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Conductance of a quantum wire at low electron density
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We study the transport of electrons through a long quantum wire connecting two bulk leads. As the electron
density in the wire is lowered, the Coulomb interactions lead to short-range crystalline ordering of electrons. In
this Wigner crystal state the spins of electrons form an antiferromagnetic Heisenberg spin chain with expo-
nentially small exchange coupliny Inhomogeneity of the electron density due to the coupling of the wire to
the leads results in violation of spin-charge separation in the device. As a result the spins affect the conductance
of the wire. At zero temperature the low-energy spin excitations propagate freely through the wire, and
its conductance remainse2h. Since the energy of the elementary excitations in the spin ofsgimons
cannot exceedrJ/2, the conductance of the wire acquires an exponentially small negative corrésgion
«—exp(—mJ/2T) at low temperature$ <J. At higher temperature§;>J, most of the spin excitations in the
leads are reflected by the wire, and the conductance levels off at a new universad¥alue
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I. INTRODUCTION for free electrons(p) =p?/2m, wherem s the effective mass
of the electrons. The typical kinetic energy of an electron at
The quantization of conductance of one-dimensighB) zero temperature is of the order of the Fermi enefgy,
electron systems in units o2/ h was first observed in ex- =(x%n)2/8m. It is important to note that at low density
periments with quantum point contaétéThe latter consist <ag' the kinetic energy is small compared to the typical
of a short(well under 1um) 1D constriction connecting two energy €n/e of Coulomb interaction between electrons,
bulk two-dimensional leads. Further progress in fabricationyhere ¢ is the dielectric constant, arnahb=eh?/mé is the
of low-disorder devices resulted in observafiérof similar  effective Bohr radius of the material. Thus in the limit of low
conductance quantization in quantum wires of several midensity the electrons can be viewed as classical particles
crons in length. Experimentally the quantization is observegplaced at equidistant positions to minimize the Coulomb re-
as very flat plateaus in the dependence of linear conductanggision, see Fig. 1. Such a picture was first proposed by
on the voltage at the gate controlling the electron density invigner” and will be referred to as théigner crystal
the wire. Although the quantum fluctuations of electrons near their
In a number of recent experimefitS’ deviations of con-  equilibrium positions destroy the long-range order in the
ductance from perfect quantization have been observed &Yigner crystal, its short-range structure strongly affects the
low electron density. These deviations manifest themselvegansport through the wire. In particular, the electrons occu-
as negative corrections to the conductance at the beginningying well-defined sites of a Wigner lattice can be viewed as
of the first quantized plateau. The correction is usually smalhn antiferromagnetic spin chain with exponentially small ex-
at the lowest temperatures available, but becomes significaehange constanl. The appearance of a new energy scale
at T~1 K. In typical samples” the conductance levels off j<E_ significantly affects the physics of the electronic
at high temperatures and forms a quasiplateau at abogtansport through the wire. This effect is most important at
0.7x (2¢?/h). This phenomenon is often referred to as thejntermediate temperatured<T<Eg, where it results in a
0.7 structure Despite the numerous theoretical attertfb®  considerable suppression of the conductance of the wire.
at the interpretation of the 0.7 structure, its origin remains
unclear.

the 04 Scure is senditve. 1 e 1ength of he. one. +H

dimensional region connecting the two-dimensional leads.
The structure tends to be relatively weak in the short
contacts$:® where no quasiplateau is observed even at high

oA i .

able. The effect is also somewhat stronger, with the quasipla-

teau moving to a lower value of conductan€e~0.5 FIG. 1. Sketch of electron density in a quantum wire formed by
X (2€?/h). confining two-dimensional electrons with gaishadeql The den-

In this paper we consider conductance of a long quanturgity n of one-dimensional electrons in the wire is controlled by the
wire in the regime of low electron density Focusing on the  gate voltageV,. At low densityn<ag' the electrons in the wire
case of a GaAs device, we assume quadratic energy spectridomm a Wigner crystal.
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The physics of this phenomenon is controlled by the eflow temperature3 <J. We show in this section that a gen-
fect of spin-charge separation in one-dimensional interactingralized picture of decoupled charge and spin excitations re-
electron systems. The latter refers to the fact that fermionienains valid even aT=J. In this picture the charge excita-
quasiparticles cannot be viewed as elementary excitations ¢ions are still given by the waves of charge density
the system, i.e., it no longer behaves as a Fermi liquid. In¢plasmong and the spin waves are replaced with the excita-
stead, the system displays Luttinger liquid behavior, and théions of a Heisenberg spin chain.
elementary excitations are bosonic waves of charge and spin
densities propagating at different velocities. As a result, A. Luttinger-liquid picture of one-dimensional
when an electron enters the one-dimensional region from one electrons systems
of the leads, it is decomposed into charge and spin waves. At Th bl involving | . .
low temperaturd < J both waves pass through the wire, and. e problems involving low-energy properties of interact-

ng 1D electron systems are conveniently described in the

upon reaching the other lead they reassemble into a ferm|- s . 2 .
onic quasiparticle. This process can be interpreted as perfe tamework of the bosonization techniqéfe:” The first step

transmission of electrons through the wire and gives the sta M this approach s to linearize the spectrum of e_Iect_rons near
dard value of conductand8=2e2/h. On the other hand, at he Fermi level, thereby replacing the quadratic dispersion

T>J, the bandwidthD,~J of the spin excitations in the Iaw.e(k):h2k2/2m with the linear one. In this‘l’omonaga-
wire is small compared to their typical energiyAs a result, Luttinger mode'the electrons are separa}ted in two bra_nches,
only the charge excitations pass through the wire, wheread® left- and right-movers, with energieg p(k)=fwr(+k
the spin ones are reflected back to the lead. We show belowks): Whereve and ke are the Fermi velocity and Fermi
that this additional scattering of spin excitations by the wireWave vector. One can then present the fermionic field opera-
reduces its conductance ¢3/h. tors .\ and ¢, in terms of fields¢, and 6, satisfying

In Sec. Il we study the applicability of the Luttinger liquid P0sonic  commutation relations] ¢, (x), &6/ (y)]=ima(x
description to the 1D Wigner crystal and show that it is only~Y) - using the following rule:
valid at energy scales belogv On the other hand, the prop-

erty of spin-charge separation is more general and persists at P a(X) = L_Ae—ikpxeimx)—iex(x), (1a)
energy scales abowk We review the known results for the V2ma
conductance of a quantum wire in Sec. Ill. The most impor-
tant consequence of the spin-charge separation in quantum MR ikex i .
. - . . = IRA ~i o\ (X)=1 6\ (x)
wires is the conclusion that spin degrees of freedom do not Pra(X) = \s"—zwae Fe I (1b)

affect the conductance, which remains quantizedsati2 In
Sec. IV we show that the spin-charge separation is violatetlerex=1, | is the spin indexg is the short distance cutoff,
when the wire is connected to the leads. As a result the spiand 7, and 7z, are Majorana fermion operatof%.
subsystem affects the propagation of electric charge through In terms of the bosonic variables the Hamiltonian of an
the wire and contributes to its resistance. This contribution isnteracting 1D electron system takes the fé#?

studied in Sec. V, where we find that &< T the conduc-

tance of the device reduces frore?2h to €?/h. The relation H=H,+H,, (2)
of our results to experimental measurements of conductanGghere the two termsi, andH,, describe the excitations of

of quantum wires is discussed in Sec. VI. A brief summary ofthe charge and spin degrees of freedom, respectively, and
some of our results has been reported in Ref. 28. have the forms

hu -
IIl. SPIN-CHARGE SEPARATION IN QUANTUM WIRES H, =f LK + K (0kp,)?Tdlx, 3
2
It has been known since the 197@ef. 29 that the low-

energy excitations of a 1D system of interacting electrons are fu, s 5

the charge and spin waves propagating independently of each - :f ;[WZKG'HU + K, (dep) Jdx

other at different velocities. This result is valid at the energy

scales low compared to the bandwidtdg and D,, of the 201, =

charge and spin excitations. In the case of not very strong + (2ma)? cog \8¢,(x)Jdx. (4)

interactions both bandwidths are of the order of the Fermi _
energy, and the picture of completely separated charge artdere the new_bosonic fields, ,=(¢+¢))/v2 andIL,,
spin excitations is appropriate At E. =dy(6,£0))/ m\2 satisfy the standard commutation relations
At low electron densityn<agl the interactions between [¢,(X),I1,(y)]=id(x-y)d,, and represent the excitations
electrons are strong. We show below that as a result thef the charge and spin degrees of freedom. The Hamiltonian
velocity of the spin excitations is greatly reduced, and thei2)—(4) depends on five parameters determined by the inter-
bandwidthD,~ J becomes much smaller th&i. A similar  actions between electrons: velocitigsandu,, of the charge
effect is known to occur in the strong interaction limit of and spin excitations, dimensionless paramekgysand K,
some lattice models, such as the Hubbard m&éth. this  and the matrix elemerd, , of spin-flip scattering of a left-
regime, the description of the spin excitations in the lan-moving electron and a right-moving one. In the absence of
guage of noninteracting spin waves is applicable only at verynteractions, u,=u,=ve, K,=K,=1, and g;,=0. The
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bosonized Hamiltonian correctly describes the charge and The speed of plasmons in a 1D system with true Coulomb
spin excitations of the system with energies below the reinteractions between electrons diverges in the limit of long
spective bandwidth®, ,~#Anu,, . wavelength. In practice, however, the interactions between
The most interesting case of repulsive interactions correelectrons are usually screened at large distances by a remote
sponds toK,< 1. The coupling constarg; , is positive and metal gate. In the model where the gate is a conducting plane
scales to zer333at low energy scaleB, at a large distancé> n* from the Wigner crystal, the speed

of plasmons is

e — (5)

glJ_ Do’
1+>>=|n—-2< 2en
Yo" D s= /= In(nd), 7)

The parameteK , renormalizes along witly, ,, approaching
the valueK,=1 required by the SI2) symmetry a,=1  \yhere;~8.0, Ref. 34.

+01,/27mU,, Refs. 32 and 33. _ The classical Hamilton functiot6) can be quantized by

Since the sme-_Gordon term in E@t) va_nlshes aD/DU imposing commutation relatiorfsi(x), p(y)]=i% 8(x-y). The
—0, the Hamiltoniar(2) becomes quadratic and describes argqyiting Hamiltonian describes the propagation of the elec-
Luttinger liquid3! The latter represents a stable fixed point oftron density excitations in a Wigner crystal, and is com-
the p_roblgm, o] the' description of the system based upon ﬂ}ﬂetely analogous to the tert, in the Hamiltonian(2)—(4)
Hamiltonian(2)~(4) is expected to be valid in a broad range  the | uttinger liquid. Comparing the commutation relations
of interaction strengths. It is not immediately obvious, how-of the bosonic fields entering Hamiltonia@ and (6), and

ever, that the above picture is applicable at low electron dengying into account the expressions for the density perturba-
sity n, i.e., when the interactions are so strong that the elecg,, on=—(\2/m)d.b,=—nd,u, we identify the fields as
trons form a Wigner crystal. Indeed, a Fourier expansion o xre >

the wave function of an electron localized in a small region -

of sizea<n™ near a given lattice site involves the wave N2 _mnh

vectors in a broad ranggk~ 1/a>n~ kg. Thus the standard ue) = E‘ﬁp(x)’ PO = EHP(X)' (8)
procedure of linearization of the electronic spectrum rigar
leading to the Tomonaga-Luttinger model is not justified in
this case. In addition, each electron is constructed out o
waves with both positive and negative wave vectors, and th
picture of two separate branches of left- and right-moving
particles is not applicable to the Wigner crystal. We show
now that even though the conventional derivation leading to
Egs. (2)—(4) is not justified, this Hamiltonian does describe
the low-energy properties of a 1D Wigner crystal.

lszing these expressions we can relate the parameters in the
amiltonianH, to the properties of the Wigner crystal as
ollows

UF
=s, K,=—. 9
b= ©

Herevg=mAn/2m is the Fermi velocity in a noninteracting
B. Charge and spin excitations in a Wigner crystal Fermi gas of density.

At low electron densitynag <1, the properties of the sys- e electrons in a Wigner crystal are repelled from each
tem are dominated by the Coulomb repulsion, and the electher by strong Coulomb forces. In the harmonic chain ap-
trons occupy fixed positions on the Wigner lattice. The firstProximation we used so far the electrons are allowed to
correction to this picture is due to the small vibrations of theMoVe about their equilibrium positions; however, the ampli-
lattice, analogous to phonons in conventional crystals. In th&!de of these oscillations remains small. As a result the elec-
long-wavelength limit these phonons can be described in thONS never move from one site on the Wigner lattice to an-
framework of elasticity theory. In this approach the crystal is0ther, and can be viewed as distinguishable particles.
viewed as an elastic medium. Its motion is described in termd herefore the energy of the Wigner crystal state in this ap-
of the displacementi(x) of the medium at poink from jts  Proximation does not depend on the electron spins.
equilibrium position and the momentum densiifx). The To account for the spin dependence, one has to include the

energy of the system can then be written as a sum of kinetif'Oc€SSes In Wh'Ch electrons _tunnel through the Coulomb
and potential energies, potential repelling them. Considering a pair of electrons at

two neighboring sites of the Wigner lattice, one notices that

p? 1 ) depending on their total spin, the two electrons occupy either
H= f pr— Emné (G dx. (6)  a symmetric or an antisymmetric state in the respective

double-well potential. Thus the energy of the pair contains a

The second term here is 1(E/Jn?)(on)?, whereE is the  termJS;-S,, whereJ>0 is the difference of energies of the
energy of the resting medium per unit length, and the densitgntisymmetric and symmetric states, &hdre the operators
perturbationsn is proportional to the deformation of the me- of electron sping® Taking into account all the nearest neigh-
dium, sn=-ng,u. The parametes=/(n/m)(¢*E/dn?) has the  bor sites, we find that the spin properties of the Wigner crys-
meaning of the speed of density wavggasmong in the  tal are described by the Hamiltonian of an antiferromagnetic
Wigner crystal. Heisenberg spin chain
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H,= > JS - Sy (10) Thus we have established that the bosonized Hamiltonian
| (2)«(4) adequately describes the low-energy properties of not
) . i , only weakly interacting electron systems, but also of a 1D
Since the exchange is due to tunneling, the conslaist  \igner crystal state atag<1. However, it is important to
exponentially small, keep in mind that the applicability of the bosonized descrip-
7 tion to the Wigner crystal is limited to very low temperatures
J=J* exp(— :) (11) T<J. Given the exponential dependencEl) of the ex-
vnag change constant on density, this condition can be easily vio-

To accurately evaluatzone has to take into account the fact lated even at fairly low temperatures. In this case one has to
that when two neighboring electrons tunnel through the Coul!S€ the more complicated for(@0) of the HamiltonianH,,.
lomb barrier separating them, all other electrons also move/Veé show in Sec. V that this breakdown of the Luttinger
Hausle?® suggested an approximation that neglects the moliquid picture gives rise to significant dgwanons of conduc-
tion of other electrons; his result corresponds to the value of@nce of quantum wires from the quantized valeé/R.

n=2.87 in a finite chain of 15 electrons. We solve this

model in the case of an infinite chain in Appendix A and C. Spin-charge separation at ultralow
obtain the value ofp=2.82. We also estimate the prefactor electron densities
as

The Wigner crystal picture discussed in Sec. Il B relies on

. Er the long-range nature of the Coulomb interaction potential
z1'79(na3)3’4’ (12) V(x)=€?/¢[x|. In general, a 1D electron system forms a

Wigner crystal state ati— 0 only if the interaction potential
whereEg=(7#in)?/8m is the Fermi energy of a noninteract- decays slower than 142 at x—c. Indeed, for potential
ing electron gas of density. V(x) < 1/|x|” the interaction energy of two electrons at the

The spin part(10) of the Hamiltonian of a 1D Wigner typical interparticle distance™ is Vn?, whereas the ki-
crystal is very different from that of a weakly interacting netic energyEgn2. Thus aty>2 the interaction energy is
electron gas, Eq4). It is easy to show, however, that at low pegligible atn— 0.
energiesD <J the two Hamiltonians are equivalent. To ac-  The electron density in quantum wires is usually con-
complish that we use the standard proce#fstéof bosoniza-  trolled by applying voltage to metal gates. The presence of a
tion of spin chains. The first step is to perform the Jordangate affects the electron-electron interactions at large dis-
Wigner transformation tances. For instance, if the gate is modeled by a conducting
I-1 ) plane at a distance from the wire, the interactions between

, (13

1 . .
§= aITa+ -5 S+is'= a;r exp(mrz aJ-Taj electrons become
j=1

(1 1
which expresses the spin operators in terms of creation and Vix) = e M - \W : 17
destruction operatora’ anda of spinless fermions. In terms
of these operators the Hamiltonigh0) becomes The screening of the Coulomb potential by the gate reduces

L L L the potential17) to V(x)=2e?d?/ ¢|x|? at large|x|. Therefore,
_= t T o4 = 4t = the Wigner crystal picture fails in the limit— 0. Comparing
Ho 22I J{(q Be+ Ba) ¥ 2<a1 &t 2)<a1+1a“1+ 2)] ' the interaction potential at the interparticle distarvi@™)
(14) with the Fermi energy of electrons, one concludes that within
the model(17) the Wigner crystal state exists only in the
Thus the Heisenberg spin chai0) is equivalent to the density rangeg/d?< n<a§1.
model(14) of interacting lattice fermions. As long as the system is in the Wigner crystal state, its
The second step is to bosonize the Hamiltonia4). At  spin excitations are described by the Heisenberg mddp!
low energies one can replace the lattice madd) with a  However, the expressio(ill) for the coupling constand
continuous onea —a(y), linearize the spectrum of the fer- relies on the pure Coulomb interaction between electrons. In
mions near the Fermi level, and then apply a bosonizatiothe case of interaction potential screened by the gate, the

transformation exponential decrease dfwith decreasing density stops at
n~d, because the potential falls off rapidly at distances
a_/ly) = 7k_,Re:ikFyeti¢(,<y)/\f§—i\f§e,,(y)_ (15) x>d. Using the method described in Appendix A, one esti-
’ V2ma mates
The resulting bosonized Hamiltonian of the spin chain is nd?\ 34 _|d
equivalent’ to Eq.(4). The value of the speau, of the spin J~ EF<a_> exp(— ﬂ\/a:) (18
excitations is easily deduced from the Bethe ansatz B B
solutior?®2° of the Heisenberg model, at ag/d?><n<d™ In the case of interaction potenti¢l?)
the constanf;~ 8.49.
U= 77_3_ (16) The distance to the gate in quantum wire devices is typi-
7 2#n cally large,d= 10ag, and most experiments are performed at
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densities well aboveag/d?>. However, if the density is re- gas with quadratic spectrum and pointlike interacti@).
duced ton=<ag/d?, the Wigner crystal picture used in Sec. The limiting procedure can be performed by introducing in-
[I B will fail. It is interesting to explore to what extent the finitesimal lattice period in the Hubbard model, identifying
conclusions of Sec. Il B will be affected. To this end, let usthe parameters=#2/2ma?, U=V/a, n,=na, and taking the
now study the limitnd?/ag— 0. limit a— 0. Applying this procedure to the formu{2l), we

At n<ag/d? the interaction between two particles at afind
typical distancen™ is small compared to their kinetic energy 27403
~Eg. On the other hand, when the distance between elec- Jzz_h_”_
trons is sufficiently shortx| <n(nd?/ag)**<n?, they ex- 3 mY
perience strong repulsiov(x) = Eg. Thus in the limit of low
electron density one can model the interaction potetial
by short-range repulsion

V(X) = V(). (19 J~ EFr;—dz exp(— %\/aE) . (23
B B

Contrary to a naive expectation, the constersthould not be

chosen as the integral of the interaction potentiaf). In-  Note that the result§l8) and(23) for the exck;ange constant
deed, the exchange coupling of the spins of two neigboringe of the same order of magnitudenatag/d<.
electrons is caused by tunneling through the bar¢ief. So far we have demonstrated that the description of the
Thus to ensure that the potentigls’) and(19) result in the ~ System in terms of the Hamiltonian in spin-charge separated
same exchange coupling between electrons, the parameterlorm H=H,+H,, with H, andH,, given by Eqs(3) and(10)
should be chosen in such a way that the barri@® and is valid in two different regimes. The first one is the Wigner
(19) have equal transmission coefficients. This conditioncrystal state at electron densities in the rarggd®<n

(22)

Using the estimat&€20) of parameter) for the interaction
potential(17), we find

gives <ag', and the second is the low density limit<ag/d?,
where the picture of pointlike interactioii$9) is applicable.
v @ exp(” \/E) (20) One can shof? that in fact this picture of spin-charge sepa-
md? 7 ag/’ ration ?olds at any densitg<ag’, including the regimen
~ag/d

The exponentially large value of reflects the fact that the The .exchange constant in the effective spin chain
strong repulsior(17) leads to almost perfect backscattering Hamiltonian (10) monotonically decreases as the electron
of electrons off each other. _ densityn is lowered. In the most interesting range of densi-
At V—x the electrons are separated by thin hard-corgjeg dl<n<ag! the dependence of exchange wiis expo-
potentials. In this limit they can be viewed as distinguishabléyential, Eq(11). At lower densities the dependence becomes
particles, and the eigenvalues of energy become mdepende@tpower_mw one. Specifically, in the density rangggd?
of the electron spins. The wave functions of the system esx |, <42 andn<ag/d? one can use the estimatéss) and
sentially coincide with the Slater determinants for spinlesgog, respectively.
noninteracting .fermlons. Upon bosonization, the Hamil-" £q, the sake of simplicity, in the following sections we
tonian H, of this system takes the for8). The plasmon  a55ume that the electron density is in the raagbd?<n
velocity s in this system is the Fermi velocity of noninteract- <ag!, and refer to the electron system as a Wigner crystal.
ing electron gas of density, which is twice the Fermi ve-  owever, all of our conclusions remain valid at any densities

locity of nonpolarized electron gas=2vg. Thus according n<agl, if the value of the exchange constdris adjusted as
to Eq. (9) we havé® K,=1/2. Additional properties of this  jiscussed in this section.

model were recently discussed in Refs. 41 and 42.

At large finite V the electrons can change places as a
result of scattering, and the energy acquires a weak depen- lll. CONDUCTANCE OF A QUANTUM WIRE
dence on the spins. This dependence can be deduced from WITH SPIN-CHARGE SEPARATION
tmhg d\gleIII-tk?mc;vsvnbgg?lpiE[L)ev?nora;/heogggc:rr?derg%ﬁhZtu:'?ard The spin-charge separation has a profound effect on the
Ult—- the spin and charge excitations of the Hubbardconductance of quantum wires. Indeed, the electric field ap-

model are completely separated. with the Hamiltonian o'plied to the wire couples to the electron charges and has no
pietely sep ’ effect on spins. As a result, the spin degrees of freedom

spin excitatior)s taking the form of thg Heisenb_erg .mOdelremain decoupled from charge ones, and the rather complex
(10). (Here U is the energy of the on-site repulsion in the form of the HamiltonianH, has no effect on the conduc-

Hubbard model, and is the hopping matrix elementThe tance. In this section we review the known results for the

magnitude of the exchange constant in this Hamiltonian Wag | Juctance of a quantum wire with spin-charge separation.
found* to be

2 -
J= 4 e<1 _sin 277n9>’ (21) A. Infinite wire

n
U 2 Conductance of an infinite Luttinger liquid is given by

wheren, is the average number of electrons per site. In theG=2K €?/h. This result was obtainé®*’ by assuming that a
limit n,— 0 the Hubbard model is equivalent to an electronweak electric field is applied to a small part of the wire, and
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the conductance was evaluated by using the Kubo formula. B. Finite-length quantum wire between two
In the following sections it will be more convenient to evalu- noninteracting leads

ate the conductance of the Wigner crystal in the regime of 1,
applied current. It is therefore instructive to reproduce th
resuItG:ZerZ/h in this approach.

e resuItG:Zerzlh indicates that in a quantum wire
8vith repulsive interactions conductance should be below the

. ) __quantized value €/h. Furthermore, it is expected to de-
Let us consider a quantum wire whose charge dynamics igre45e as the electron densityis lowered. However, the

described by the Hamiltonia(8), and enforce the current experiments consistently show perfect quantiz&far con-
I =1 coswt atx=0. By doing so we impose a boundary con- y,ctance at &/h in a broad range of.

dition upon the charge fielg,(0,t). Indeed, the bosonization This controversy was resolh@d53 by noticing that in-

expression for the electric current ise(v2/m)¢,. [In the  stead of an infinite quantum wire, the experiments study
case of a Wigner crystal, this can be checked by using®q. transport through a finite-length wire connecting two bulk
and the definitio =enuof current in terms of the velocity ~ leads. Since the leads are not one-dimensional, their proper-
of the crystal} Thus the fieldg, satisfies the condition ties are not adequately described by the Luttinger liquid
model (2)«4). Instead, the electrons in the leads are ex-
- pected to be in a Fermi liquid state.
(0.0 \Eq(t)’ 29 To find the conductance of such devices, one can
_ modeP!->3 the leads connected to the wire by two semi-
where the function infinite noninteracting wires. In this model the system re-
| mains one-dimensional, but the interactions are nonvanishing
q(t) = -2 sinwt (25)  only in the central part of the system. The lengttof the
ew interacting part is identified with the length of the wire. As-
suming that the interactions fall off gradually»at> £, one
can neglect the backscattering of electrons from the interact-
ing region. In this limit the charge dynamics is still described

By imposing a time-dependent boundary conditi@4) o
we drive the system with an external oscillating force. Thisby th_e Hamlltonlar_(?,), but the parameteis, andu, become
functions of coordinate.

leads to emission of plasmon waves and dissipation of the . .
The measurements of dc conductance in experiments are

energy from the driving force to the infinite Luttinger liquid. conducted at very low frequencies<u, /L. The wavelength

We will find the resistance of the wirg, by evaluating the of the plasmons of frequenay emitted in the system is then
energyW dissipated in unit time and comparing the resultmuch greater than the length of the interacting region

. _1,2 i
W'tth th? ‘JXUIe hz_at E‘_Wr\:_ZIORP' ?_Ne_tpresenlt a fotrmal (jerll Thus the plasmons are emitted in the regions vt L,
vation In Appendix b, here we limit ourselves 1o a SIMpI€ 5, one should use in E®8) the value of the parameté&r,

semiclassical argument. taken atx— + . Electrons in those regions do not interact

Solving the Hamilton quati%ns with Hamiltonig®) and ity each other, which correspondsKg=1. The resistance
boundary conditior24) we finc* (28) of the device then becomes

is related to the current dsseqand has the meaning of the
number of electrons that passed through prin® at timet.

7T|0 . h
X,1) = sinw(t—[x|//u,), 26 -
Bp(X,1) oo w(t=[x/u,) (268 R,= " (29)
| and the perfect quantization is restored. Careful
I1,(x,0) = —2  cosw(t- IX|/u,). (26h)  treatment¥->3of the problem lead to the same conclusion.
/ PP
Substituting this solution back into E¢3), we find the fol- IV. VIOLATION OF SPIN-CHARGE SEPARATION IN
lowing expression for the time-averaged energy density in QUANTUM WIRE DEVICES
the Luttinger liquid,
As we saw in Sec. lll, the inhomogeneity of the system
E Th IS 27) caused by coupling of the wire to the leads changes the con-
t

ductance from R ,e?/h to 2e?/h. This conclusion was de-
rived from consideration of the charge excitations only, as
The plasmon wavé26) carries the energ{E); at speeds, in  the spin degrees of freedom were assumed to be completely
two directions. Thus the total energy dissipated into plasmoseparated. We now turn to the effect of the inhomogeneity on
waves in unit time is given by=2u,E),. Comparing this the spin partH, of the Hamiltonian.

467K, u,’

result withW:%ISR , we find the resistance We assume that the central part of the wire contains a
P purely one-dimensional electron system at low density
h <aé1, so that the Wigner crystal model is appropriate. The
R, = (28 wire is al dtob hi d to the lead
2K € wire is also assumed to be smoothly connected to the leads,

where the effective interactions are weak. This is due to sev-
in agreement with the result for the conductance found ireral effects. First, the electron density grows as one moves
Refs. 46 and 47. away from the wire into the leads. This effectively reduces
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the interaction strength, as the latter is characterized by palependence of the positions of the lattice sites can be ac-
rameter(nag) L. In addition, the wire becomes wider when it counted for by replacing— | +q(t), and the Hamiltonia,,
couples to the leads. As a result, when two electrons arrive agkes the form

the same coordinate along the wire, they are no longer as

close to each other as in the middle of the wire. This reduces Hy= 2 I +a®)]S - Sus- (30

the strength of interactions between 1D electrons. The two !

mechanisms have very similar effect on the Hamiltorign  Note that in this approximation the electric curréae(t) is
For simplicity, in the following we limit our discussion to the ;5sumed to be uniform throughout the wire. This is true in
effect of inhomogeneous electron density. the dc limitw<u. /L.

Following the ideas of Refs. 51-53, we model the wire |1 is importantp to note that the forr0) of the Hamil-
connected o the leads by an inhomogeneous 1D system. Thgnian H_ violates the spin-charge separation. Indeed, the
main source of inhomogeneity is the dependemog of the o 5jing between the spins depends on the amount of charge
electron density on position. We assume tha't the density ot passed through the wire, which is related to the figld
takes a constant value(x)=n inside the wire, i.e,, alX  gee Eq(24). As a result, the conductance of a quantum wire
<L/2, and gradually grows to a very large valug>ag' at  connected to bulk leads may be affected by the spin
X— %o, excitations>*

In experimental devices the dependence of electron den- Tg find the effect of spin subsystem on the conductance,
sity on the coordinate along the wire is caused by inhomogne could substitute the expressi@¥) for q(t) into Eq.
geneity of the external confining potential. Apart from (30), and consider the complete Hamiltonisip+H,, without
changing the electron density, the external potential may alsgs|ying on spin-charge separation. In this approach one needs
lead to backscattering of electrons in the wire. In a suffi-jy 3dd to the Hamiltonian a term describing the applied bias,
ciently long wire such processes may greatly suppress thgng evaluate the electric current. However, it is more conve-
conductance at low temperatfel’ In the Wigner crystal pient to treat the curreri(t) in the wire as an external pa-
picture this phenomenon is interpreted as pinning of the Cryssameter. In this casg(t) is also a parameter, and the Hamil-
tal by the external potentidf. On the other hand, the best toniansH,, and H, still commute. The only consequence of

available experiments show good quantization of conduCg,g jplation of spin-charge separation in this approach is the
tance, indicating that the backscattering remains ”egl'g'bledependence ofl, on the current(t)

This is most likely the result of smoothness of the confining
potential. Indeed, the backscattering involves the change qf
the electron wave vector bykg. Thus an external potential
that is smooth at the scale of interparticle distancewill
cause exponentially weak backscattering. In this paper w

The presence of an oscillating paramet@b) in the
amiltonian (30) may lead to the creation of spin excita-
tions. Using the approach of Sec. Ill, we will calculate the
energy dissipated into spin excitations in unit time. In the
fimit of weak current, the dissipation is found in the second
Brder of the perturbation theory in the amplitugef current

L . scillations. Thus in addition to the plasmon result for the
Under the above conditions the low-energy properties oo v\v dissipated in unit time, we will obtain a similar
the system may be described by the bosonized Ham'ltoma@ontribution of the spin modes:
(2)«4), but with position-dependent parameters,, K, ,
g1, . In this paper we assume that the temperature is small
compared with the bandwidt@,~ #nu, of the Hamiltonian
H,, so that the discussion of the effect of the charge modes
on the conductance presented in Sec. lll is valid. On thé€Comparing this result with the Joule heat WWZ%l(Z)R, we
other hand, we will be interested in the case of temperatureonclude that the resistanBeof the wire is given by the sum
comparable with the bandwidtb,~J of the Hamiltonian of two independent contributions,
H,. In this regime the bosonized versigd) of H, is not R=R +R (32)
applicable, and one should instead use the Heisenberg model T o
(10). Note that the first term in this expression is already known,
Since the exchange constdft) strongly depends on the Eq. (29). The second term is discussed in Sec. V.
electron densityi(x), the parameted in Eq. (10) should also It is interesting to point out that the resyB2) may be
be considered position-dependent. In particular, the strengtinterpreted as a total resistance of the charge and spin sub-
of the exchange coupling between the two spins at the neighsystems connected in series, whereas naively one might ex-
boring sitesl andl+1 of the Wigner lattice is a function of pect a parallel connection. The reason is that the spins do not
the coordinate of the Ith electron:J=J(x)). It is important  directly respond to the applied voltage, as required for the
to note that in the presence of electric currethe Wigner latter interpretation. Instead, the spin subsystem responds to
lattice moves, so the coordinate of the Ith lattice site de- the electric current. Thus the Hamiltoniaks and H,, be-
pends not only or, but also on time. come independent in the regime of applied current, in anal-
The time dependence &f can be accounted for by noting ogy with the problem of two independent resistors connected
that if during the time intervat a numberq(t) of electrons in series. A result similar to Eq32) has been obtained for
have moved from the left lead to the right one, tttesite of  the resistivity of two-dimensional strongly interacting sys-
the lattice has shifted to thé+q)-th position. Thus the time tems in Ref. 55.

that the backscattering can be neglected.

1 1
W= 5|§R,,+ 5|3RU. (31)
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Jy] A. XY model

Jee The Hamiltonian(33) describes a system of strongly in-
teracting fermions. As a first approximation we will simplify

J the problem by neglecting the interactions between the fer-
. . mions,
—nL/2 nL/2 Y
xy_1 t t
FIG. 2. Sketch of the dependendg/] in our model. Inside the Hy = §2| JI+at) (g +ayqa). (39

wire, ly| <nL/2, the exchangé is exponentially small, Eq11). As

one moves toward the leads,grows, and ay—c it saturates al  Thjs Hamiltonian corresponds to the fermionized version of
Jo~E. the XY model of a spin chain, in which the coupling of the
z-components of spin operators is neglected. This approxi-
V. SPIN CONTRIBUTION TO THE RESISTANCE mation violates the S(2) symmetry of the problem, and is
therefore rather crude. On the other hand, the resistRpce
can be found exactly for mod€B5), and the result will pro-
ide considerable insight into the properties of mo@&s).
Hamiltonian(35) represents an inhomogeneous version of
the tight-binding model of lattice fermions. In the uniform
case,J[y]=const, the spectrum is well known,

To find the contributiorR, of the spin subsystem to the
resistance of the device, we study the dissipation of energ
into spin excitations caused by the time dependence of th
Hamiltonian(30). We start by performing the Jordan-Wigner
transformation(13) and converting the Hamiltonian to the
fermionic form

e(k) = J sink, (36)

where the wave vectdeis measured frorkz= /2. One can
L . either assume thdt varies in the interval w<k<, or
+ + +_)< + +_> . choose <k< = and treat Eq.(36) as spectra of two
2(a1 & 2 G181 2 (33 branches of excitations, the particles and holes.
o In the absence of electric current in the wire one can omit
In the absence of the external magnetic field the averagg(t) in the Hamiltonian(35) and view it as a tight-binding

z-component of the spin at every site of the lattice must,,qe| with slowly varying bandwidth2y]. In the leads the

vanish. Thus according to Eq13) the occupation of each onqidth 3, is very large; it narrows down to a very small

site is (a/a)=3. This means that the Fermi level is in the \ue 27 in the wire, Eq.(34). The particles moving toward
middle of the bandu=0. the wire in one of the leads cross to the other lead if their
The exchangel[y] strongly depends on the positioh  energies are below the small exchanhén the wire; the
Inside the wire the electron density is longg<1, and the  particles withe>J are reflected.
exchange is exponentially small, Ed.1). As the wire con- In the presence of the electric currénthe constriction of
nects to the bulk leads, the densitfx) begins to grow. At the band in the HamiltoniatB5) moves with respect to the
nag~1 the exchange becomes of the order of the Fermi |attice with velocitygq=1/e. The particles reflected from the
energy, see Eqgll) and(12). moving constriction change their energy. These processes
Strictly speaking, the Wigner crystal picture is valid only lead to the dissipation of energy and contribute to the resis-
atnag<1, i.e., as long a§<Eg. On the other hand, we will tanceR,.
be interested in the properties of the system at low energies For noninteracting fermions, the problem of evaluating
D <Eg. Thus at]J~ E¢ when the Wigner crystal picture fails, the energyW dissipated in unit time by a moving scatterer
we are only concerned with the energy scales much lowegan be solved for arbitrary reflection coefficieRf(e), see
thanJ. As we saw in Sec. Il, at those scales one can use thRppendix C. Here we findW in the semiclassical limit,

bosonized Hamiltonia(\4) regardless of the appllcablllty of which is valid for very SIOle Varying bandW|d[ﬂ[y], when
the Wigner crystal description. Thus we can ignore the dif-p (¢)=g(e-J).

ference between the ngr!er crystal an_d weakly interacting |4 the limit of slowly varying J[y] one can apply the
electron gas at large density>ag, and simply assume that eqyi (36) for the spectrum of particles at every point in

in the leads the exchangkesaturates all..~ E. space, and treat the excitations as classical particles with
The properties of the functiody] can thus be summa- energy

rized as follows:

1
H,= 52 JI+ q(t)][(afam +a/,,a)

roi] 9<Ee athi<nuz, s H(y,p. = Jly+otlsin 1 (37)
V0~ 6 atlyl— e, 59 | | o

Herey is the coordinate of the particl@, is its momentum,
see Fig. 2. Note thatis the coordinate on the Wigner lattice. andv=I/e is the velocity of the constriction. For simplicity
Since we consider the limit of very smooth confining poten-we will consider the case of dc curreiht const. To find the
tial, all the physical quantities change very little at the inter-linear conductance of the quantum wire, one can limit one-
particle distance. We therefore assume thig is a slowly  self to the case of very small current, and assume
varying function:|dJ/dy| < J[y]. <T/#,J/h.
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The time-dependent enerd®7) should be treated as a h

XY
Hamilton function, and the trajectory of the particle can, in Ry = Zezf(J)- (40)
principle, be found by solving the classical Hamilton equa-
tions. One can easily check that the quantity At low temperaturel <J most of the particles have energies

belowJ and pass through the constriction elastically. Only an
_ exponentially small fraction of particles are reflected and
Ely,p.0 =H(y,p.t) + po (38) contribute to the dissipation. Thus the regdld) is exponen-
tially small at low temperatureR:" = (h/2e?)e™'. As the
is an integral of motion. It has the meaning of energy of thetemperature is increased, a greater fraction of the particles
particle in the frame moving at the speed of the constrictionare reflected by the constriction, and ﬂ??ﬂéY increases. In the
A particle with energye~ T moving in the right direction  [imit T/J—« all the particles are reflected, and the resis-
has a very low momenturp when it is in the leadsp/#  tance saturates &' =h/4e.
=€/J,~T/Eg<1. Thus its integral of motiorE(y,p,t)=e. In this section we studied the simplifiedY model, in
As the particle approaches the constriction, its momentumvhich thez-component of coupling in the HamiltoniaB0)
increases, so thd retains its value despite the decrease ofwas neglected. Thus the res(#0) cannot be applied directly
the bandwidthl. At smallv the maximum allowed value of to the problem of conductance of a quantum wire in the
E in the wire is reached ap=w#/2 and equalsE,,,=J  Wigner crystal regime. However, much of the physics lead-
+Zhv. Thus ate<J+7Z%v the right-moving particle moves ing to Eq.(40) can be carried over to the case of the isotropic
from the left lead to the right one, and its energyemains  model(30).
unchanged. If the energyexceedsl+7#v, the particle can-
not enter the wire. When its momentum reacheés 2 at a

point to the left of the constriction, the particle is reflected. B. Isotropic coupling

Deep in the left lead its momentum is very closent. Due The problem of the isotropic inhomogeneous Heisenberg
to the pv term in the integral of motior§38), its energyH spin chain(30) is far more complicated than that of the&Y
decreases te— 7fiv. model(35). However, it can still be somewhat simplified by

Similarly, since a left-moving particle in the right lead assuming thafl[y] is a very slowly varying function. Then
with energye has momentum very close tef, its integral of  each moderately long section of the spin chain can be ap-
motion (38) is E= e+ mhv. The conditionE < Ep, for trans-  proximated by the homogeneous Heisenberg model. The lat-
mission through the constriction for such particles meanser allows for exact solutici by means of Bethe ansatz. The
e<J-Zhv. As the particle reaches the left lead, the momen{ow-energy excitations of the isotropic Heisenberg spin chain
tum is again nearrf, i.e., conservation oE results in con- are spinons with energy spectréfi®
servation of energyH=e€. On the other hand, particles with
energiese>J- Zhv are reflected back to the right lead, and e(k) = m sink. (42)
their momentum on the right-moving branch is neerO.

Thus the energy of these particles increases fiono e Although the spinons do not obey Fermi statistics, the simi-

+7ho. . )
. . . . . larity between Eq(41) and the spectruni36) of the excita-

o iummanze, the partlplgs n the Iegds with ENe1Y1€Sions of the XY model enables us to find the temperature
e<J-3hv cross the constriction region without change Ofdependence R, at T<J.
energy. The particles with energies>J+7%v are always Indeed, most of the discussion leading to E4) did not
reflected by the constriction. The ones in the left lead deely on Fermi statistics of the excitations. One can apply the
crease their energy byfiv, while the ones in the right lead arguments of Sec. VA to the problem of scattering of
increase their energy by the same amount, so that these cagsinons by the constriction of the band in the wire. In par-
tributions to the total energy of the system compensate eagftjar, one concludes that spinons with energies betdw2
other. Finally, in the narrow range of energi@s3fiv<e pass through the constriction without scattering and do not
<J+3hv the right-movers go through the constriction with- change their energy. Thus the dissipation is exponentially
out change of energy, whereas the left-movers are reflectesmall atT<J, and one findsR, < exp(—mJ/ 2T).
back to the right lead with energy gaiffiv. Since the occupation of states with high eneegymJ/2

The total current of left moving particles and holes in theat low temperature is exponentially small and independent of
narrow energy interval of widthrfiv neare=J is given by  statistics, one can naively expect the resistaRgeto be
SN=(2/h)(7hv)f(J), where f(e)=1/(e“T+1) is the Fermi given by the low-temperature asymptotics of E40) upon
function. Thus the total energy transferred to the spin excifeplacemen— 7J/2. Then one obtains

tations in unit time is
R =Roexp(— W—J> (42)
7 A

Th

— Q). (39 This approach gives the prefact@g=h/2€?.
3 . .

Unfortunately the analogy between spinons and fermion
Comparing this result with the Joule heat I8M#1°R, we  excitations of theXY model does not enable one to find the

obtain the spin contribution to the resistance prefactor in Eq(42). Unlike the excitations of th&Y model,

W= wfiv?(3) = 12
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the spinons interact with each other, and the energy of a h
spinon is affected by the presence of other spinons. In the R, = K &2 (44)
limit T—O0 the density of other spinons is small, and the i
energy is given by Eqg41). At finite T the result(41) may  In the dc limit the frequency of the driving foree— 0, and
acquire a small correction. The exponent of &p) is de- the wavelength of the spin waves is very long. Thus the
termined by the maximum energy of a spined/2. Even a  parameteK, in Eq. (44) is taken at large distances from the
small correction to this energy may affect the prefa&gr constriction, where the SQ) symmetry demand¥,=1.

At high temperaturél'>J the resistance contributioR, =~ Consequently the spin contribution to the resistance in the
evaluated within theXY model approximation saturates, be- model with isotropic coupling is given by
cause in this regime all the excitations are reflected by the
constriction. This feature is preserved in the model with iso- R = L
tropic coupling, as al— 0 the spin excitations cannot propa- 72

gate through the wire. Similarly to the case of low tempera-5 the other hand, th¥Y model (35) does not possess the

ture, the excitations of the spin chain are spinons. TheSU(Z) symmetry, and the bosonization proced(§) gives
scattering of spinons by the constriction is complicated bythe quadratic pért of Hamiltonia) with K, =2. Then Eq

thg fact 'Fhat in t'he central regiqr!, whelg]<T, the gas of 44) predictsRXY=h/4€?, in agreement witfT >J asymptot-
spinons is not dilute. However, it is natural to assume that th s of Eq.(40).

moving constriction withJ<<T backscatters all the spinons
approaching it, resulting in a finite dissipatiov,=1°R,.
To find the saturation value & at high temperatures we VI. DISCUSSION OF THE RESULTS

tioq, whereJ[1]=J,.>T, one can sFiII bosonize the_HamiI- with quantum wire devices is the linear conductance. In our
tonian (33) and use the forni4). Inside the constriction the theory its value is given by

bosonization is not applicable, and this region should be

modeled by imposing a boundary condition on the bosonic G= 1
field ¢, at the constriction, corresponding to the fact that R,+ R,
there is no spin propagation between the regions of large o )
positive and negative The form of the boundary condition Cf- Ed-(32). The contributions?, andR, to the resistance of
cannot be obtained within the bosonization approach becaudB€ Wire are determined by the properties of the charge and
the latter fails aty<T. To evaluateR, we assume that the SPIN €xcitations of the system, respectively. .
exact nature of the scatterer does not affect the dissipation 1hroughout this paper we consider the case of relatively
W,, as long as all the excitations are backscattered. ThidW temperatureT <D, ~7nu,. In this regime the contribu-
enables us to replace the constricti@) of the bandwidth ~ ton of the charge modes is well knowR, =h/2¢ (see also
D,~J[1] in the Hamiltonian(33) with a high potential bar- Sec. Il B). _Ralsmg the temperature abofiz Ie_ads to '_cher-

rier for the fermions. The barrier is modeled by a large backmal smearing of conductance plateags. No interesting elec-
scattering termv(aEaR+aJ,;aL) at site I=—q(t). Upon the tron correlation effects are expeqted>|n _t[ns case.
bosonization transformation(15) this term becomes At not too low electron densitn=ag" the bandwidth

~ [ : : : D,~D,~Eg is the only relevant energy scale of the prob-
= | — _ p o F ) . ’

000§ \2¢() = 2KeYlly=—q0, With ke on the lattice being | 1 Then arr< Er the contributionR, vanishes, and the
/2. Since this scattering term is very strofig; «, it pins

B T S A i e o i, st e
T_his time-(_jependent_boundary co_ndition leads to the emisdensityn<agl another energy scale, the exchange constant
sion of spin waves, in analogy with Sec. lll A, where the 3 5556415 in the problem. This scale is exponentially small,
boundary conditioni24) gave rise to plasmon wave6). In g (11): in particular,J < D,. In the limit of low temperature
the limit of weak current| ~ewq— 0, the wavelength of the ¢ the contributiorR, still vanishes. More specifically, at
spin waves~J../fiw is much larger thaw(t), and instead of 1.3 \ye predict activated temperature dependef® of
imposing the boundary condition pt—q(t) one canimpose R with activation temperaturer/2. At higher tempera-

(45)

(46)

it at y=0. Then the boundary condition becomes turesR, grows, and a > J it saturates at the universal value
- R,=h/2€?, see Eq.45). Combining these results with Eq.
¢,(0,1) =~ —=q(1). (43 (46), we obtain
V2 2
Note that up to the inessential negative sign EB) is G= o J<T<D,. (47)

identical to the boundary conditio(24). The respective

Hamiltonians(3) and(4) are also essentially identical at low This is our main result. It corresponds to an additional quan-
energies, as the sine-Gordon term is irrelevant. One catized plateau of conductance of a quantum wire at low elec-
therefore carry over the results of Sec. Ill A for the dissipa-tron density. The value of the conductance at this plateau is
tion of energy into plasmon waves and the resulting contriexactly one-half of the quantized conductaned/B.

bution to the resistance. Adapting E@8) to the parameters The plateaus of conductanceeih have been observed
of Hamiltonian(4), we find at low electron densities in several experiméfitd3The au-
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thors of Refs. 10-13 attributed this feature to the spontane- In the case of noninteracting electrons at zero temperature
ous spin polarization in quantum wires. This interpretationthe conductance does not depend on the magnetic field and
contradicts the theorem by Lieb and Maftistating that the  remains 22/h until the electron gas becomes completely
ground state of a 1D electron system cannot be Spinspin polarized aB> B((;O):EF/4|9|MB- In a polarizing field
polarized in the absence of magnetic field. One can hypothgnly one spin channel is allowed in the wire, and the con-
esize that the ferromagnetism in quantum wires is possiblgctance reduces ®/h. In the case of a quantum wire at

because rt]hebelect;ons ire nlot dtruly one—d;]mﬁnsion_al; ho?’l‘{bw electron density this behavior is preserved, but the step
ever, to the best of our knowledge, no such theory Is avall, -onqyctance occurs at a much lower critical fiek).

able at this time. In our theory the spin structure of the ; e :
. . : : Indeed, although in the presence of magnetic field spinons
Wigner crystal state is described by the Heisenberg mode re no longer the elementary excitations of a spin chain, at

(10) with positive exchange constadtcorresponding to an- B<B. one can introduce modified elementary excitations

tiferromagnetic coupling. Thus the ground state of the

Wigner crystal is not spin-polarized, in agreement with thewith similar propertie$® Then by repeating the arguments of

theoren®’ Sec. VB one concludes that the low energy excitations

The temperature dependence of the conductance of RféSent in the system at—0 cross the wire elastically, re-
quantum wire device obtained in this paper is similar to thesulting inR,=0 and total conductand8=2¢?/h. At B>B;
behavior observed in experiments on 0.7 structure in quarfhe Wire is completely spin polarized, and the spin excita-
tum point contact§= In agreement with experiments?  tions in the leads are reflected by the wire. This situation is
conductancg46) remains 2°/h at T—0, but develops a completely analogous to the case of high temperature con-
negative correction at finite temperature. The activated temsidered in Sec. V B. In particular, the resistariRgcan be
perature dependence of the correction following from Eqfound by bosonizing the electron system in the leads and
(42) is consistent with the measurements of Ref. 9. At highimposing the boundary conditiof3) on the field¢,. This
temperature the correction saturates, and the conductance degain leads t&R,=h/2e? and reduces the conductance of the
velops a new plateau. Contrary to the experiménftshis  device toe?/h. Thus one can find the critical field8) and
plateau is at one-half of the quantized valug/a, rather the exchange constadtby measuring the magnetic field at
than at 0.7 (2€?/h). The relation between the plateau at which the conductance drops frone?2h to €?/h.
€’/h and the 0.7 structure was studied experimentally in Ref. Apart from the experiments with GaAs quantum wires,
12. It was found that the quasiplateau at ®(2e’/h) is  quantization of conductance &=e2/h in the absence of
observed in short wires, whereas in longer wires it shiftsmagnetic field has been observed in carbon nanottfEss
towarde?/h. In this paper we assume that the wire is long, scanomalous quantization occurs when the current is forced to
that the parameters of the system, such as the confining pflow through the narrow tip of the tube. At small radius of
tential, Fermi energy, and exchange constdntdo not  the nanotube the Coulomb interactions between electrons be-
change significantly at the interparticle distance. It would become effectively stronger, and could conceivably suppress
interesting to generalize our approach to the case of shortefie exchange couplingof the electron spins below the tem-
wires and see whether the physics discussed in this papgerature. Our resu{é7) would then explain the experimental
may be responsible for the 0.7 structure in quantum poingata>®

contacts.
To test the relevance of our theory to the experiméntd
showing plateaus &’/h, one can check whether the experi- ACKNOWLEDGMENTS
mental temperature exceeds the exchange enkrue to
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value B.=J, the spin chain becomes completely spin polar-

ized. The magnitude of the critical fieB. can be found by

considering the spin-polarized state in a strong fizldith a APPENDIX A: ESTIMATE OF THE EXCHANGE
single spin-flip excitation. The energy of such an excitation CONSTANT J
|g| ugB is reduced by 2 due to coupling to neighboring
spins.(Hereg is the Lande factor, andg is Bohr magneton. Here we estimate the exchange constant in an infinite 1D
Thus the complete polarization occursBat B, where Wigner crystal with the lattice constabt=1/n. Following
2J the idea of HausléP we evaluate) for two spins at neigh-

c= lolue” (48) boring sited =0 andl=1 using an approximation where the

only dynamical variable is the distangex; —X, between the
By measuring the critical field. required to achieve com- two electrons. In this approximatioxg+x,=b and all the
plete polarization of the spin chain one can determine th@ther electrongl #0,1) are at fixed positiong =Ib. Then
exchange constadt the Coulomb potential takes the form
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Ua) o p( 1 f N )
AE=——exp - - | vV2mU(X) -%Aw/2]dx]. (A4)
vemr f -a
Here w=\U"(b)/m is the frequency of small oscillations
near the minima=tb of the potentialU(x), andx=*a are
the classical turning points at energyw/2, i.e., a=b
N b b Y —-Jh/mw, see Fig. 3.
~_ N To evaluateAE with the correct prefactor, one has to care-
-b -a a b T fully account for the small energhw/2 in the exponential.

The resulting level splitting can be written as
FIG. 3. The shape of the double-well potentiaR). The par-

ticle can occupy the ground state with enefgy/2 in each well. _2 a5 s
Tunneling between the wells gives rise to the energy level splitting, AE= V’,;\ﬁw mbfefe™, (AS)
which can be found in WKB approximation, EGA4).
where
3 3 3 1(°
U(x) = — + + . =— l2muU(x)dx, A6
%9 Y — sohf_b\ () (A8)

elx| 1301 s‘b;X—lb‘ .

Ib’

1 " 2
(A1) §:f (\/U (bb —i)dz. (A7)
0 2U(bz 1-z
This potential has two degenerate minimaxat+b corre-  An alternative solutio?? of the problem using the instanton
sponding toX,=0, X;=b and X,=b, x;=0. In the limit of  technique leads to a result that can be also presented in the
strong Coulomb potential the tunneling between these twgorm (A5)~(A7).
states gives rise to exponentially small splittiag of the In order to apply this result to the evaluation of the ex-
doublet. . _ _ change constand, one has to keep in mind thatis the
The ground state wave function of this system is an eveRelative position of two neighboring electrons; x,—x;, and

function of x, and is therefore symmetric with respect to rep|ace the mass in EqQEAL) and (A6) with the reduced

permutationxy < X;, while the first excited state is antisym- assm/2. One then findsS,= 77\5'% with the numerical
metric. The two states correspond to the values of the tot oefficient B

spin of the two-electron syste®=0 andS=1, respectively.

1
Thus the energy of the two components of the doublet can be _ [y
written in terms of the electron spin operators at the two sites n= a1 VF(2) -F(1)dz~2.817. (A8B)
asEy+JSy-S;, wherel is identified with the level splitting
AE. Substitution of this result into EqA5) gives the leading

Strictly speaking the infinite series in E¢A1) diverges.  exponential behavior of Eq11).
This is due to the long range nature of the Coulomb interac- The numerical parametet defined by Eq(A7) depends
tions. In practice the interactions are screened at large dignly on the shape of the barrier separating the two minima of
tances by remote gates. Instead of modifying the CoulomipotentialU(x). For the potentialA2), we find
potential to account for the gate, it will be more convenient 1 F (D) 1
to simply subtract from EqAl) a divergent constar(b). £= f ( N, - )dzz - 0.423.
Then the series converges, and in the important regipn o\ V2F@-F@O)] 1-z
< 3b the potential can be presented in analytic form as (A9)

Substituting this result in Eqg(A5) we find the exchange

constant
wh? p( [b )
J=——=exp - 7\/— |, (A10)
m‘\‘e'bSag ag

1 3-z 3+z with k=2.203. Expressing the prefactor in terms of the
F(2 = H - 2¢<T> B 2¢<T>’ (A3 Fermi energy, we obtain E¢12).
It is worth mentioning that because of the singularity of
the potentialU(x) at x=0, the validity of the WKB approxi-
wherey(2) is the digamma function. The shape of the poten-mation used in the derivati§hof formula (A4) is limited to
tial (A2) is shown in Fig. 3. |X|>ag. Moreover, since the potentigh2) is not integrable
Evaluation of the energy level splittin§E for a particle  up to the singularity, it represents an impenetrable bdifier.
of massm in a double-well potential(x) is a well-known  Thus the true value of the level splitting for potentiAR) is
problem of quantum mechanié%and the resuft is given by ~ AE=0. On the other hand, the electrons in a quantum wire

e
Ux) =~ [F(x/b) - F(D)], (A2)
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are not strictly one-dimensional due to the finite widtlof APPENDIX C: DISSIPATION OF ENERGY
the wire. As a result the singularity of the Coulomb interac- BY A SCATTERER IN A FERMI GAS
tion potential is cutoff at short distancg&s-w. In GaAs de-
vicesw= ag, which justifies the WKB approximation. In car-
bon nanotubes it may be possible to achieve the regime
< ag; a more sophisticated approach to the calculation of th
exchange constaidtis required in this cas®.

Let us consider the dissipation of energy in a noninteract-
ing Fermi gas in the presence of a moving scatterer. We
?qssume that the single-particle Hamiltonian has the general
orm

H(y,p,t) = Ho(y + do Sin wt, p). (CY)

Here the Hermitian operatdty(y,p) is independent of the
coordinatey in the regions corresponding to the leags,

— o0, The Hamiltonian(35) obviously satisfies these con-
ditions for smoothly varying)[y] after the discrete site num-
ber | is replaced by a continuous coordinate The
y-dependent central part of the Hamiltoniblg(y,p) can be

_aq(t) [ viewed as a scatterer with energy-dependent reflection coef-
U=ex _I'_Ef I1,(x)dx |,
v —

APPENDIX B: RESISTANCE OF A QUANTUM WIRE

Let us derive the resistang@8) of an infinite quantum
wire in the regime of applied current. The wire is modeled by
the Hamiltonian(3) with the time-dependent boundary con-
dition (24). It is convenient to apply to the Hamiltonian a
unitary transformation

(B1) ficient R(€). Condition(C1) implies that the position of the
scatterer oscillates with amplitudg.

which shifts the charge fielg,(x) — ¢,(x) +(7/ \E)q(t). As In the limit of small g, one can expand EqC1) and
a result the boundary conditioi24) is replaced with present the Hamiltonian as
#,(0,t)=0, but the Hamiltonian(3) acquires a time- H(y,p,t) = Ho(y,p) + Go Sin wtd,Hq(y, p). (C2)

dependent perturbation
" The time-dependent perturbation leads to absorption and
V=-ihUTgU = - ﬁ,—d(t)J 1T (X)dx. (B2) emission of energy quantew by the fermions. The rates of
V2 = ! these processes may be found using the Fermi golden rule,

) o and one obtains the increadéof the energy of the system in
The perturbatioriB2) leads to excitation of plasmons and it time in the form

to dissipation of energy into the Luttinger liquid. To find the

energyW dissipated in unit time, it is convenient to diago- _2m Yo
nalizeH, by introducing the plasmon destruction operators W= 7 ho dkak 2 [dyHoliae
1 /K K X [f(e) — f(e)]0(e— €0 + hw). C3
bk:f 0(kx)sinkx(— u¢p(x)+i _kEHP(X)>dX' [ (Ek) (Ek)] (Ek €K w) ( )
™ VK, K Here k labels the eigenstates of Hamiltoniaty with ener-

(B3) giese,.. The occupation numbers of these states are given by
the Fermi functionf(¢,). The eigenfunctions have scattering

where 6(y) is the unit step function. Note that in order to :
wave asymptotics

satisfy the boundary conditiog,(0,t)=0 the wave functions

of the plasmons were chosen in the form,(x) 1 eYVire™ aty—-o, o4
=vy2/76(kx)sinkx; positive and negativk correspond to ex- wly) = 2n X t, ey aty — + oo €4
citations to the right and left of the boundaxy0, respec- N
tively. for positivek and
Upon the transformation to the new variabl@s3), the 1 ey aty — — oo
two terms in the Hamiltonian take the form ly) == X\ 4 " " (CH
V2 e€Y+re™ aty— +o
Hp:f hadbibdk, for negativek. Herer, andt, are the reflection and transmis-
- sion amplitudes; the reflection coefficient is defined as
. o) 1 7?’(€|():|rk|2'
_ifilgcosawt [ b~ by In the limit of low frequencyw— 0 expressionC3) can
V= — ——dk. (B4) S
eveK, J- VIK| be further simplified,
2
The perturbatiorV/ leads to both emission and absorption of W= m(w0o) —f +
plasmons with energfw. The total energy dissipated in unit fo? def-f'(a)]l(e) + {(a)].  (CO)

time can be evaluated using the Fermi golden rule as ) , ,
Here we have approximated the energies near the Fermi level

as g.=hve(|k|—kg), accounted for the double degeneracy of

2
W:2—7T( filg )i[(uwﬁw—fkﬁw]. (B5)

h 2&/% ho the energy levelg,, and introduced
Regardless of the values of the plasmon occupation numbers {u(e) = lim I[ayHolke |*. (C7)
fi, expression(B5) reduces toN=312R, with the resistance Kk
(28). The matrix elementd,Hlx is defined as
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X 1
[dyHole = f dydh, (Y)[dHol#dy). (C9 { (&)= ?(ﬁUFkF)ZR(Gk)[l -R(&)]. (C1y

Integrating by parts and taking advantage of the fact #hat Substituting these results into 5E6), we find

is an eigenfunction oH,, we find A
W= —(wqo) 2k f df-f'(e]R(e).  (C12)
v

[dyHolke = (&= &) f dyis, (Y)dyidy). (€9 15 apply this result to the evaluation of the spin contribution
to the resistance within th¥Y model approximation, one
To evaluateZ, () we need to find the divergent kt— +k  should substitutangy=1y/e and ke=m/2. Then Eq.(C12
part of the integral in Eq(C9). Since the divergences origi- takes the form
nate aty— * o, one can use the scattering wave asymptotics

’ . ) 1 h
(C4) and(CY) in Eq. (C9). This results in W= 5|5R§Y, R = e f de[- f'(e)]R(e). (C13
=~ (hok) AR 2 C10 The result for the resistance coincides with E£D) for the
bled 772( veke) TR (€] (C10 appropriate reflection coefficiefR (€)= 6(|€/-J).
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