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We use exact diagonalization to explore the many-body localization transition in a random-field spin-1/2
chain. We examine the correlations within each many-body eigenstate, looking at all high-energy states and
thus effectively working at infinite temperature. For weak random field the eigenstates are thermal, as expected
in this nonlocalized, “ergodic” phase. For strong random field the eigenstates are localized with only short-
range entanglement. We roughly locate the localization transition and examine some of its finite-size scaling,
finding that this quantum phase transition at nonzero temperature might be showing infinite-randomness scal-
ing with a dynamic critical exponent z→�.
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I. INTRODUCTION

As originally proposed in Anderson’s seminal paper,1 an
isolated quantum system of many interacting degrees of free-
dom with quenched disorder may be localized and thus ge-
nerically fail to approach local thermal equilibrium, even in
the limits of long time and large systems, and for energy
densities well above the system’s ground state. In the same
paper, Anderson also treated the localization of a single-
particlelike quantum degree of freedom and it is this single-
particle localization, without interactions, that has received
most of the attention in the half century since then. Much
more recently, Basko, et al.2 have presented a very thorough
study of many-body localization with interactions at nonzero
temperature and the topic is now receiving more attention;
see, e.g., Refs. 3–13.

Many-body localization at nonzero temperature is a
quantum-phase transition that is of very fundamental interest
to both many-body quantum physics and statistical mechan-
ics: it is a quantum “glass transition,” where equilibrium
quantum statistical-mechanics breaks down. In the localized
phase the system fails to thermally equilibrate. These funda-
mental questions about the dynamics of isolated quantum
many-body systems are now relevant to experiments since
such systems can be produced and studied with strongly in-
teracting ultracold atoms.14 And they may become relevant
for certain systems designed for quantum-information
processing.15,16 Also, many-body localization may be under-
lying some highly nonlinear low-temperature current-voltage
characteristics measured in certain thin films.17

II. MODEL

Many-body localization appears to occur for a wide vari-
ety of particle, spin or qubit models. Anderson’s original
proposal was for a spin system;1 the specific simple model
we study here is also a spin model, namely, the Heisenberg
spin-1/2 chain with random fields along the z direction5

H = �
i=1

L

�hiŜi
z + JS�̂ i · S�̂ i+1� , �1�

where the static-random fields hi are independent random
variables at each site i, each with a probability distribution

that is uniform in �−h ,h�. Except when stated otherwise, we
take J=1. The chains are of length L with periodic boundary
conditions. This is one of the simpler models that shows a
many-body localization transition. Since we will be studying
the system’s behavior by exact diagonalization, working with
this one-dimensional model that has only two states per site
allows us to probe longer length scales than would be pos-
sible for models on higher dimensional lattices or with more
states per site. We present evidence that at infinite tempera-
ture, �=1 /T=0, and in the thermodynamic limit, L→�, the
many-body localization transition at h=hc�3.5�1.0 does
occur in this model. The usual arguments that forbid phase
transitions at nonzero temperature in one dimension do not
apply here since they rely on equilibrium-statistical mechan-
ics, which is exactly what is failing at the localization tran-
sition. We also present indications that this phase transition
might be in an infinite-randomness universality class with an
infinite dynamical critical exponent z→�.

Our model has two global conservation laws: total energy,
which is conserved for any isolated quantum system with a
time-independent Hamiltonian and total Ŝz. The latter conser-
vation law is not essential for localization and its presence
may affect the universality class of the phase transition. For
convenience, we restrict our attention to states with zero total
Ŝz.

For simplicity, we consider infinite temperature, where all
states are equally probable �and where the sign of the inter-
action J does not matter�. The many-body localization tran-
sition also occurs at finite temperature; by working at infinite
temperature we remove one parameter from the problem and
use all the eigenstates from the exact diagonalization �within
the zero total Ŝz sector� of each realization of our Hamil-
tonian. We see no reason to expect that the nature of the
localization transition differs between infinite and finite non-
zero temperature, although it is certainly different at strictly
zero temperature.18 Note that this is a quantum-phase transi-
tion that occurs at nonzero �even infinite� temperature. Like
the more familiar ground-state quantum-phase transitions,
this transition is a sharp change in the properties of the
many-body eigenstates of the Hamiltonian, as we discuss
below. But unlike ground-state phase transitions, the many-
body localization transition at nonzero temperature appears
to be only a dynamical-phase transition that is invisible in
the equilibrium thermodynamics.4
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There are many distinctions between the localized phase
at large random field h�hc and the delocalized phase at h
�hc. We call the latter the “ergodic” phase although pre-
cisely how ergodic it is remains to be fully determined.19 The
distinctions between the two phases all are due to differences
in the properties of the many-body eigenstates of the Hamil-
tonian, which of course enter in determining the dynamics of
the isolated system.

In the ergodic phase �h�hc�, the many-body eigenstates
are thermal,20–23 so the isolated quantum system can relax to
thermal equilibrium under the dynamics due to its Hamil-
tonian. In the thermodynamic limit �L→��, the system thus
successfully serves as its own heat bath in the ergodic phase.
In a thermal eigenstate, the reduced density operator of a
finite subsystem converges to the equilibrium thermal distri-
bution for L→�. Thus the entanglement entropy between a
finite subsystem and the remainder of the system is, for L
→�, the thermal equilibrium entropy of the subsystem. At
nonzero temperature, this entanglement entropy is extensive,
proportional to the number of degrees of freedom in the sub-
system.

In the many-body localized phase �h�hc�, on the other
hand, the many-body eigenstates are not thermal:2 the
“eigenstate-thermalization hypothesis”20–23 is false in the
localized phase. Thus in the localized phase, the isolated
quantum system does not relax to thermal equilibrium
under the dynamics of its Hamiltonian. The infinite system
fails to be a heat bath that can equilibrate itself. It is a
“glass” whose local configurations at all times are set by the
initial conditions. Here the eigenstates do not have extensive
entanglement, making them accessible to density-matrix-
renormalization-group–type numerical techniques.5 A limit
of the localized phase that is simple is J=0 with h�0. Here
the spins do not interact, all that happens dynamically is
local Larmor precession of the spins about their local-
random fields. No transport of energy or spin happens and
the many-body eigenstates are simply product states with
each spin either “up” or “down.”

Any initial condition can be written as a density matrix in
terms of the many-body eigenstates of the Hamiltonian as
�=�mn�mn�m�	n�. The eigenstates have different energies so
as time progresses the off-diagonal density-matrix elements
m�n dephase from the particular phase relations of the ini-
tial condition while the diagonal elements �nn do not change.
In the ergodic phase for L→� all the eigenstates are thermal
so this dephasing brings any finite subsystem to thermal
equilibrium. But in the localized phase the eigenstates are all
locally different and athermal, so local information about the
initial condition is also stored in the diagonal density-matrix
elements and it is the permanence of this information that in
general prevents the isolated quantum system from relaxing
to thermal equilibrium in the localized phase.

Our goals in this paper are �i� to present results in the
ergodic and localized phases that are consistent with the ex-
pectations discussed above and �ii�, more importantly, to ex-
amine some of the properties of the many-body eigenstates
of our finite-size systems in the vicinity of the localization
transition to try to learn about the nature of this phase tran-
sition. Although the many-body localization transition has
been discussed by a few authors, there does not appear to be

any proposals for the nature �the universality class� of this
phase transition or for its finite-size scaling properties, other
than some very recent initial ideas in Ref. 10. It is our pur-
pose here to investigate these questions, extending the previ-
ous work of Oganesyan and Huse,4 who looked at the many-
body energy-level statistics of a related one-dimensional
model. Since the many-body eigenstates have extensive en-
tanglement on the ergodic side of the transition, it may be
that exact diagonalization �or methods of similar computa-
tional “cost”10� is the only numerical method that will be
able to access the properties of the eigenstates on both sides
of the transition.

III. DOES IT THERMALIZE?

As a first simple measure to probe how thermal the many-
body eigenstates appear to be, we have looked at the local
expectation value of the z component of the spin

mi�
�n� = 	n�Ŝi

z�n�� �2�

at site i in sample � in eigenstate n. For each site in each
sample we compare this for eigenstates that are adjacent in
energy, showing the mean value of the difference: ��mi�

�n�

−mi�
�n+1��� for various L and h in Fig. 1, where the eigenstates

are labeled with n in order of their energy. The square brack-
ets denote an average over states, samples, and sites. The
number of samples used in the data shown in this paper
ranges from 104 for L=8, to 50 for L=16 and some values of
h. In our figures we show one standard-deviation error bars.
Here and in all the data in this paper we restrict our attention
to the many-body eigenstates that are in the middle one third
of the energy-ordered list of states for their sample. Thus we
look only at high-energy states and avoid states that repre-
sent low temperature. In this energy range, the difference in
energy density between adjacent states n and �n+1� is of
order 
L2−L and thus exponentially small in L as L is in-
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FIG. 1. �Color online� The natural logarithm of the mean differ-
ence between the local magnetizations in adjacent eigenstates �see
text�. The values of the random field h are indicated in the legend.
In the ergodic phase �small h� where the eigenstates are thermal
these differences vanish exponentially in L as L is increased while
they remain large in the localized phase �large h�.
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creased. If the eigenstates are thermal then adjacent eigen-
states represent temperatures that differ only by this expo-

nentially small amount so the expectation value of Ŝi
z should

be the same in these two states for L→�. From Fig. 1, one
can see that the differences do indeed appear to be decreas-
ing exponentially with increasing L in the ergodic phase at
small h, as expected. In the localized phase at large h, on the
other hand, the differences between adjacent eigenstates re-
main large as L is increased, confirming that these many-
body eigenstates are not thermal.

Thermalization requires the transport of energy. In the

present model with conserved total Ŝz, it also requires the
transport of spin. To study spin transport on the scale of the
sample size L, we consider the relaxation of an initially in-
homogeneous spin density

M̂1 = �
j

Ŝj
z exp�i2�j/L� �3�

is the longest wavelength Fourier mode of the spin density.
Consider an initial condition that is at infinite temperature
but with a small modulation of the spin density in this mode,

so the initial density matrix is �0= �1+	M̂1
†� /Z, where 	 is

infinitesimal and Z is the partition function. The initial spin
polarization of this mode is then

	M̂1�0 = �
n

	n��0M̂1�n� =
	

Z
�

n

	n�M̂1
†M̂1�n� . �4�

If we consider a time average over long times, then the long-
time averaged density matrix �� is diagonal in the basis of
the eigenstates of the Hamiltonian since a generic finite-size
system has no degeneracies and the off-diagonal matrix ele-
ments of � each time average to zero. As a result, the long-
time average of the spin polarization in this mode is

	M̂1�� =
	

Z
�

n

	n�M̂1
†�n�	n�M̂1�n� . �5�

Thus for each many-body eigenstate in each sample we can
quantify how much it contributes to the initial and to the
long-time averaged polarization. We then define the fraction
of the contribution to the initial polarization that is dynamic
and thus decays away �on average� at long time, as

f�
�n� = 1 −

	n�M̂1
†�n�	n�M̂1�n�

	n�M̂1
†M̂1�n�

. �6�

In the ergodic phase, the system does thermalize so the initial
polarization does relax away and f�

�n�→1 for L→�. In the
localized phase, on the other hand, there is no long-distance
spin transport, so f�

�n�→0 for L→�. In Fig. 2 we show the
mean values of f for each L vs h. They show the expected
behavior in the two phases �trending with increasing L to-
wards either 1 or 0� and the phase transition is indicated by
the crossover between large and small f that occurs more and
more abruptly as L is increased.

A qualitatively similar finite-size scaling plot also indicat-
ing the phase transition is obtained by examining the many-
body eigenenergy spacings as was done in Ref. 4 and is

shown as Fig. 3. We consider the level spacings 
�
�n�= �E�

�n�

−E�
�n−1��, where E�

�n� is the many-body eigenenergy of eigen-
state n in sample �. Then we obtain the ratio of adjacent gaps
as r�

�n�=min�
�
�n� ,
�

�n+1�� /max�
�
�n� ,
�

�n+1�� and average this ra-
tio over states and samples at each h and L. In the ergodic
phase, the energy spectrum has Gaussian-orthogonal en-
semble �GOE� level statistics and the average value of r
converges to �r��0.53 for L→� while in the localized
phase the level statistics are Poisson and �r�→ �0.39. Note
that our model is integrable at h=0, so will not show GOE
level statistics in that limit and this effect is showing up for
our smallest L and lowest h in Fig. 3.

The crossings of the curves for different values of L in
Figs. 2 and 3 give estimates of the location hc of the phase
transition. Both plots show these estimates “drifting” toward
larger h as L is increased with the crossings at the largest L
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FIG. 2. �Color online� The fraction of the initial spin polariza-
tion that is dynamic �see text�. The sample size L is indicated in the
legend. In the ergodic phase �small h� the polarization decays sub-
stantially under the dynamics while in the localized phase �large h�
the decay is small and this distinction gets sharper as L increases.

0.5 2.5 4.5 6.5 8.5 10.5 12.5
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

[r
α(n

) ]

h

8

10

12

14

16

FIG. 3. �Color online� The ratio of adjacent energy gaps �de-
fined in the text�. The sample size L is indicated in the legend. In
the ergodic phase, the system has GOE level statistics while in the
localized phase the level statistics are Poisson.
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being slightly above h=3. In both cases this drifting is also
towards the localized phase, suggesting the behavior at the
phase transition is, by these measures, more like the local-
ized phase than it is like the ergodic phase.

IV. SPATIAL CORRELATIONS

To further explore the finite-size scaling properties of the
many-body localization transition in our model, we next look
at spin correlations on length scales of order the length L of
our samples. One of the simplest correlation functions within
a many-body eigenstate �n� of the Hamiltonian of sample �
is

Cn�
zz �i, j� = 	n�Ŝi

zŜj
z�n�� − 	n�Ŝi

z�n��	n�Ŝj
z�n��. �7�

In Fig. 4 we show the mean value �ln�Cn�
zz �i , i+d��� as a

function of the distance d for representative values of h in
the two phases and near the phase transition. Data are pre-
sented for various L. This correlation function behaves very
differently in the two phases:

In the ergodic phase, for large L this correlation function
should approach its thermal equilibrium value. For the states

with zero total Ŝz that we look at, 	n�Ŝi
z�n��0 in the thermal

eigenstates of the ergodic phase. However, the conservation

of total Ŝz does result in anticorrelations so that Cn�
zz �i , j�

−1 / �4�L−1�� for well-separated spins. These distant spins at
sites i and j are entangled and correlated: if spin i is flipped,
that quantum of spin is delocalized and may instead be at any
of the other sites, including the most distant one. These long-
range correlations are apparent in Fig. 4 for h=0.6, which is
in the ergodic phase. Note that at large distance the correla-
tions in the ergodic phase become essentially independent of
d= �i− j� at large L and d, confirming that the spin flips are
indeed delocalized. Although we only plot the absolute value
of the correlations, in fact these correlations are almost all

negative, as expected, in this large L ergodic regime.
In the localized phase, on the other hand, the eigenstates

are not thermal and 	n�Ŝi
z�n� remains nonzero for L→�. If

spin i is flipped within a single eigenstate that quantum of
spin remains localized near site i with its amplitude for being
at site j falling off exponentially with the distance:
Cn�

zz �i , j��exp�−�i− j� /�� with � the localization length. In
the localized phase the typical correlation and entanglement
between two spins i and j thus fall off exponentially with the
distance �i− j� �except for �i− j� near L /2 due to the periodic
boundary conditions�. This behavior is apparent in Fig. 4 for
h=6.0, which is in the localized phase and has a localization
length that is less than one lattice spacing. We note that in the
localized phase, as well as near the phase transition, the long-
distance spin correlations Czz are of apparently random sign.

The data of Figs. 1–4 show the existence of and some of
the differences between the ergodic and localized phases. We
have also looked at entanglement spectra24 of the eigenstates
�data not shown�, which also support the robust existence of
these two phases. In addition to confirming the existence of
these two distinct phases, we would like to locate and char-
acterize the many-body localization phase transition between
them. However, in the absence of a theory of this transition,
the nature of the finite-size scaling is uncertain, which makes
it difficult to draw any strong conclusions from these data
with their modest range of L. In studies of ground-state
quantum-critical points with quenched randomness, very
broadly speaking, one first step is to classify the transitions
by whether they are governed �in a renormalization-group
treatment� by fixed points with finite or infinite
randomness.25,26

To explore this question for our system, we next look at
the probability distributions of the long-distance spin corre-
lations. For quantum-critical ground states governed by
infinite-randomness fixed points, these probability distribu-
tions are found to be very broad.25 In particular, we look at

� = ln�Cn�
zz �i,i + �L/2��� �8�

whose probability distributions for L=16 are displayed in
Fig. 5 for various values of h. Note the distributions are
narrow, as expected, in the ergodic phase and consistent with
log-normal, as expected, in the localized phase. In between,
in the vicinity of the apparent phase transition, the distribu-
tions are quite broad and asymmetric.

To construct a dimensionless measure of how these distri-
butions change shape as L is increased, we divide � by its
mean, defining =� / ���. Then we quantify the width of the
probability distribution of  by the standard deviation �
=
�2�−1. This quantity is shown in Fig. 6 vs h for the
various values of L. By this measure, in both the ergodic and
localized phases the distributions become narrower as L is
increased, as can be seen in Fig. 6. This happens in the
localized phase because although the mean of −� grows lin-
early in L, the standard deviation is expected to grow only
�
L. Over the small range of L that we can explore, � is
found to decrease more slowly than the expected L−1/2 in the
localized phase but it does indeed decrease.
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FIG. 4. �Color online� The spin-spin correlations in the many-
body eigenstates as a function of the distance d. The sample size L
is indicated in the legend. The correlations decay exponentially with
d in the localized phase �h=6.0� while they are independent of d at
large d in the ergodic phase �h=0.6�. Intermediate behavior at h
=3.6, which is near the localization transition, is also shown.
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This scaled width �L�h� of the probability distribution of
� as a function of the random field h for each sample size L
shows a maximum between the ergodic and localized phases.
In the vicinity of the phase transition, � actually increases as
L is increased, suggesting that its critical value is nonzero,
like for quantum-critical ground states that are governed by
an infinite-randomness fixed point. This suggests the possi-
bility that this one-dimensional many-body localization tran-

sition might also be in an infinite-randomness universality
class. The peak in this plot is close to h=4 and is thus sug-
gesting a slightly higher estimate of hc than the crossings in
Figs. 2 and 3.

V. DYNAMICS

In the study of the spectral and localization properties of
noninteracting particles in finite samples �such as quantum
dots�, there are two very important energy scales: the level
spacing 
 and the Thouless energy ET. The Thouless energy
is � times the rate of diffusive relaxation on the scale of the
sample. The diffusive �nonlocalized or ergodic� phase is
where ET is larger than 
 and for d-dimensional samples with
d�3, the localization transition occurs when these two en-
ergy scales are comparable. Since the single-particle level
spacing in a d-dimensional system of linear size L behaves as

�L−d and this sets the relaxation time at the localization
transition, the dynamic-critical exponent for the single-
particle localization transition is z=d.

A possibility that we will now investigate is that the
many-body localization transition also occurs when the
Thouless energy is of order the many-body level spacing.
Since the many-body level spacing behaves as log 
�−Ld,
this corresponds to an infinite dynamic-critical exponent z
→�. Note also that even for our model with d=1 this is a
stronger divergence of the critical time scales than occurs at
the known infinite-randomness ground-state quantum-critical
points, where log 
�−L� with ��1 /2.

It is important to note that the model in Eq. �1� we study
has two globally conserved quantities; total energy and total

Ŝz. Their respective transport times �and hence their corre-
sponding Thouless energy� in the ergodic phase may have
different scaling properties close to the critical point. By

studying the relaxation of the spin modulation, M̂1, we are
specifically probing the spin-transport time which may di-
verge differently from the energy transport time close to the
critical point. Such a possibility has been discussed in the
context of zero-temperature metal-insulator transitions27 and
may play a role in deciding the universality class of the
many-body localization transition.

Naively, the Thouless energy is set by the relaxation rate

of the longest wavelength spin-density modulation, M̂1. If
the scaling at the many-body localization transition is such
that the Thouless energy is of order the many-body level
spacing, then at the transition a nonzero fraction of the dy-

namic part of 	M̂1� should be from its matrix elements be-
tween adjacent energy levels and this fraction should remain
large as L is increased. In each sample �, the contribution of

a given eigenstate �n� to the dynamic part of 	M̂1� is given by

��M1��
�n� = 	n�M̂1

†M̂1�n� − �	n�M̂1�n��2. �9�

In the ergodic phase, ��M1��
�n� has significant contributions

from matrix elements with many other eigenstates and the
Thouless energy is a measure of the energy range over which
these contributions occur. To quantify this, we define Qi�

�n� as

the contribution to the dynamic part of 	M̂1� from the matrix
elements between state n and states n� i
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FIG. 5. �Color online� The probability distributions of the natu-
ral logarithm of the long-distance spin-spin correlation in the many-
body eigenstates for sample size L=16 and the values of the ran-
dom field h is indicated in the legend.
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FIG. 6. �Color online� The scaled width � of the probability
distribution of the logarithm of the long-distance spin correlations
�see text�. The legend indicates the sample lengths L. In the ergodic
phase at small h and in the localized phase at large h, this width
decreases with increasing L while near the transition it increases. To
produce the one standard-deviation error bars shown, we have cal-
culated the � �see text� for each sample by averaging only over sites
and eigenstates within each sample, and then used the sample-to-
sample variations in � to estimate the statistical errors. We have
also �data not shown� calculated � by instead averaging � and �2

over all samples; this produces scaling behavior for � that is quali-
tatively the same as shown here but with � somewhat larger in the
localized phase and near the phase transition.
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Qi�
�n� = �	n − i�M̂1�n��2 + �	n�M̂1�n + i��2 �10�

in sample �. Note that

�i�0Qi�
�n� = ��M1��

�n�. �11�

We define P�
�n�=Q1�

�n� / ��M1��
�n� as the fraction of the longest

wavelength “diffusive” dynamics that is due to interference
between adjacent �i=1� many-body energy levels. Fig. 7
shows this quantity averaged over disorder realizations and
states.

If at the localization transition the Thouless energy ET is
proportional to the many-body level spacing 
, then �P�
should remain nonzero in the limit L→�. We do indeed find
a strong peak in this fraction near the many-body localization
transition and that the fraction is large and not decreasing
much as L is increased. Note that the level spacing decreases
by almost a factor of 4 for every increase in L by two addi-
tional spins, so near the transition the Thouless energy is
apparently decreasing by almost the same factor as L is in-
creased. This seems at least consistent with ET�
 scaling
and thus dynamic exponent z→�. In the localized phase, the
dynamics is due to spin moves that are short range in real
space �probably of order the localization length�. These spin
hops involve pairs of many-body eigenstates that become far
apart �large i� for large L; this is why �P� drops with increas-
ing L in the localized phase. Note that the peak in �P� occurs
a little below h=3. If one ignores L=8, the location of this
peak is apparently drifting to larger h with increasing L, con-
sistent with our other rough estimates of hc.

The dynamic fraction �f�
�n�� �Fig. 2� tends to 1 in the er-

godic phase and decreases to 0 in the localized phase. The
probability distribution of f�

�n� �P�f�� is strongly peaked
around 1 and 0 in these respective phases. At the phase tran-
sition, this distribution could either be peaked at the critical
fc, broadly distributed, or even bimodal with peaks near both

zero and one. In Fig. 8, we show P�f� for a disorder strength
h=3.0 close to the estimated transition, for system sizes 10
and 16. This distribution P�f� becomes broader and more
bimodal with increasing L. This feature of the distribution is
consistent with the indication from Fig. 6 that the critical
point may be governed by a strong disorder fixed point.

VI. SUMMARY

This study of the exact many-body eigenstates of our
model in Eq. �1� has demonstrated some of the properties of
the ergodic and localized phases. We also find a rough esti-
mate of the localization transition using various different di-
agnostics. Based on earlier work by one of the authors,4 the
many-body energies go from having GOE to Poisson-level
statistics with increasing disorder. The scaling of the prob-
ability distributions of the long-distance spin correlations
suggests that the transition might be governed by an infinite-
randomness fixed point with dynamic-critical exponent z
→�. We also study the relaxation of spin modulation under
the dynamics of the Hamiltonian. In this case our results are
consistent with ET�
 scaling at criticality, in apparent
agreement with our earlier conclusion of z→� at the transi-
tion. These results suggest that efforts to develop a theory of
this interesting phase transition should consider the possibil-
ity of a strong disorder renormalization-group approach. Of
course, the model we have studied is only one-dimensional
and the behavior of this transition in higher dimensions
might be different in important ways.
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