = al

†al −
1

2
, Sl

x + iSl
y = al

† expSipo
j=1

l−1

aj
†ajD , s13d

which expresses the spin operators in terms of creation and
destruction operatorsa† anda of spinless fermions. In terms
of these operators the Hamiltonian(10) becomes

Hs =
1

2o
l

JFsal
†al+1 + al+1

† ald + 2Sal
†al +

1

2
DSal+1

† al+1 +
1

2
DG .

s14d

Thus the Heisenberg spin chain(10) is equivalent to the
model (14) of interacting lattice fermions.

The second step is to bosonize the Hamiltonian(14). At
low energies one can replace the lattice model(14) with a
continuous one,al →asyd, linearize the spectrum of the fer-
mions near the Fermi level, and then apply a bosonization
transformation

aL,Rsyd =
hL,R

Î2pa
e7ikFye±ifssyd/Î2−iÎ2ussyd. s15d

The resulting bosonized Hamiltonian of the spin chain is
equivalent37 to Eq.(4). The value of the speedus of the spin
excitations is easily deduced from the Bethe ansatz
solution38,39 of the Heisenberg model,

us =
pJ

2"n
. s16d

Thus we have established that the bosonized Hamiltonian
(2)–(4) adequately describes the low-energy properties of not
only weakly interacting electron systems, but also of a 1D
Wigner crystal state atnaB!1. However, it is important to
keep in mind that the applicability of the bosonized descrip-
tion to the Wigner crystal is limited to very low temperatures
T!J. Given the exponential dependence(11) of the ex-
change constant on density, this condition can be easily vio-
lated even at fairly low temperatures. In this case one has to
use the more complicated form(10) of the HamiltonianHs.
We show in Sec. V that this breakdown of the Luttinger
liquid picture gives rise to significant deviations of conduc-
tance of quantum wires from the quantized value 2e2/h.

C. Spin-charge separation at ultralow
electron densities

The Wigner crystal picture discussed in Sec. II B relies on
the long-range nature of the Coulomb interaction potential
Vsxd=e2/«uxu. In general, a 1D electron system forms a
Wigner crystal state atn→0 only if the interaction potential
decays slower than 1/uxu2 at x→`. Indeed, for potential
Vsxd~1/uxug the interaction energy of two electrons at the
typical interparticle distancen−1 is V~ng, whereas the ki-
netic energyEF~n2. Thus atg.2 the interaction energy is
negligible atn→0.

The electron density in quantum wires is usually con-
trolled by applying voltage to metal gates. The presence of a
gate affects the electron-electron interactions at large dis-
tances. For instance, if the gate is modeled by a conducting
plane at a distanced from the wire, the interactions between
electrons become

Vsxd =
e2

«
S 1

uxu
−

1
Îx2 + s2dd2D . s17d

The screening of the Coulomb potential by the gate reduces
the potential(17) to Vsxd=2e2d2/«uxu3 at largeuxu. Therefore,
the Wigner crystal picture fails in the limitn→0. Comparing
the interaction potential at the interparticle distanceVsn−1d
with the Fermi energy of electrons, one concludes that within
the model(17) the Wigner crystal state exists only in the
density rangeaB/d2!n!aB

−1.
As long as the system is in the Wigner crystal state, its

spin excitations are described by the Heisenberg model(10).
However, the expression(11) for the coupling constantJ
relies on the pure Coulomb interaction between electrons. In
the case of interaction potential screened by the gate, the
exponential decrease ofJ with decreasing density stops at
n,d−1, because the potential falls off rapidly at distances
x@d. Using the method described in Appendix A, one esti-
mates

J , EFSnd2

aB
D3/4

expS− h̃Î d

aB
D s18d

at aB/d2!n!d−1. In the case of interaction potential(17)
the constanth̃<8.49.

The distance to the gate in quantum wire devices is typi-
cally large,d*10aB, and most experiments are performed at
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densities well aboveaB/d2. However, if the density is re-
duced ton&aB/d2, the Wigner crystal picture used in Sec.
II B will fail. It is interesting to explore to what extent the
conclusions of Sec. II B will be affected. To this end, let us
now study the limitnd2/aB→0.

At n!aB/d2 the interaction between two particles at a
typical distancen−1 is small compared to their kinetic energy
,EF. On the other hand, when the distance between elec-
trons is sufficiently short,uxu&n−1snd2/aBd1/3!n−1, they ex-
perience strong repulsionVsxd*EF. Thus in the limit of low
electron density one can model the interaction potential(17)
by short-range repulsion

Vsxd = Vdsxd. s19d

Contrary to a naive expectation, the constantV should not be
chosen as the integral of the interaction potential(17). In-
deed, the exchange coupling of the spins of two neigboring
electrons is caused by tunneling through the barrier(17).
Thus to ensure that the potentials(17) and (19) result in the
same exchange coupling between electrons, the parameterV
should be chosen in such a way that the barriers(17) and
(19) have equal transmission coefficients. This condition
gives

V ,
"2aB

md2 expSh̃Î d

aB
D . s20d

The exponentially large value ofV reflects the fact that the
strong repulsion(17) leads to almost perfect backscattering
of electrons off each other.

At V→` the electrons are separated by thin hard-core
potentials. In this limit they can be viewed as distinguishable
particles, and the eigenvalues of energy become independent
of the electron spins. The wave functions of the system es-
sentially coincide with the Slater determinants for spinless
noninteracting fermions. Upon bosonization, the Hamil-
tonian Hr of this system takes the form(3). The plasmon
velocity s in this system is the Fermi velocity of noninteract-
ing electron gas of densityn, which is twice the Fermi ve-
locity of nonpolarized electron gas,s=2vF. Thus according
to Eq. (9) we have40 Kr=1/2. Additional properties of this
model were recently discussed in Refs. 41 and 42.

At large finite V the electrons can change places as a
result of scattering, and the energy acquires a weak depen-
dence on the spins. This dependence can be deduced from
the well-known properties of the one-dimensional Hubbard
model. It has been shown by Ogata and Shiba43,44 that at
U / t→` the spin and charge excitations of the Hubbard
model are completely separated, with the Hamiltonian of
spin excitations taking the form of the Heisenberg model
(10). (Here U is the energy of the on-site repulsion in the
Hubbard model, andt is the hopping matrix element.) The
magnitude of the exchange constant in this Hamiltonian was
found44 to be

J =
4t2

U
neS1 −

sin 2pne

2pne
D , s21d

wherene is the average number of electrons per site. In the
limit ne→0 the Hubbard model is equivalent to an electron

gas with quadratic spectrum and pointlike interaction(19).
The limiting procedure can be performed by introducing in-
finitesimal lattice perioda in the Hubbard model, identifying
the parameterst="2/2ma2, U=V /a, ne=na, and taking the
limit a→0. Applying this procedure to the formula(21), we
find

J =
2p2

3

"4n3

m2V . s22d

Using the estimate(20) of parameterV for the interaction
potential(17), we find

J , EF
nd2

aB
expS− h̃Î d

aB
D . s23d

Note that the results(18) and(23) for the exchange constant
are of the same order of magnitude atn=aB/d2.

So far we have demonstrated that the description of the
system in terms of the Hamiltonian in spin-charge separated
form H=Hr+Hs, with Hr andHs given by Eqs.(3) and(10)
is valid in two different regimes. The first one is the Wigner
crystal state at electron densities in the rangeaB/d2!n
!aB

−1, and the second is the low density limitn!aB/d2,
where the picture of pointlike interactions(19) is applicable.
One can show45 that in fact this picture of spin-charge sepa-
ration holds at any densityn!aB

−1, including the regimen
,aB/d2.

The exchange constantJ in the effective spin chain
Hamiltonian (10) monotonically decreases as the electron
densityn is lowered. In the most interesting range of densi-
ties d−1!n!aB

−1 the dependence of exchange onn is expo-
nential, Eq.(11). At lower densities the dependence becomes
a power-law one. Specifically, in the density rangesaB/d2

!n!d−1 and n!aB/d2 one can use the estimates(18) and
(23), respectively.

For the sake of simplicity, in the following sections we
assume that the electron density is in the rangeaB/d2!n
!aB

−1, and refer to the electron system as a Wigner crystal.
However, all of our conclusions remain valid at any densities
n!aB

−1, if the value of the exchange constantJ is adjusted as
discussed in this section.

III. CONDUCTANCE OF A QUANTUM WIRE
WITH SPIN-CHARGE SEPARATION

The spin-charge separation has a profound effect on the
conductance of quantum wires. Indeed, the electric field ap-
plied to the wire couples to the electron charges and has no
effect on spins. As a result, the spin degrees of freedom
remain decoupled from charge ones, and the rather complex
form of the HamiltonianHs has no effect on the conduc-
tance. In this section we review the known results for the
conductance of a quantum wire with spin-charge separation.

A. Infinite wire

Conductance of an infinite Luttinger liquid is given by
G=2Kre

2/h. This result was obtained46,47by assuming that a
weak electric field is applied to a small part of the wire, and
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the conductance was evaluated by using the Kubo formula.
In the following sections it will be more convenient to evalu-
ate the conductance of the Wigner crystal in the regime of
applied current. It is therefore instructive to reproduce the
resultG=2Kre

2/h in this approach.
Let us consider a quantum wire whose charge dynamics is

described by the Hamiltonian(3), and enforce the current
I = I0 cosvt at x=0. By doing so we impose a boundary con-
dition upon the charge fieldfrs0,td. Indeed, the bosonization

expression for the electric current isI =esÎ2/pdḟr. [In the
case of a Wigner crystal, this can be checked by using Eq.(8)
and the definitionI =enu̇of current in terms of the velocityu̇
of the crystal.] Thus the fieldfr satisfies the condition

frs0,td =
p

Î2
qstd, s24d

where the function

qstd =
I0

ev
sinvt s25d

is related to the current asI =eq̇ and has the meaning of the
number of electrons that passed through pointx=0 at timet.

By imposing a time-dependent boundary condition(24)
we drive the system with an external oscillating force. This
leads to emission of plasmon waves and dissipation of the
energy from the driving force to the infinite Luttinger liquid.
We will find the resistance of the wireRr by evaluating the
energyW dissipated in unit time and comparing the result
with the Joule heat lawW= 1

2I0
2Rr. We present a formal deri-

vation in Appendix B; here we limit ourselves to a simple
semiclassical argument.

Solving the Hamilton equations with Hamiltonian(3) and
boundary condition(24) we find48

frsx,td =
pI0

Î2ev
sinvst − uxu/urd, s26ad

Prsx,td =
I0

Î2eKrur

cosvst − uxu/urd. s26bd

Substituting this solution back into Eq.(3), we find the fol-
lowing expression for the time-averaged energy density in
the Luttinger liquid,

kElt =
p"

4e2

I0
2

Krur

. s27d

The plasmon wave(26) carries the energykElt at speedur in
two directions. Thus the total energy dissipated into plasmon
waves in unit time is given byW=2urkElt. Comparing this
result withW= 1

2I0
2Rr, we find the resistance

Rr =
h

2Kre
2 , s28d

in agreement with the result for the conductance found in
Refs. 46 and 47.

B. Finite-length quantum wire between two
noninteracting leads

The resultG=2Kre
2/h indicates that in a quantum wire

with repulsive interactions conductance should be below the
quantized value 2e2/h. Furthermore, it is expected to de-
crease as the electron densityn is lowered. However, the
experiments consistently show perfect quantization49 of con-
ductance at 2e2/h in a broad range ofn.

This controversy was resolved51–53 by noticing that in-
stead of an infinite quantum wire, the experiments study
transport through a finite-length wire connecting two bulk
leads. Since the leads are not one-dimensional, their proper-
ties are not adequately described by the Luttinger liquid
model (2)–(4). Instead, the electrons in the leads are ex-
pected to be in a Fermi liquid state.

To find the conductance of such devices, one can
model51–53 the leads connected to the wire by two semi-
infinite noninteracting wires. In this model the system re-
mains one-dimensional, but the interactions are nonvanishing
only in the central part of the system. The lengthL of the
interacting part is identified with the length of the wire. As-
suming that the interactions fall off gradually atx→ ±`, one
can neglect the backscattering of electrons from the interact-
ing region. In this limit the charge dynamics is still described
by the Hamiltonian(3), but the parametersKr andur become
functions of coordinatex.

The measurements of dc conductance in experiments are
conducted at very low frequenciesv!ur /L. The wavelength
of the plasmons of frequencyv emitted in the system is then
much greater than the length of the interacting regionL.
Thus the plasmons are emitted in the regions withuxu @L,
and one should use in Eq.(28) the value of the parameterKr

taken atx→ ±`. Electrons in those regions do not interact
with each other, which corresponds toKr=1. The resistance
(28) of the device then becomes

Rr =
h

2e2 , s29d

and the perfect quantization is restored. Careful
treatments51–53 of the problem lead to the same conclusion.

IV. VIOLATION OF SPIN-CHARGE SEPARATION IN
QUANTUM WIRE DEVICES

As we saw in Sec. III, the inhomogeneity of the system
caused by coupling of the wire to the leads changes the con-
ductance from 2Kre

2/h to 2e2/h. This conclusion was de-
rived from consideration of the charge excitations only, as
the spin degrees of freedom were assumed to be completely
separated. We now turn to the effect of the inhomogeneity on
the spin partHs of the Hamiltonian.

We assume that the central part of the wire contains a
purely one-dimensional electron system at low densityn
!aB

−1, so that the Wigner crystal model is appropriate. The
wire is also assumed to be smoothly connected to the leads,
where the effective interactions are weak. This is due to sev-
eral effects. First, the electron density grows as one moves
away from the wire into the leads. This effectively reduces
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the interaction strength, as the latter is characterized by pa-
rametersnaBd−1. In addition, the wire becomes wider when it
couples to the leads. As a result, when two electrons arrive at
the same coordinatex along the wire, they are no longer as
close to each other as in the middle of the wire. This reduces
the strength of interactions between 1D electrons. The two
mechanisms have very similar effect on the HamiltonianHs.
For simplicity, in the following we limit our discussion to the
effect of inhomogeneous electron density.

Following the ideas of Refs. 51–53, we model the wire
connected to the leads by an inhomogeneous 1D system. The
main source of inhomogeneity is the dependencensxd of the
electron density on position. We assume that the density
takes a constant valuensxd=n inside the wire, i.e., atuxu
,L /2, and gradually grows to a very large valuen`@aB

−1 at
x→ ±`.

In experimental devices the dependence of electron den-
sity on the coordinate along the wire is caused by inhomo-
geneity of the external confining potential. Apart from
changing the electron density, the external potential may also
lead to backscattering of electrons in the wire. In a suffi-
ciently long wire such processes may greatly suppress the
conductance at low temperature.46,47 In the Wigner crystal
picture this phenomenon is interpreted as pinning of the crys-
tal by the external potential.34 On the other hand, the best
available experiments show good quantization of conduc-
tance, indicating that the backscattering remains negligible.
This is most likely the result of smoothness of the confining
potential. Indeed, the backscattering involves the change of
the electron wave vector by 2kF. Thus an external potential
that is smooth at the scale of interparticle distancen−1 will
cause exponentially weak backscattering. In this paper we
assume that the external potential is sufficiently smooth, so
that the backscattering can be neglected.

Under the above conditions the low-energy properties of
the system may be described by the bosonized Hamiltonian
(2)–(4), but with position-dependent parametersur,s, Kr,s,
g1'. In this paper we assume that the temperature is small
compared with the bandwidthDr,"nur of the Hamiltonian
Hr, so that the discussion of the effect of the charge modes
on the conductance presented in Sec. III is valid. On the
other hand, we will be interested in the case of temperature
comparable with the bandwidthDs,J of the Hamiltonian
Hs. In this regime the bosonized version(4) of Hs is not
applicable, and one should instead use the Heisenberg model
(10).

Since the exchange constant(11) strongly depends on the
electron densitynsxd, the parameterJ in Eq. (10) should also
be considered position-dependent. In particular, the strength
of the exchange coupling between the two spins at the neigh-
boring sitesl and l +1 of the Wigner lattice is a function of
the coordinatexl of the lth electron:J=Jsxld. It is important
to note that in the presence of electric currentI the Wigner
lattice moves, so the coordinatexl of the lth lattice site de-
pends not only onl, but also on time.

The time dependence ofxl can be accounted for by noting
that if during the time intervalt a numberqstd of electrons
have moved from the left lead to the right one, thelth site of
the lattice has shifted to thesl +qd-th position. Thus the time

dependence of the positions of the lattice sites can be ac-
counted for by replacingl → l +qstd, and the HamiltonianHs

takes the form

Hs = o
l

Jfl + qstdgSl ·Sl+1. s30d

Note that in this approximation the electric currentI =eq̇std is
assumed to be uniform throughout the wire. This is true in
the dc limit v!ur /L.

It is important to note that the form(30) of the Hamil-
tonian Hs violates the spin-charge separation. Indeed, the
coupling between the spins depends on the amount of charge
that passed through the wire, which is related to the fieldfr,
see Eq.(24). As a result, the conductance of a quantum wire
connected to bulk leads may be affected by the spin
excitations.54

To find the effect of spin subsystem on the conductance,
one could substitute the expression(24) for qstd into Eq.
(30), and consider the complete HamiltonianHr+Hs without
relying on spin-charge separation. In this approach one needs
to add to the Hamiltonian a term describing the applied bias,
and evaluate the electric current. However, it is more conve-
nient to treat the currentIstd in the wire as an external pa-
rameter. In this caseqstd is also a parameter, and the Hamil-
toniansHr andHs still commute. The only consequence of
the violation of spin-charge separation in this approach is the
dependence ofHs on the currentIstd.

The presence of an oscillating parameter(25) in the
Hamiltonian (30) may lead to the creation of spin excita-
tions. Using the approach of Sec. III, we will calculate the
energy dissipated into spin excitations in unit time. In the
limit of weak current, the dissipation is found in the second
order of the perturbation theory in the amplitudeI0 of current
oscillations. Thus in addition to the plasmon result for the
energyW dissipated in unit time, we will obtain a similar
contribution of the spin modes:

W=
1

2
I0
2Rr +

1

2
I0
2Rs. s31d

Comparing this result with the Joule heat lawW= 1
2I0

2R, we
conclude that the resistanceR of the wire is given by the sum
of two independent contributions,

R= Rr + Rs. s32d

Note that the first term in this expression is already known,
Eq. (29). The second term is discussed in Sec. V.

It is interesting to point out that the result(32) may be
interpreted as a total resistance of the charge and spin sub-
systems connected in series, whereas naively one might ex-
pect a parallel connection. The reason is that the spins do not
directly respond to the applied voltage, as required for the
latter interpretation. Instead, the spin subsystem responds to
the electric current. Thus the HamiltoniansHr and Hs be-
come independent in the regime of applied current, in anal-
ogy with the problem of two independent resistors connected
in series. A result similar to Eq.(32) has been obtained for
the resistivity of two-dimensional strongly interacting sys-
tems in Ref. 55.
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V. SPIN CONTRIBUTION TO THE RESISTANCE

To find the contributionRs of the spin subsystem to the
resistance of the device, we study the dissipation of energy
into spin excitations caused by the time dependence of the
Hamiltonian(30). We start by performing the Jordan-Wigner
transformation(13) and converting the Hamiltonian to the
fermionic form

Hs =
1

2o
l

Jfl + qstdgFsal
†al+1 + al+1

† ald

+ 2Sal
†al +

1

2
DSal+1

† al+1 +
1

2
DG . s33d

In the absence of the external magnetic field the average
z-component of the spin at every site of the lattice must
vanish. Thus according to Eq.(13) the occupation of each
site is kal

†all= 1
2. This means that the Fermi level is in the

middle of the band,m=0.
The exchangeJfyg strongly depends on the positiony.

Inside the wire the electron density is low,naB!1, and the
exchange is exponentially small, Eq.(11). As the wire con-
nects to the bulk leads, the densitynsxd begins to grow. At
naB,1 the exchangeJ becomes of the order of the Fermi
energy, see Eqs.(11) and (12).

Strictly speaking, the Wigner crystal picture is valid only
at naB!1, i.e., as long asJ!EF. On the other hand, we will
be interested in the properties of the system at low energies
D!EF. Thus atJ,EF when the Wigner crystal picture fails,
we are only concerned with the energy scales much lower
thanJ. As we saw in Sec. II, at those scales one can use the
bosonized Hamiltonian(4) regardless of the applicability of
the Wigner crystal description. Thus we can ignore the dif-
ference between the Wigner crystal and weakly interacting
electron gas at large densityn@aB, and simply assume that
in the leads the exchangeJ saturates atJ`,EF.

The properties of the functionJfyg can thus be summa-
rized as follows:

Jfyg = H J ! EF at uyu , nL/2,

J` , EF at uyu → ± `,
J s34d

see Fig. 2. Note thaty is the coordinate on the Wigner lattice.
Since we consider the limit of very smooth confining poten-
tial, all the physical quantities change very little at the inter-
particle distance. We therefore assume thatJfyg is a slowly
varying function:udJ/dyu!Jfyg.

A. XY model

The Hamiltonian(33) describes a system of strongly in-
teracting fermions. As a first approximation we will simplify
the problem by neglecting the interactions between the fer-
mions,

Hs
XY =

1

2o
l

Jfl + qstdgsal
†al+1 + al+1

† ald. s35d

This Hamiltonian corresponds to the fermionized version of
the XY model of a spin chain, in which the coupling of the
z-components of spin operators is neglected. This approxi-
mation violates the SU(2) symmetry of the problem, and is
therefore rather crude. On the other hand, the resistanceRs

can be found exactly for model(35), and the result will pro-
vide considerable insight into the properties of model(33).

Hamiltonian(35) represents an inhomogeneous version of
the tight-binding model of lattice fermions. In the uniform
case,Jfyg=const, the spectrum is well known,

eskd = J sink, s36d

where the wave vectork is measured fromkF=p /2. One can
either assume thatk varies in the interval −p,k,p, or
choose 0,k,p and treat Eq.(36) as spectra of two
branches of excitations, the particles and holes.

In the absence of electric current in the wire one can omit
qstd in the Hamiltonian(35) and view it as a tight-binding
model with slowly varying bandwidth 2Jfyg. In the leads the
bandwidth 2J` is very large; it narrows down to a very small
value 2J in the wire, Eq.(34). The particles moving toward
the wire in one of the leads cross to the other lead if their
energies are below the small exchangeJ in the wire; the
particles withe.J are reflected.

In the presence of the electric currentI, the constriction of
the band in the Hamiltonian(35) moves with respect to the
lattice with velocityq̇= I /e. The particles reflected from the
moving constriction change their energy. These processes
lead to the dissipation of energy and contribute to the resis-
tanceRs.

For noninteracting fermions, the problem of evaluating
the energyW dissipated in unit time by a moving scatterer
can be solved for arbitrary reflection coefficientRsed, see
Appendix C. Here we findW in the semiclassical limit,
which is valid for very slowly varying bandwidthJfyg, when
Rsed=use−Jd.

In the limit of slowly varying Jfyg one can apply the
result (36) for the spectrum of particles at every point in
space, and treat the excitations as classical particles with
energy

Hsy,p,td = Jfy + vtgsin
p

"
. s37d

Herey is the coordinate of the particle,p is its momentum,
andv= I /e is the velocity of the constriction. For simplicity
we will consider the case of dc current,I =const. To find the
linear conductance of the quantum wire, one can limit one-
self to the case of very small current, and assumev
!T/" ,J/".

FIG. 2. Sketch of the dependenceJfyg in our model. Inside the
wire, uyu,nL/2, the exchangeJ is exponentially small, Eq.(11). As
one moves toward the leads,J grows, and aty→` it saturates at
J`,EF.
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The time-dependent energy(37) should be treated as a
Hamilton function, and the trajectory of the particle can, in
principle, be found by solving the classical Hamilton equa-
tions. One can easily check that the quantity

Esy,p,td = Hsy,p,td + pv s38d

is an integral of motion. It has the meaning of energy of the
particle in the frame moving at the speed of the constriction.

A particle with energye,T moving in the right direction
has a very low momentump when it is in the leads,p/"
=e /J`,T/EF!1. Thus its integral of motionEsy,p,td=e.
As the particle approaches the constriction, its momentum
increases, so thatE retains its value despite the decrease of
the bandwidthJ. At small v the maximum allowed value of
E in the wire is reached atp=p" /2 and equalsEmax=J
+ p

2 "v. Thus ate,J+ p
2 "v the right-moving particle moves

from the left lead to the right one, and its energye remains
unchanged. If the energye exceedsJ+ p

2 "v, the particle can-
not enter the wire. When its momentum reachesp" /2 at a
point to the left of the constriction, the particle is reflected.
Deep in the left lead its momentum is very close top". Due
to the pv term in the integral of motion(38), its energyH
decreases toe−p"v.

Similarly, since a left-moving particle in the right lead
with energye has momentum very close top", its integral of
motion (38) is E=e+p"v. The conditionE,Emax for trans-
mission through the constriction for such particles means
e,J− p

2 "v. As the particle reaches the left lead, the momen-
tum is again nearp", i.e., conservation ofE results in con-
servation of energyH=e. On the other hand, particles with
energiese.J− p

2 "v are reflected back to the right lead, and
their momentum on the right-moving branch is nearp=0.
Thus the energy of these particles increases frome to e
+p"v.

To summarize, the particles in the leads with energies
e,J− p

2 "v cross the constriction region without change of
energy. The particles with energiese.J+ p

2 "v are always
reflected by the constriction. The ones in the left lead de-
crease their energy byp"v, while the ones in the right lead
increase their energy by the same amount, so that these con-
tributions to the total energy of the system compensate each
other. Finally, in the narrow range of energiesJ− p

2 "v,e
,J+ p

2 "v the right-movers go through the constriction with-
out change of energy, whereas the left-movers are reflected
back to the right lead with energy gainp"v.

The total current of left moving particles and holes in the
narrow energy interval of widthp"v neare=J is given by

dṄ=s2/hdsp"vdfsJd, where fsed=1/see/T+1d is the Fermi
function. Thus the total energy transferred to the spin exci-
tations in unit time is

WXY = p"v2fsJd = I2p"

e2 fsJd. s39d

Comparing this result with the Joule heat lawW= I2R, we
obtain the spin contribution to the resistance

Rs
XY =

h

2e2 fsJd. s40d

At low temperatureT!J most of the particles have energies
belowJ and pass through the constriction elastically. Only an
exponentially small fraction of particles are reflected and
contribute to the dissipation. Thus the result(40) is exponen-
tially small at low temperatures,Rs

XY.sh/2e2de−J/T. As the
temperature is increased, a greater fraction of the particles
are reflected by the constriction, and theRs

XY increases. In the
limit T/J→` all the particles are reflected, and the resis-
tance saturates atRs

XY=h/4e2.
In this section we studied the simplifiedXY model, in

which thez-component of coupling in the Hamiltonian(30)
was neglected. Thus the result(40) cannot be applied directly
to the problem of conductance of a quantum wire in the
Wigner crystal regime. However, much of the physics lead-
ing to Eq.(40) can be carried over to the case of the isotropic
model (30).

B. Isotropic coupling

The problem of the isotropic inhomogeneous Heisenberg
spin chain(30) is far more complicated than that of theXY
model(35). However, it can still be somewhat simplified by
assuming thatJfyg is a very slowly varying function. Then
each moderately long section of the spin chain can be ap-
proximated by the homogeneous Heisenberg model. The lat-
ter allows for exact solution56 by means of Bethe ansatz. The
low-energy excitations of the isotropic Heisenberg spin chain
are spinons with energy spectrum38,39

eskd =
pJ

2
sink. s41d

Although the spinons do not obey Fermi statistics, the simi-
larity between Eq.(41) and the spectrum(36) of the excita-
tions of theXY model enables us to find the temperature
dependence ofRs at T!J.

Indeed, most of the discussion leading to Eq.(40) did not
rely on Fermi statistics of the excitations. One can apply the
arguments of Sec. V A to the problem of scattering of
spinons by the constriction of the band in the wire. In par-
ticular, one concludes that spinons with energies belowpJ/2
pass through the constriction without scattering and do not
change their energy. Thus the dissipation is exponentially
small atT!J, and one findsRs~exps−pJ/2Td.

Since the occupation of states with high energye=pJ/2
at low temperature is exponentially small and independent of
statistics, one can naively expect the resistanceRs to be
given by the low-temperature asymptotics of Eq.(40) upon
replacementJ→pJ/2. Then one obtains

Rs = R0 expS−
pJ

2T
D . s42d

This approach gives the prefactorR0=h/2e2.
Unfortunately the analogy between spinons and fermion

excitations of theXY model does not enable one to find the
prefactor in Eq.(42). Unlike the excitations of theXY model,
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the spinons interact with each other, and the energy of a
spinon is affected by the presence of other spinons. In the
limit T→0 the density of other spinons is small, and the
energy is given by Eq.(41). At finite T the result(41) may
acquire a small correction. The exponent of Eq.(42) is de-
termined by the maximum energy of a spinonpJ/2. Even a
small correction to this energy may affect the prefactorR0.

At high temperatureT@J the resistance contributionRs

evaluated within theXY model approximation saturates, be-
cause in this regime all the excitations are reflected by the
constriction. This feature is preserved in the model with iso-
tropic coupling, as atJ→0 the spin excitations cannot propa-
gate through the wire. Similarly to the case of low tempera-
ture, the excitations of the spin chain are spinons. The
scattering of spinons by the constriction is complicated by
the fact that in the central region, whereJflg&T, the gas of
spinons is not dilute. However, it is natural to assume that the
moving constriction withJ!T backscatters all the spinons
approaching it, resulting in a finite dissipationWs= I2Rs.

To find the saturation value ofRs at high temperatures we
notice that in the part of the system away from the constric-
tion, whereJflg.J`@T, one can still bosonize the Hamil-
tonian (33) and use the form(4). Inside the constriction the
bosonization is not applicable, and this region should be
modeled by imposing a boundary condition on the bosonic
field fs at the constriction, corresponding to the fact that
there is no spin propagation between the regions of large
positive and negativel. The form of the boundary condition
cannot be obtained within the bosonization approach because
the latter fails atJ&T. To evaluateRs we assume that the
exact nature of the scatterer does not affect the dissipation
Ws, as long as all the excitations are backscattered. This
enables us to replace the constriction(34) of the bandwidth
Ds,Jflg in the Hamiltonian(33) with a high potential bar-
rier for the fermions. The barrier is modeled by a large back-
scattering termy saL

†aR+aR
†aLd at site l =−qstd. Upon the

bosonization transformation(15) this term becomes
−ỹ cosfÎ2fssyd−2kFyguy=−qstd, with kF on the lattice being
p /2. Since this scattering term is very strong,ỹ→`, it pins
the field fsf−qstd ,tg to the value −Î2kFqstd=−sp /Î2dqstd.
This time-dependent boundary condition leads to the emis-
sion of spin waves, in analogy with Sec. III A, where the
boundary condition(24) gave rise to plasmon waves(26). In
the limit of weak current,I ,evq→0, the wavelength of the
spin waves,J` /"v is much larger thanqstd, and instead of
imposing the boundary condition aty=−qstd one can impose
it at y=0. Then the boundary condition becomes

fss0,td = −
p

Î2
qstd. s43d

Note that up to the inessential negative sign Eq.(43) is
identical to the boundary condition(24). The respective
Hamiltonians(3) and(4) are also essentially identical at low
energies, as the sine-Gordon term is irrelevant. One can
therefore carry over the results of Sec. III A for the dissipa-
tion of energy into plasmon waves and the resulting contri-
bution to the resistance. Adapting Eq.(28) to the parameters
of Hamiltonian(4), we find

Rs =
h

2Kse2 . s44d

In the dc limit the frequency of the driving forcev→0, and
the wavelength of the spin waves is very long. Thus the
parameterKs in Eq. (44) is taken at large distances from the
constriction, where the SU(2) symmetry demandsKs=1.
Consequently the spin contribution to the resistance in the
model with isotropic coupling is given by

Rs =
h

2e2 . s45d

On the other hand, theXY model (35) does not possess the
SU(2) symmetry, and the bosonization procedure(15) gives
the quadratic part of Hamiltonian(4) with Ks=2. Then Eq.
(44) predictsRs

XY=h/4e2, in agreement withT@J asymptot-
ics of Eq.(40).

VI. DISCUSSION OF THE RESULTS

The quantity most commonly measured in experiments
with quantum wire devices is the linear conductance. In our
theory its value is given by

G =
1

Rr + Rs

, s46d

cf. Eq. (32). The contributionsRr andRs to the resistance of
the wire are determined by the properties of the charge and
spin excitations of the system, respectively.

Throughout this paper we consider the case of relatively
low temperature,T!Dr,"nur. In this regime the contribu-
tion of the charge modes is well known:Rr=h/2e2 (see also
Sec. III B). Raising the temperature aboveDr leads to ther-
mal smearing of conductance plateaus. No interesting elec-
tron correlation effects are expected in this case.

At not too low electron densityn*aB
−1 the bandwidth

Dr,Ds,EF is the only relevant energy scale of the prob-
lem. Then atT!EF the contributionRs vanishes, and the
conductance takes the well-known quantized valueG
=2e2/h. On the other hand, in the interesting case of low
densityn!aB

−1 another energy scale, the exchange constant
J, appears in the problem. This scale is exponentially small,
Eq. (11); in particular,J!Dr. In the limit of low temperature
T→0 the contributionRs still vanishes. More specifically, at
T!J we predict activated temperature dependence(42) of
Rs, with activation temperaturepJ/2. At higher tempera-
turesRs grows, and atT@J it saturates at the universal value
Rs=h/2e2, see Eq.(45). Combining these results with Eq.
(46), we obtain

G =
e2

h
, J ! T ! Dr. s47d

This is our main result. It corresponds to an additional quan-
tized plateau of conductance of a quantum wire at low elec-
tron density. The value of the conductance at this plateau is
exactly one-half of the quantized conductance 2e2/h.

The plateaus of conductance ate2/h have been observed
at low electron densities in several experiments.10–13The au-
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thors of Refs. 10–13 attributed this feature to the spontane-
ous spin polarization in quantum wires. This interpretation
contradicts the theorem by Lieb and Mattis,57 stating that the
ground state of a 1D electron system cannot be spin-
polarized in the absence of magnetic field. One can hypoth-
esize that the ferromagnetism in quantum wires is possible
because the electrons are not truly one-dimensional; how-
ever, to the best of our knowledge, no such theory is avail-
able at this time. In our theory the spin structure of the
Wigner crystal state is described by the Heisenberg model
(10) with positive exchange constantJ, corresponding to an-
tiferromagnetic coupling. Thus the ground state of the
Wigner crystal is not spin-polarized, in agreement with the
theorem.57

The temperature dependence of the conductance of a
quantum wire device obtained in this paper is similar to the
behavior observed in experiments on 0.7 structure in quan-
tum point contacts.5–9 In agreement with experiments,7–9

conductance(46) remains 2e2/h at T→0, but develops a
negative correction at finite temperature. The activated tem-
perature dependence of the correction following from Eq.
(42) is consistent with the measurements of Ref. 9. At high
temperature the correction saturates, and the conductance de-
velops a new plateau. Contrary to the experiments,5–7 this
plateau is at one-half of the quantized value 2e2/h, rather
than at 0.73 s2e2/hd. The relation between the plateau at
e2/h and the 0.7 structure was studied experimentally in Ref.
12. It was found that the quasiplateau at 0.73 s2e2/hd is
observed in short wires, whereas in longer wires it shifts
towarde2/h. In this paper we assume that the wire is long, so
that the parameters of the system, such as the confining po-
tential, Fermi energy, and exchange constantJ, do not
change significantly at the interparticle distance. It would be
interesting to generalize our approach to the case of shorter
wires and see whether the physics discussed in this paper
may be responsible for the 0.7 structure in quantum point
contacts.

To test the relevance of our theory to the experiments10–13

showing plateaus ate2/h, one can check whether the experi-
mental temperature exceeds the exchange energyJ. Due to
the strong exponential dependence(11) of J on the density,
the uncertainty ofn may make the estimation ofJ difficult.
Instead one may be able to determineJ experimentally by
applying magnetic fieldB in the plane of the two-
dimensional electron gas in the leads. Such a field does not
affect the orbital motion of electrons, and couples only to
their spins. If the magnetic field exceeds a certain critical
valueBc~J, the spin chain becomes completely spin polar-
ized. The magnitude of the critical fieldBc can be found by
considering the spin-polarized state in a strong fieldB with a
single spin-flip excitation. The energy of such an excitation
ugumBB is reduced by 2J due to coupling to neighboring
spins.(Hereg is the Lande factor, andmB is Bohr magneton.)
Thus the complete polarization occurs atB.Bc, where

Bc =
2J

ugumB
. s48d

By measuring the critical fieldBc required to achieve com-
plete polarization of the spin chain one can determine the
exchange constantJ.

In the case of noninteracting electrons at zero temperature
the conductance does not depend on the magnetic field and
remains 2e2/h until the electron gas becomes completely
spin polarized atB.Bc

s0d=EF /4ugumB. In a polarizing field
only one spin channel is allowed in the wire, and the con-
ductance reduces toe2/h. In the case of a quantum wire at
low electron density this behavior is preserved, but the step
in conductance occurs at a much lower critical field(48).
Indeed, although in the presence of magnetic field spinons
are no longer the elementary excitations of a spin chain, at
B,Bc one can introduce modified elementary excitations
with similar properties.58 Then by repeating the arguments of
Sec. V B one concludes that the low energy excitations
present in the system atT→0 cross the wire elastically, re-
sulting in Rs=0 and total conductanceG=2e2/h. At B.Bc
the wire is completely spin polarized, and the spin excita-
tions in the leads are reflected by the wire. This situation is
completely analogous to the case of high temperature con-
sidered in Sec. V B. In particular, the resistanceRs can be
found by bosonizing the electron system in the leads and
imposing the boundary condition(43) on the fieldfs. This
again leads toRs=h/2e2 and reduces the conductance of the
device toe2/h. Thus one can find the critical field(48) and
the exchange constantJ by measuring the magnetic field at
which the conductance drops from 2e2/h to e2/h.

Apart from the experiments with GaAs quantum wires,
quantization of conductance atG=e2/h in the absence of
magnetic field has been observed in carbon nanotubes.59 This
anomalous quantization occurs when the current is forced to
flow through the narrow tip of the tube. At small radius of
the nanotube the Coulomb interactions between electrons be-
come effectively stronger, and could conceivably suppress
the exchange couplingJ of the electron spins below the tem-
perature. Our result(47) would then explain the experimental
data.59
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APPENDIX A: ESTIMATE OF THE EXCHANGE
CONSTANT J

Here we estimate the exchange constant in an infinite 1D
Wigner crystal with the lattice constantb=1/n. Following
the idea of Häusler36 we evaluateJ for two spins at neigh-
boring sitesl =0 andl =1 using an approximation where the
only dynamical variable is the distancex=x1−x0 between the
two electrons. In this approximation,x0+x1=b and all the
other electrons(l Þ0,1) are at fixed positionsxl = lb. Then
the Coulomb potential takes the form
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Usxd =
e2

«uxu
+ o

lÞ0,11 e2

«Ub − x

2
− lbU +

e2

«Ub + x

2
− lbU2 .

sA1d

This potential has two degenerate minima atx= ±b corre-
sponding tox0=0, x1=b and x0=b, x1=0. In the limit of
strong Coulomb potential the tunneling between these two
states gives rise to exponentially small splittingDE of the
doublet.

The ground state wave function of this system is an even
function of x, and is therefore symmetric with respect to
permutationx0↔x1, while the first excited state is antisym-
metric. The two states correspond to the values of the total
spin of the two-electron systemS=0 andS=1, respectively.
Thus the energy of the two components of the doublet can be
written in terms of the electron spin operators at the two sites
as E0+JS0·S1, whereJ is identified with the level splitting
DE.

Strictly speaking the infinite series in Eq.(A1) diverges.
This is due to the long range nature of the Coulomb interac-
tions. In practice the interactions are screened at large dis-
tances by remote gates. Instead of modifying the Coulomb
potential to account for the gate, it will be more convenient
to simply subtract from Eq.(A1) a divergent constantUsbd.
Then the series converges, and in the important regionuxu
,3b the potential can be presented in analytic form as

Usxd =
e2

«b
fFsx/bd − Fs1dg, sA2d

Fszd =
1

uzu
− 2cS3 − z

2
D − 2cS3 + z

2
D , sA3d

wherecszd is the digamma function. The shape of the poten-
tial (A2) is shown in Fig. 3.

Evaluation of the energy level splittingDE for a particle
of massm in a double-well potentialUsxd is a well-known
problem of quantum mechanics,60 and the result61 is given by

DE =
"v

Îep
expS−

1

"
E

−a

a

Î2mfUsxd − "v/2gdxD . sA4d

Here v=ÎU9sbd /m is the frequency of small oscillations
near the minimax= ±b of the potentialUsxd, andx= ±a are
the classical turning points at energy"v /2, i.e., a=b
−Î" /mv, see Fig. 3.

To evaluateDE with the correct prefactor, one has to care-
fully account for the small energy"v /2 in the exponential.
The resulting level splitting can be written as

DE =
2

Îp
Î"v3mb2eje−S0, sA5d

where

S0 =
1

"
E

−b

b

Î2mUsxddx, sA6d

j =E
0

1 SÎU9sbdb2

2Usbzd
−

1

1 − z
Ddz. sA7d

An alternative solution63 of the problem using the instanton
technique leads to a result that can be also presented in the
form (A5)–(A7).

In order to apply this result to the evaluation of the ex-
change constantJ, one has to keep in mind thatx is the
relative position of two neighboring electrons,x=x0−x1, and
replace the mass in Eqs.(A5) and (A6) with the reduced
massm/2. One then findsS0=hÎb/aB with the numerical
coefficient

h =E
−1

1
ÎFszd − Fs1ddz< 2.817. sA8d

Substitution of this result into Eq.(A5) gives the leading
exponential behavior of Eq.(11).

The numerical parameterj defined by Eq.(A7) depends
only on the shape of the barrier separating the two minima of
potentialUsxd. For the potential(A2), we find

j =E
0

1 SÎ F9s1d
2fFszd − Fs1dg

−
1

1 − z
Ddz< − 0.423.

sA9d

Substituting this result in Eq.(A5) we find the exchange
constant

J =
k"2

mÎ4 b5aB
3

expS− hÎ b

aB
D , sA10d

with k<2.203. Expressing the prefactor in terms of the
Fermi energy, we obtain Eq.(12).

It is worth mentioning that because of the singularity of
the potentialUsxd at x=0, the validity of the WKB approxi-
mation used in the derivation60 of formula (A4) is limited to
uxu@aB. Moreover, since the potential(A2) is not integrable
up to the singularity, it represents an impenetrable barrier.64

Thus the true value of the level splitting for potential(A2) is
DE=0. On the other hand, the electrons in a quantum wire

FIG. 3. The shape of the double-well potential(A2). The par-
ticle can occupy the ground state with energy"v /2 in each well.
Tunneling between the wells gives rise to the energy level splitting,
which can be found in WKB approximation, Eq.(A4).
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are not strictly one-dimensional due to the finite widthw of
the wire. As a result the singularity of the Coulomb interac-
tion potential is cutoff at short distancesx,w. In GaAs de-
vicesw*aB, which justifies the WKB approximation. In car-
bon nanotubes it may be possible to achieve the regimew
!aB; a more sophisticated approach to the calculation of the
exchange constantJ is required in this case.65

APPENDIX B: RESISTANCE OF A QUANTUM WIRE

Let us derive the resistance(28) of an infinite quantum
wire in the regime of applied current. The wire is modeled by
the Hamiltonian(3) with the time-dependent boundary con-
dition (24). It is convenient to apply to the Hamiltonian a
unitary transformation

U = expS− i
pqstd
Î2

E
−`

`

PrsxddxD , sB1d

which shifts the charge fieldfrsxd→frsxd+sp /Î2dqstd. As
a result the boundary condition(24) is replaced with
frs0,td=0, but the Hamiltonian (3) acquires a time-
dependent perturbation

V = − i"U†]tU = −
p"

Î2
q̇stdE

−`

`

Prsxddx. sB2d

The perturbation(B2) leads to excitation of plasmons and
to dissipation of energy into the Luttinger liquid. To find the
energyW dissipated in unit time, it is convenient to diago-
nalizeHr by introducing the plasmon destruction operators

bk =E uskxdsinkxS 1

p
Îuku

Kr

frsxd + iÎKr

uku
PrsxdDdx,

sB3d

where usyd is the unit step function. Note that in order to
satisfy the boundary conditionfrs0,td=0 the wave functions
of the plasmons were chosen in the formwksxd
=Î2/puskxdsinkx; positive and negativek correspond to ex-
citations to the right and left of the boundaryx=0, respec-
tively.

Upon the transformation to the new variables(B3), the
two terms in the Hamiltonian take the form

Hr =E
−`

`

"vkbk
†bkdk,

V =
i"I0 cosvt

eÎ2Kr

E
−`

` bk − bk
†

Îuku
dk. sB4d

The perturbationV leads to both emission and absorption of
plasmons with energy"v. The total energy dissipated in unit
time can be evaluated using the Fermi golden rule as

W=
2p

"
S "I0

2eÎ2Kr
D2 2

"v
fs1 + fkd"v − fk"vg. sB5d

Regardless of the values of the plasmon occupation numbers
fk, expression(B5) reduces toW= 1

2I0
2Rr with the resistance

(28).

APPENDIX C: DISSIPATION OF ENERGY
BY A SCATTERER IN A FERMI GAS

Let us consider the dissipation of energy in a noninteract-
ing Fermi gas in the presence of a moving scatterer. We
assume that the single-particle Hamiltonian has the general
form

Hsy,p,td = H0sy + q0 sinvt,pd. sC1d

Here the Hermitian operatorH0sy,pd is independent of the
coordinatey in the regions corresponding to the leads,y
→ ±`. The Hamiltonian(35) obviously satisfies these con-
ditions for smoothly varyingJfyg after the discrete site num-
ber l is replaced by a continuous coordinatey. The
y-dependent central part of the HamiltonianH0sy,pd can be
viewed as a scatterer with energy-dependent reflection coef-
ficient Rsed. Condition(C1) implies that the position of the
scatterer oscillates with amplitudeq0.

In the limit of small q0 one can expand Eq.(C1) and
present the Hamiltonian as

Hsy,p,td = H0sy,pd + q0 sinvt]yH0sy,pd. sC2d

The time-dependent perturbation leads to absorption and
emission of energy quanta"v by the fermions. The rates of
these processes may be found using the Fermi golden rule,
and one obtains the increaseW of the energy of the system in
unit time in the form

W=
2p

"
"vE E dkdk8Uq0

2
f]yH0gkk8U2

3 ffsekd − fsek8dgdsek − ek8 + "vd. sC3d

Here k labels the eigenstates of HamiltonianH0 with ener-
giesek. The occupation numbers of these states are given by
the Fermi functionfsekd. The eigenfunctions have scattering
wave asymptotics

cksyd =
1

Î2p
3 Heiky + rke

−iky at y → − `,

tke
iky at y → + `

J sC4d

for positivek and

cksyd =
1

Î2p
3 H tke

iky at y → − `,

eiky + rke
−iky at y → + `

J sC5d

for negativek. Hererk andtk are the reflection and transmis-
sion amplitudes; the reflection coefficient is defined as
Rsekd= urku2.

In the limit of low frequencyv→0 expression(C3) can
be further simplified,

W=
psvq0d2

"vF
2 E dekf− f8sekdgfz+sekd + z−sekdg. sC6d

Here we have approximated the energies near the Fermi level
as ek="vFsuku−kFd, accounted for the double degeneracy of
the energy levelsek, and introduced

z±sekd = lim
k8→±k

uf]yH0gkk8u
2. sC7d

The matrix elementf]yH0gk,k8 is defined as
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f]yH0gkk8 =E dyck8
* sydf]yH0gcksyd. sC8d

Integrating by parts and taking advantage of the fact thatck
is an eigenfunction ofH0, we find

f]yH0gkk8 = sek − ek8d E dyck8
* syd]ycksyd. sC9d

To evaluatez±sekd we need to find the divergent atk8→ ±k
part of the integral in Eq.(C9). Since the divergences origi-
nate aty→ ±`, one can use the scattering wave asymptotics
(C4) and (C5) in Eq. (C9). This results in

z+sekd =
1

p2s"vFkFd2fRsekdg2, sC10d

z−sekd =
1

p2s"vFkFd2Rsekdf1 −Rsekdg. sC11d

Substituting these results into Eq.(C6), we find

W=
"

p
svq0d2kF

2 E def− f8sedgRsed. sC12d

To apply this result to the evaluation of the spin contribution
to the resistance within theXY model approximation, one
should substitutevq0= I0/e and kF=p /2. Then Eq.(C12)
takes the form

W=
1

2
I0
2Rs

XY, Rs
XY =

h

4e2 E def− f8sedgRsed. sC13d

The result for the resistance coincides with Eq.(40) for the
appropriate reflection coefficientRsed=usueu−Jd.
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