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Chapter 2

What and Where:
Construction Plans for
Cells and Organisms

“Although not everyone is mindful of it all cell biologists have two cells of in-
terest: the one they are studying and Escherichia coli.” - F. Neidhardt

Chapter Overview: In Which We Consider the Size of Cells and the
Nature of Their Contents

Cells come in a dazzling variety of shapes and sizes. Even so, their molecular
inventories share many common features, reflecting the underlying biochemical
unity of life. In this chapter, we introduce the bacterium Escherichia coli (we
will abbreviate this cell type as E. coli throughout the book) as our biological
standard ruler. This cell serves as the basis for a first examination of the in-
ventory of cells and will permit us to get a sense of the size of cells and the
nature of their contents. Indeed, using simple estimates, we will take stock of
the genome size, numbers of lipids and proteins and the ribosome content of
bacteria. With the understanding revealed by E. coli in hand, we then take
a powers-of-ten journey down and up from the scale of individual cells. Our
downward journey will examine organelles within cells, macromolecular assem-
blies ranging from ribosomes to viruses and then the macromolecules that are
the engines of cellular life. Our upward journey from the scale of individual cells
will examine a second class of biological structures, namely those resulting from
different forms of multicellularity, this time with an emphasis on how cells act
together in contexts ranging from bacterial biofilms to the networks of neurons
in the brain.
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2.1 An Ode to E. coli

Scientific observers of the natural world have been intrigued by the processes
of life for many thousands of years as evidenced by early written records from
Aristotle, for example. Early thinkers wondered about the nature of life and
its “indivisible” units in much the same way that they mused about the funda-
mental units of matter. Just as physical scientists arrived at a consensus that
the fundamental unit of matter is the atom (at least for chemical transactions),
likewise, observers of living organisms have agreed that the indivisible unit of
life is the cell. Nothing smaller than a cell can be shown to be alive in a sense
that is generally agreed upon. At the same time, there are no currently known
reasons to attribute some higher “living” status to multicellular organisms.

Cells are able to consume energy from their environments and use that energy
to create ordered structures. They can also harness energy from the environ-
ment to create new cells. A standard definition of life merges the features of
metabolism (that is, consumption and use of energy from the environment) and
replication (giving offspring that resemble the original organism). Stated sim-
ply, the cell is the smallest unit of replication (though viruses are also replicative
units, but depend upon their infected host to provide much of the machinery
making this replication possible).

The recognition that the cell is the fundamental unit of biological organi-
zation originated in the seventeenth century with the microscopic observations
of Hooke and van Leeuwenhoek. This idea was put forth as the modern cell
theory by Schwann, Schleiden and Virchow in the mid-nineteenth century and
was confirmed unequivocally by Pasteur shortly thereafter and repeatedly in
the time since. Biologists agree that all forms of life share cells as the basis of
their organization. It is also generally agreed that all living organisms on earth
shared a common ancestor several billion years ago that would be recognized
as a cell by any modern biologist. In terms of understanding the basic rules
governing metabolism, replication and life more generally, one cell type as the
basis of experimental investigations of these mechanisms should be as good as
any other. For practical reasons, however, biologists have focused on a few par-
ticular types of cell to try to illuminate these general issues. Among these, the
human intestinal inhabitant E. coli stands unchallenged as the most useful and
important representative of the living world in the biologist’s laboratory.

Several properties of E. coli have contributed to its great utility and has
made it a source of repeated discoveries. First, it is easy to isolate because it is
present in great abundance in human fecal matter. Unlike most other bacteria
that populate the human colon, E. coli is able to grow well in the presence of
oxygen. In the laboratory, it replicates rapidly and can easily adjust to changes
in its environment including changes in nutrients. In addition, using molecular
biology, the generation of mutants is nearly routine. Mutant organisms are those
which differ from their parents and from other members of their species found
in the wild because of specific changes in DNA sequence which give rise to bio-
logically significant changes. For example, E. coli is normally able to synthesize
purines for DNA and RNA on its own from sugar as a nutrient source. However,
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particular mutants of E. coli with enzymatic deficiencies in these pathways have
lost the ability to make their own purines and become reliant on being fed pre-
cursors for these molecules. A more familiar and frightening example is the way
in which mutant bacteria acquire antibiotic resistance. Throughout the book
we will be using specific examples of biological phenomena to illustrate general
physical principles that are relevant to life. Often, we will have recourse to E.
coli because of particular experiments that have been performed on this organ-
ism. Further, even when we speak of experiments on other cells or organisms,
often E. coli will be behind the scenes coloring our thinking.

2.1.1 The Bacterial Standard Ruler

The Bacterium E. coli Will Serve as Our Standard Ruler

Throughout the book we will discuss many different cells which all share
with E. coli the fundamental biological directive to convert energy from the
environment into structural order and to perpetuate their species. On Earth, it
is observed that there are certain minimal requirements for the perpetuation of
cellular life. These are not necessarily absolute physical requirements, but in the
competitive environment of our planet, all surviving cells share these features in
common. These include a DNA-based genome, mechanisms to transcribe DNA
into RNA and subsequently, translation mechanisms using ribosomes to con-
vert information in RNA sequences into protein sequence and protein structure.
Within those individual cells, there are many substructures with interesting
functions. For example, the ribosomes that generate proteins from RNA se-
quence and the individual proteins that they create are both important classes
of substructure. Larger than the cell there are also structures of biological in-
terest that arise because of cooperative interactions between many cells. These
include higher organisms such as Redwood trees and sharks. In this chapter,
we will begin with the cell as the fundamental unit of biological organization
using E. coli as the standard reference and standard ruler. We will then look
at smaller structures within cells and finally, larger multicellular structures,
zooming in and out from our fundamental cell reference frame.

Fig. 2.1 shows several experimental pictures of an E. coli cell and its schema-
tization into our standard ruler. In particular, the electron micrograph in fig. 2.1
shows that these bacteria have a rod-like morphology with a typical length be-
tween 1 and 2 microns and a diameter between 1/2 and 1 micron. To put the
standard ruler in perspective, we note that with its characteristic length scale
of 1 micron, it would take roughly fifty such cells lined up end to end in or-
der to measure out the width of a human hair. On the other hand, we would
need to divide the cell into roughly five hundred slices of equal width in order
to measure out the diameter of a DNA molecule. Note that the average size
of these cells depends on the nutrients they are provided, with those growing
faster also having a larger size. Our reference growth condition throughout
the book will be a chemically defined solution referred to by microbiologists as
“minimal media” with glucose as the sole carbon source. “Minimal medium”
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Figure 2.1: E. coli as a standard ruler for characterizing spatial scales. (A)
Atomic force microscopy image of an E. coli cell (courtesy of C. T. Lim), (B)
Electron micrograph of E. coli bacterium, (C) the E. coli ruler.

refers to a completely chemically defined mixture of salts, sugars, amino acids
and vitamins that can support the growth of a microorganism. In the labora-
tory, bacteria are often grown in “rich media”, which are poorly defined but
nutrient-rich mixtures of extracts from organic materials such as yeast cultures
or cow brains. Although microorganisms can grow very rapidly in rich media,
they are rarely used for biochemical studies because their exact contents are
not known. In minimal media, however, it is easy to simply leave out or add
a single compound (for example, a single amino acid such as tryptophan) and
measure the effects of that compound on the microorganism’s growth.

Because of its central role as the quantitative standard in the remainder
of the book, it is useful to further characterize the geometry of E. coli. One
example in which we will need a better sense of the geometry of cells and their
internal compartments is in the context of reconciling in vitro (i.e. in test tubes)
and in vivo (i.e. in living cells) experiments. Results from solution biochemistry
are based upon the concentrations of different molecular species. On the other
hand, in in vivo situations we might know the number of copies of a given
molecule such as a transcription factor. To reconcile these two pictures, we
will need the cellular volume to make the translation between molecular counts
and concentrations. Similarly, when examining the distribution of membrane
proteins on the cell surface, to estimate the mean spacing between these proteins,
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which will tell us about the extent of interactions between them, we will need
a sense of the cell area. For most cases of interest in this book, it suffices to
attribute a volume VE .coli ≈ 1 µm3 = 1 fL to E. coli and an area of roughly
AE .coli ≈ 6 µm2 (see the problems to actually work out these numbers from
known cellular dimensions).

2.1.2 Taking the Molecular Census

In the remainder of this section, we will proceed through a variety of estimates
to try and get a grip on the number of molecules of different kinds that are in
an E. coli cell. Why should we care about these numbers? First, a realistic
physical picture of any biological phenomenon demands a precise, quantitative
understanding of the individual particles involved (for biological phenomena,
this usually means molecules) and the spatial dimensions over which they have
the freedom to act. One of the most immediate outcomes of our cellular census
will be the realization of just how crowded the cellular interior really is, a subject
explored in detail in chap. 14. Our census will paint a very different picture of
the cellular interior as the seat of biochemical reactions than is suggested by the
dilute and homogeneous environment of the biochemical test tube. Indeed, we
will see that the mean spacing between protein molecules within a typical cell
is less than 10 nm.

Taking the molecular census is also important because we will use our molec-
ular counts in chap. 3 to estimate the rates of macromolecular synthesis during
the cell cycle. How fast is a genome replicated? What is the average rate of pro-
tein synthesis during the cell cycle and given what we know about ribosomes,
how do they maintain this rate of synthesis? A prerequisite to beginning to
answer these questions is the macromolecular census itself.

Ultimately, to understand many experiments in biology, it is important to
realize that most experimentation is comparative. That is, we compare “nor-
mal” behavior to perturbed behavior to see if some measurable property has
increased or decreased. To make these statements meaningful, we need to first
understand the quantitative baseline relative to which such increases and de-
creases are compared. There is another sense in which numbers of molecules are
particularly meaningful which will be explored in detail in subsequent chapters
that has to do with whether we can describe a cell as having “a lot” or “a few”
copies of some specific molecule. If a cell has a lot of some particular molecule,
then it is appropriate to describe the concentration of that molecule as the basis
for predicting cellular function. However, when a cell has only a few copies of a
particular molecule, then we need to consider the influence of random chance (or
stochasticity) on its function. In many cases, cells have an interesting medium
number of molecules where it is not immediately clear which perspective is ap-
propriate. However, knowing the absolute numbers always gives us a reality
check for subsequent assumptions and approximations for modeling biological
processes.

Because of these considerations, in recent years much effort among biological
scientists has been focused on the development of quantitative techniques for
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measuring the molecular census of living cells (both bacteria and eukaryotes).
In this chapter we will rely primarily on order-of-magnitude estimates based on
simple assumptions. These estimates are validated by comparison with measure-
ments. In subsequent chapters, these estimates will be refined through explicit
model building and direct comparison to quantitative experiments.

• Estimate: Sizing Up E. coli. As already noted in the previous chapter,
cells are made up of an array of different macromolecules as well as small
molecules and ions. To estimate the number of proteins in an E. coli cell
we begin by noting that with its 1 fL volume, the mass of such a cell is
roughly 1 pg, where we have assumed that the density of the cell is that
of water which is 1 g/mL. Measurements reveal that the dry weight of the
cell is roughly 30 percent of its total and half of that mass is protein. As
a result, the total protein mass within the cell is roughly 0.15 pg. We can
also estimate the number of carbon atoms in a bacterium on the grounds
that roughly half the dry mass comes from the carbon content of these
cells, a figure that implies 1010 carbon atoms per cell. Two of the key
sources that have served as a jumping off point for these estimates are
Neidhardt et al. (1990) and Zimmerman and Trach (1991), who describe
the result of a molecular census of a bacterium.

As a first step to revealing the extent of crowding within a bacterium, we
can estimate the number of proteins by assuming a mean protein of 300
amino acids with each amino acid having a characteristic mass of 100 Da.
These assumptions are further examined in the problems at the end of
the chapter. Using these rules of thumb, we find that the mean protein
has a mass of 30,000 Da. Using the conversion factor that 1 Da ≈ 1.6 ×
10−24 g, we have that our typical protein has a mass of 5 × 10−20 g. The
number of proteins per E. coli cell is estimated as

Nprotein =
total protein mass
mass per protein

≈ 15× 10−14 g
5× 10−20 g

≈ 3× 106. (2.1)

If we invoke the rough estimate that one-third of the proteins coded for
in a typical genome correspond to membrane proteins this implies that
the number of cytoplasmic proteins is of order 2 × 106 and the number
of membrane proteins is 1 × 106, although we note that not all of these
membrane-associated proteins are strictly transmembrane proteins.

Another interesting use of this estimate is to get a rough impression of the
number of ribosomes - the cellular machines that synthesize proteins. To
be concrete, we need one other fact, which is that roughly 20 percent of
the protein complement of a cell is ribosomal protein. If we assume that
all of this protein is tied up in assembled ribosomes, then we can estimate
the number of ribosomes by noting: a) that the mass of an individual
ribosome is roughly 2.5MDa and b) that an individual ribosome is roughly
1/3 by mass protein and 2/3 by mass RNA, facts which can be directly
confirmed by the reader by inspecting the structural biology of ribosomes.
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As a result, we have

Nribosome =
0.2× 0.15× 10−12g

830, 000Da
× 1Da

1.6× 10−24g
≈ 20, 000 ribosomes.

(2.2)
The numerator of the first fraction has 0.2 as the fraction of protein that
is ribosomal, 0.15 as the fraction of the total cell mass that is protein
and 1pg as the cell mass. 830,000Da is our estimate for that part of the
ribosomal mass that is protein. The size of a ribosome is roughly 20nm
(in “diameter”) and hence the total volume taken up by these 20,000
ribosomes is roughly 108 nm3. This is 10 percent of the total cell volume.

Idealizing an E. coli cell as a cube, sphere or spherocylinder yields (see
the problems) that the surface area of such cells is AE .coli ≈ 6µm2. This
number may be used in turn to estimate the number of lipid molecules
associated with the inner and outer membranes of these cells as

Nlipid ≈
4× 0.5×AE .coli

Alipid
≈ 4× 0.5× (6× 106 nm2)

0.5 nm2
≈ 2× 107, (2.3)

where the factor of 4 comes from the fact that the inner and outer mem-
branes are each bilayers, implying that the lipids effectively cover the cell
surface area four times. A lipid bilayer consists of two sheets of lipids with
their tails pointing toward each other. The factor of 0.5 is based on the
crude estimate that roughly half of the surface area is covered by mem-
brane proteins rather than lipids themselves. We have made the similarly
crude estimate that the area per lipid is 0.5 nm2. The measured number
of lipids is of order 2 × 107 as well.

In terms of sheer numbers, water molecules are by far the majority con-
stituent of the cellular interior. One of the reasons this fact is intriguing
is that during the process of cell division, a bacterium such as E. coli has
to take on a very large number of new water molecules each second. The
estimate we do here will be used to examine this transport problem in
the next chapter. To estimate the number of water molecules we exploit
the fact that roughly 70% of the cellular mass (or volume) is water. As
a result, the total mass of water is 0.7 pg. We can find the approximate
number of water molecules as

NH2O ≈
0.7× 10−12g

18g/mole
×6×1023molecules/mole ≈ 2×1010 water molecules.

(2.4)
It is also of interest to gain an impression of the content of inorganic
ions in a typical bacterial cell. To that end, we assume that a typical
concentration of positively charged ions such as K+ is 100 mM resulting
in the estimate

Nions ≈
(100× 10−3moles)× (6× 1023molecules/mole)

1015µm3
×1µm3 = 6×107.

(2.5)
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Figure 2.2: Molecular contents of the bacterium E. coli. The cartoon on the
left shows the crowded cytoplasm of the bacterial cell. The cartoon on the right
shows an order-of-magnitude molecular census of the E. coli bacterium with the
approximate number of different molecules in E. coli.

This result could have been obtained even more easily by noting yet an-
other simple rule of thumb, namely, that one molecule per E. coli cell
corresponds roughly to a concentration of 2 nM.

The outcome of our attempt to size up E. coli is illustrated schematically in
summary form in fig. 2.2. A more complete census of an E. coli bacterium
can be found in Neidhardt et al. (1990). The outcome of experimental
investigations of the molecular census of an E. coli cell is summarized (for
the purposes of comparing to our estimates) in Table 2.1.2.

How is the census of a cell taken experimentally? This is a question we will
return to a number of different times, but will give a first answer here. For the
case of E. coli, one important tool has been the use of gels like that shown in
fig. 2.3. Such experiments work by breaking open the contents of a cell and
keeping only the protein component. By applying electric fields first in one
direction and then in a perpendicular direction, it is possible to separate the
proteins by both mass and charge. The intensity of the spots on such a gel can
then be used as a basis for quantifying each species. Similar tricks are used to
characterize the amount of RNA and lipids, for example, resulting in a total
census like that shown in Table 2.1.2.
The Cellular Interior Is Highly Crowded With Mean Spacings Be-
tween Molecules That Are Comparable to Molecular Dimensions

One of the most intriguing implications of our census of the molecular parts
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Figure 2.3: Experimental census of the cell. Measurement of protein census
using two-dimensional polyacrylamide gel electrophoresis. Figure adapted from
the 2DPage database.

Substance % of total dry weight Number of molecules
Macromolecule
Protein 55.0 2.4× 106

RNA 20.4
23S RNA 10.6 19,000
16S RNA 5.5 19,000
5S RNA 0.4 19,000
Transfer RNA (4S) 2.9 200,000
Messenger RNA 0.8 1,400

Phospholipid 9.1 22× 106

Lipopolysaccharide 3.4 1.2× 106

DNA 3.1 2
Murein 2.5 1
Glycogen 2.5 4,360
Total macromolecules 96.1
Small molecules
Metabolites, building blocks, etc. 2.9
Inorganic ions 1.0
Total small molecules 3.9

Table 2.1: Observed macromolecular census of an E. coli cell. Adapted from
Neidhardt et al. and Schaechter et al..
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Figure 2.4: Concentration in E. coli units. Number of copies of a given molecule
in a volume the size of an E. coli cell as a function of the concentration.

list of a bacterium is the extent to which the cellular interior is crowded. Because
of experiments and associated estimates on the contents of E. coli, Goodsell
undertook a series of attempts to depict the cellular interior in a way that
respects the molecular census. The crowded environs of the interior of such a
cell is shown in fig. 2.2. This figure gives a number of different views of the
crowding associated with any in vivo process. In chap. 14, we will see that this
crowding effect will force us to call in question our simplest models of chemical
potentials, the properties of water and the nature of diffusion. We have already
made an estimate of the typical spacing of ribosomes in bacterial cells. The
generic conclusion is that the mean spacing of proteins and their assemblies is
comparable to the dimensions of these macromolecules themselves. The cell is
a very crowded place!

The quantitative significance of fig. 2.2 can be further appreciated by con-
verting these numbers into concentrations. To do so, we recall that the volume
of an E. coli cell is 1 fL. The rule of thumb that emerges from this analysis
is that 2nM implies roughly one molecule per bacterium. A concentration of
2µM implies roughly 1000 copies of that molecule per cell. Concentration in
terms of our standard ruler is shown in fig. 2.4. What is being plotted is the
number of copies of the molecule of interest in such a cell as a function of the
concentration.

We can use these concentrations directly to compute the mean spacing be-
tween molecules. That is, given a certain concentration, there is a correspond-
ing average distance between the molecules. Having a sense of this distance can
serve as a guide to thinking about the likelihood of diffusive encounters and
reactions between various molecular constituents. If we imagine the molecules
at a given concentration arranged on a cubic lattice of points, then the mean
spacing between those points is given by

d = c−1/3, (2.6)
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Figure 2.5: Different representations of concentration. (A) Concentration ex-
pressed in units of typical distance (d) between neighboring molecules mea-
sured in nanometers. (B) Diffusion time over the distance between neigh-
boring molecules as a function of concentration. The diffusion constant D =
100 µm2/sec is typical for a protein in water.

where c is the concentration of interest (measured in units of number of molecules
per unit volume). Larger concentrations imply smaller intermolecular spacings.
This idea is formalized in fig. 2.5 which shows the relation between the mean
spacing measured in nanometers and the concentration.

2.1.3 Looking Inside of Cells

The remainder of the chapter focuses on the various structures that make up
cells and organisms. To talk about these structures, it is helpful to have a sense
of how we know what we know about them. Further, model building requires
facts. To that end, we periodically take stock of the experimental basis for our
models. For this chapter, the “Experiments Behind the Facts” focuses on how
we know what we know about biological structures.

• Experiments Behind the Facts: Probing Biological Structure. To
size up cells and their organelles we need to extract “typical” structural
parameters from a variety of experimental studies. Though we leave a
description of the design and setup of such experiments to more specialized
texts, the goal is to provide at least enough details that the reader sees
where some of the key structural facts that we will use throughout the book
come from. We emphasize two broad categories of experiments: i) those
in which some form of radiation interacts with the structure of interest
and ii) those in which forces are applied to the structure of interest.

Fig. 2.6 shows three distinct experimental strategies which feed into our
estimates and all of which reveal different facets of biological structure.
One of the mainstays of structural analysis is light microscopy. Fig. 2.6(A)
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shows a schematic of the way in which light can excite fluorescence in sam-
ples that have some distribution of fluorescent molecules within them. In
particular, this example shows a schematic of a microtubule which has
some distribution of fluorophores along its length. Incident photons of
one wavelength are absorbed by the fluorophore and this excitation leads
them to emit light of a different wavelength which is then detected. As
a result of selective labeling of only the microtubules with fluorophores,
when examined in the microscope it is only these structures that are ob-
served. These experiments permit a determination of the size of various
structures of interest, how many of them there are and where they are
localized. By calibrating the intensity from single fluorophores it has be-
come possible to take a single molecule census for many of the important
proteins in cells.

A totally different window on the structure of the cell and its components
is provided by tools such as the atomic-force microscope (AFM). As will
be explained in chap. 10, the AFM is a cantilever beam with a sharp tip
on its end. The tip is brought very close to the surface where the structure
of interest is present and is then scanned in the plane. One way to operate
the instrument is to move the cantilever up and down so that the force
applied on the tip remains constant. Effectively, this demands a continual
adjustment of the height as a function of the x-y position of the tip. The
nonuniform pattern of cantilever displacements can be used to map out
the structure of interest. Fig. 2.6(B) shows a schematic of an atomic-force
microscope scanning a typical fibroblast cell.

Fig. 2.6(C) gives a schematic of the way in which x-rays or electrons are
scattered off of a biological sample. The schematic shows an incident
plane wave of radiation which interacts with the biological specimen and
results in the emergence of radiation with the same wavelength but a new
propagation direction. Each point within the sample can be thought of as
a source of radiation and the observed intensity at the detector reflects the
interference from all of these different sources. By observing the pattern
of intensity it is possible to deduce something about the structure that
did the scattering. This same basic idea is applicable to a wide variety of
radiation sources including x-rays, neutrons and electrons.

An important variation on the theme of measuring the scattered intensity
from irradiated samples is cryo-electron tomography. This technique is one
of the centerpieces of structural biology and is built around uniting elec-
tron microscopy with sample preparation techniques which rapidly freeze
the sample. The use of tomographic methods has made it possible to go
beyond the planar sections seen in conventional electron microscopy im-
ages. The basic idea of the technique is indicated schematically in fig. 2.7,
and is built around the idea of rotating the sample over a wide range of
orientations and then to build up a corresponding three-dimensional re-
construction on the basis of the entirety of these images. These techniques
have already revolutionized our understanding of particular organelles and
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are now being used to image entire cells.

2.1.4 Where Does E. coli Fit?

Biological Structures Exist Over a Huge Range of Scales

The spatial scales associated with biological structures run from the nanome-
ter scale of individual molecules, all the way to the scale of the earth itself.
Where does E. coli fit into this hierachy of structures? Fig. 2.8 shows the differ-
ent structures that can be seen as we scale in and out from an E. coli cell. At
each scale, new classes of structure can be seen. A roughly tenfold increase in
magnification relative to an individual bacterium reveals the viruses that attack
bacteria. These viruses, known as bacteriophage, have a characteristic scale of
roughly 100 nm. They are made up of a protein shell (the capsid) which is
filled with the viral genome. Continuing our downward descent using yet higher
magnification, we see the ordered packing of the viral genome within its capsid.
These structures are intriguing because they involve the ordered arrangement
of more than 10 µm of DNA in a capsid which is less than 100 nm across. An-
other rough factor of ten increase in resolution reveals the structure of the DNA
molecule itself with a characteristic cross sectional radius of roughly 1 nm and
a length of 3.4 nm per helical repeat.

A similar scaling out strategy reveals new classes of structures. As shown in
fig. 2.8, a tenfold increase in spatial scale brings us to the realm of eukaryotic
cells in general, and specifically, to the scale of the epithelial cells that line
the human intestine. We use this example because bacteria such as E. coli are
a central player as part of our intestinal fauna. Another tenfold increase in
spatial scale reveals one of the most important inventions of evolution, namely,
multicellularity. In this case, the cartoon depicts the formation of planar sheets
of epithelial cells. These planar sheets are themselves the building blocks of yet
higher-order structures such as tissues. Scaling out to larger scales would bring
us to multicellular organisms and the structures they build.

The remainder of the chapter is devoted to an attempt to take stock of the
structures at each of these scales and to provide a feeling for the molecular
building blocks that make up these different structures. Our strategy will be
to build upon our cell-centered view and to first descend in length scale from
that of cells to the molecules they are made of. Once this structural descent
is complete, we will embark on an analysis of biological structure in which we
zoom out from the scale of individual cells to collections of cells.

2.2 Cells and Structures Within Them

2.2.1 Cells: A Rogue’s Gallery

All living organisms are based on cells as the indivisible unit of biological orga-
nization. However, within this general rule there is tremendous diversity among
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Figure 2.6: Experimental techniques which have revealed the structure of both
cells and their organelles. (A) Fluorescence microscopy and associated image
of fibroblast with labeled actin, (B) Atomic force microscopy schematic and
associated image of surface topography of fibroblast. (C) Electron microscopy
schematic and images of a fibroblast.
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Figure 2.7: Schematic of tomographic reconstruction. (A) The sample is ro-
tated so that radiation is scattered from a series of different orientations, (B)
three-dimensional reconstruction of the structure giving rise to the pattern of
scattering.
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Figure 2.8: Powers of ten representation of biological length scales. The hier-
archy of scales is built around the E. coli standard ruler. Starting with E. coli
the first part of the chapter will consider a succession of tenfold increases in
resolution as are shown in the figure. The second part of the chapter will zoom
out from the scale of an E. coli cell.
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living cells. Several billion years ago, our last common ancestor gave rise to three
different lineages of cells now commonly called Bacteria, Archaea and Eukarya,
a classification suggested by similarities and differences in ribosomal RNA se-
quences. Every living organism on earth is a member of one of these groups.
Most bacteria and archaea are small ( 3 µm or less) and extremely diverse in
their preferred habitats and associated lifestyles ranging from geothermal vents
at the bottom of the ocean to permafrost in Antarctica. Bacteria and archaea
look very similar to one another and it has only been within the last few decades
that molecular analysis has revealed that they are completely distinct lineages
that are no more closely related to each other than the two are to eukaryotes.

Most of the organisms that we encounter in our everyday life and can see with
the naked eye are members of Eukarya (individuals are called eukaryotes). These
include all animals, all plants ranging from trees to moss and also all fungi such
as mushrooms and mold. Thus far we have focused on E. coli as a representative
cell although we must acknowledge that E. coli, as a member of the bacterial
group, is in some ways very different from a eukaryotic or archaeal cell. The
traditional definition of a eukaryotic cell is one that contains its DNA genome
within a membrane-bound nucleus. Most bacteria and archaea lack this feature
and also lack other elaborate intracellular membrane-bound structures such as
the endoplasmic reticulum and the Golgi apparatus that are characteristic of
the larger and more complex eukaryotic cells.
Cells Come in a Wide Variety of Shapes and Sizes and With a Huge
Range of Functions

Cells come in such a wide variety of shapes, sizes and lifestyles that choosing
one representative cell type to tell their structural story is misleading. In fig. 2.9
we show a rogue’s gallery illustrating the variety of cell sizes and shapes found in
the eukaryotic group. This gallery is by no means complete. There is much more
variety than we can illustrate, but this covers a reasonable range of eukaryotic
cell types that have been well studied by biologists. In this figure we have chosen
a variety of examples that represent experimental bias among biologists where
more than half of the examples are human cells and the others represent the
rest of the eukaryotic group. The vast majority of eukaryotes are members of
a group called protists. This poorly-defined group encompasses all eukaryotes
that are neither plants nor animals nor fungi. Protists are extremely diverse in
their appearance and lifestyles, but they are all small (ranging from 0.002 mm
to 2 mm). Some examples of protists include marine diatoms such as Emiliana
Huxleyi, soil amoeba such as Dictyostelium discoideum and the lovely creature
Paramecium seen in any sample of pond water and familiar from many high-
school biology classes. Another notable protist is the pathogen that causes
malaria called Plasmodium falciparum. Fig. 2.9(A) shows the intriguing protist
Giardia lamblia, a parasite known to hikers as a source of water contamination.

Although protists constitute the vast majority of eukaryotic cells on the
planet, biologists are often inclined to study cells more related to us. This
includes the plant kingdom which is obviously important as a source of food and
flowers. Plant cells like that shown in fig. 2.9(B) are characterized by a rigid cell
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Figure 2.9: Cartoons of several different types of cells all referenced to the
standard E. coli ruler. (A) the protist Giardia lamblia, (B) plant cell, (C)
Saccharomyces cerevisiae, yeast cell (D) red blood cell, (E) fibroblast cell, (F)
eukaryotic nerve cell and (G) rod cell.
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wall, often giving them angular structures like that shown in the figure. The
typical length scale associated with these cells is often tens of microns. One of
the distinctive features of these cell is their large vacuoles within the intracellular
space that hold water and contribute to the mechanical properties of plant
stems. These large vacuoles are very distinct from animal cells where most of
the intracellular space is filled with cytoplasm. Consequently, in comparing a
plant and animal cell of similar overall size, the plant cell will have typically
tenfold less cytoplasmic volume because most of its intracellular space is filled
with vacuoles. Hydrostatic forces matter much more to plants than animals.
For example, a wilting flower can be revived simply by application of water
since this allows the vacuoles to fill and stiffen the plant stem.

Fungi are even more closely related to us than plants. The representative
fungus shown in the figure is the budding yeast Saccharomyces cerevisiae (which
we will refer to as S. cerevisiae). S. cerevisiae was domesticated by humans
several thousand years ago and continues to serve as a treasured microbial friend
that makes our bread rise and provides alcohol in our fermented beverages such
as wine. Just as E. coli sometimes serves as a key model prokaryotic system, the
yeast cell often serves as the model single-celled eukaryotic organism. Besides
the fact that humans are fond of S. cerevisiae for its own intrinsic properties, it is
also useful to biologists as a representative fungus. Of all the other organisms on
earth, fungi are closest to animals in terms of evolutionary descent and similarity
of protein functions. Although there are no single-celled animals, there are some
single celled fungi including S. cervisiae. Therefore, many laboratory biological
experiments relying on rapid replication of single cells are most easily performed
on this organism. Fig. 2.10(A) shows a scanning electron microscope image of
a yeast cell engaged in budding. As this image shows, the geometry of yeast
is relatively simple compared to many other eukaryotic cells and it is also a
fairly small member of this group with a characteristic diameter of roughly 5
microns. Nonetheless, it possesses all the important structural hallmarks of the
eukaryotes including, in particular, a membrane bound nucleus, segregating the
DNA genome from the cytoplasmic machinery that performs most metabolic
function.

Earlier, we estimated the molecular census of an E. coli cell. It will now be
informative to compare those estimates with the corresponding model eukaryotic
cell that will continue to serve as a comparative basis for all our eukaryotic
estimates.

• Estimate: Sizing Up Yeast. The volume of a yeast cell can be com-
puted in E. coli volume units, VE. coli. In particular, if we recall that
VE. coli ≈ 1.0µm3 and think of yeast as a sphere of diameter 5µm, then
we have the relation Vyeast ≈ 60VE. coli, that is, roughly 60 E. coli cells
would fit inside of a yeast cell. The surface area of a yeast cell can be
estimated using a radius of ryeast ≈ 2.5µm which yields Ayeast ≈ 80µm2.
If we treat the yeast nucleus as a sphere with a diameter of roughly 2.0µm,
its volume is roughly 4 µm3. Within this nucleus is housed the 1.2 × 107

bp of the yeast genome which is divided amongst 16 chromosomes. The
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Figure 2.10: Microscopy images of a yeast cell. (A) Scanning electron micro-
graph of the yeast Saccharomyces cerevisiae revealing the overall size scale of
these budding yeast. (B) Electron microscopy image of a budding yeast cell. (C)
Confocal microscopy images of the mitochondria of Saccharomyces cerevisiae.

DNA in yeast is packed into higher order structures mediated by protein
assemblies known as histones. In particular, the DNA is wrapped around
a series of cylindrical cores made up of eight such histone proteins each,
with roughly 150 bp wrapped around each histone octamer, and approxi-
mately a 50 bp spacer between. As a result, we can estimate the number
of nucleosomes (the histone-DNA complex) as

Nnucleosome ≈
12× 106bp

200bp / nucleosome
≈ 60, 000. (2.7)

Experimentally, the measured number appears to be closer to 80,000, with
a mean spacing between nucleosomes of order 170bp. The total volume
taken up by the histones is roughly 150nm3 per histone (thinking of each
histone octamer as a cylindrical disk of radius 3 nm and height 5 nm),
resulting in a total volume of 9 × 106 nm3 taken up by the histones. The
volume taken up by the genome itself is comparable at 1.2 × 107nm3,
where we have used the rule of thumb that the volume per base pair is
1nm3. The packing fraction associated with the yeast genomic DNA can
be estimated by evaluating the ratio

ρpack ≈
(1.2× 107bp)× (1nm3/bp)

4× 109nm3
≈ 3× 10−3. (2.8)

Note that we have used the fact that the yeast genome is 1.2 × 107 base
pairs in length and is packed in the nucleus which has a volume of ≈ 4
µm3.

These geometric estimates may be used to make corresponding molecular
estimates such as the number of lipids and proteins in a typical yeast
cell. The number of proteins can be estimated several ways - perhaps the
simplest is just to assume that the fractional occupancy of yeast cytoplasm
is identical to that of E. coli with the result that there will be 60 times
as many proteins in yeast as in E. coli based strictly on scaling up the
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cytoplasmic volume. This simple estimate is obtained by assuming that
the composition of the yeast interior is more or less the same as that of
an E. coli cell. This strategy results in

Nyeast
protein ≈ 60×NE .coli

protein ≈ 2× 108. (2.9)

The number of lipids associated with the plasma membrane of the yeast
cell can be obtained as

Nlipid ≈
2× 0.5×Ayeast

Alipid
≈ 2× 0.5× (80× 106nm2)

.25nm2
≈ 4× 108, (2.10)

where the factor of 0.5 is based on the idea that roughly half of the surface
area is covered by membrane proteins rather than lipids themselves and
the factor of 2 accounts for the fact that the membrane is a bilayer.

Another interesting estimate suggested by fig. 2.10(C) is associated with
the organellar content of these cells. In particular, this figure shows the
mitochondria of yeast which are being grown in two different media. These
pictures suggest several interesting questions such as what fraction of the
cellular volume is occupied by mitochondria and what is the surface area
tied up with the mitochondrial outer membranes? The number of mito-
chondria in the image can be estimated several ways - one of which is to
attempt to count them directly, the other of which is to estimate their
mean spacing and to compute the corresponding density and number. Us-
ing the latter method results in an estimate of roughly 40 mitochondria in
the image on the left of fig. 2.10(C). Further, we estimate that the typical
mitochondrial size is roughly 3/4 µm, resulting in a total mitochondrial
volume of

Vmito ≈ 40× 4π

3
(
3
8
)3µm3 ≈ 9µm3, (2.11)

which given the total volume of the cell of 60 µm3 translates into a volume
fraction of roughly 15 percent. The total area of the outer membranes of
these mitochondria is roughly 70 µm2, comparable to the entire area of
the plasma membrane itself. The analysis of the image on the right is left
as an exercise for the reader in the problems.

Our estimates are brought into sharpest focus when they are juxtaposed
with actual measurements. The census of yeast cells has been performed in
several distinct and fascinating ways in recent years. The key idea is to generate
thousands of different yeast strains, each of which has a tag on a different one of
the yeast gene products. For example, it is possible to generate strains with a
peptide fragment that can then be recognized by antibodies. A second scheme
is to construct protein fusions in which the protein of interest is attached to
a fluorescent protein such as the green fluorescent protein (GFP). Then, by
querying each and every cell either by examining the extent of antibody binding
or fluorescence, it is possible to count up the numbers of each type of protein.
Fig. 2.11 shows a histogram of the number of proteins that occur with a given
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Figure 2.11: Protein copy numbers in yeast. (A) Result of antibody detection
of various proteins in yeast showing the number of proteins that have a given
copy number. The number of copies of the protein is expressed in powers of
2 as 2N . (B) The mean number of proteins associated with various processes
within cells. (C) The mean number of proteins associated with different spatial
compartments in the cell.

protein copy number. By adding up the total number of proteins on the basis
of this census, we estimate there are 50 × 106 proteins in a yeast cell, somewhat
less than suggested by our crude estimate given above.

The remainder of the cells in fig. 2.9 are all human cells and show another
interesting aspect of cellular diversity. To a first approximation, every cell in the
human body contains the same DNA genome. And yet, individual human cells
differ significantly with respect to their sizes (with sizes varying from roughly 5
microns to 1 meter for the largest neurons), shapes and functions. For example,
rod cells in the retina are specialized to detect incoming light and transmit
that information to the neural system so that we can see. Red blood cells
are primarily specialized as carriers of oxygen and, in fact, are dramatically
different from almost all other cells in having dispensed with their nucleus as
part of their developmental process. As we will discuss extensively throughout
the book, other cells have specializations.
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Another important example of the structural diversity of cells, this time from
animals, is the red blood cell shown in fig. 2.9(D). Note that the shapes of red
blood cells are decidedly not spherical raising interesting questions about the
mechanisms of cell-shape maintenance. Despite their characteristic size of order
5 microns, these cells easily pass through capillaries with less than half their
diameter as shown in fig. 2.12, implying that their shape is altered significantly
as part of their normal life cycle. While in capillaries (either artificial or in vivo),
the red blood cell is severely deformed to pass through the narrow passage.
In their role as the transport vessels for oxygen-rich hemoglobin, these cells
will serve as an inspiration for our discussion of the statistical mechanics of
cooperative binding. Red blood cells are a target of one of the most common
infectious diseases suffered by humans caused by the invasion of a protozoan.
Malaria infected red blood cells are much stiffer than normal cells and cannot
deform to enter small capillaries. Consequently, people suffering from malaria
experience severe pain and damage to tissues because of the inability of their
red blood cells to enter those tissues and deliver oxygen.

One of the favorite eukaryotic cells from multicellular organisms is the fi-
broblast as shown schematically in fig. 2.9(E) and shown in an AFM image in
fig. 2.13. These cells will serve as a centerpiece for much of what we will have to
say about “typical” eukaryotic cells in the remainder of the book. Fibroblasts
are associated with animal connective tissue and are notable for secreting the
macromolecules of the extracellular matrix.

Cells in multicellular organisms can be even more exotic. For example, nerve
cells (fig. 2.9(F)) and rod cells (fig. 2.9(G)) reveal a great deal more complexity
than the examples highlighted above. In these cases, the cell shape is intimately
related to their function. In the case of nerve cells, their sinewy appearance
is tied to the fact that the various branches (also called “processes”) known
as dendrites and axons convey electrical signals which permit communication
between distant parts of an animal’s nervous system. Despite having nuclei
with typical eukaryotic dimensions, the cells themselves can extend processes
with characteristic lengths of tens of centimeters or even more. The structural
complexity of rod cells is tied to their primary function of light detection in
the retina of the eye. These cells are highly specialized to perform transduction
of light energy into chemical energy that can be used to communicate with
other cells in the body and in particular, with brain cells that permit us to be
conscious of perceiving images. Rod cells accomplish this task using large stacks
of membranes which are the antennas participating in light detection. Fig. 2.9
only scratches the surface of the range of cellular size and shape, but at least
conveys an impression of cell sizes relative to our standard ruler.

2.2.2 The Cellular Interior: Organelles

As we descend from the scale of the cell itself, a host of new structures known as
organelles come into view. The presence of these membrane-bound organelles
is one of the defining characteristics that distinguishes eukaryotes from bacteria
and archaea. Fig. 2.14 shows a schematic of a eukaryotic cell and associated
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10 mm

Figure 2.12: Deformability of red blood cells. To measure the deformability of
human red blood cells, an array of blocks was fabricated in silicon, each block
was 4 × 4 × 12 microns. The blocks were spaced by 4 microns in one direction
and 13 microns in the other. A glass coverslip covered the top of this array of
blocks. A dilute suspension of red blood cells in a saline buffer was introduced to
the system. A slight pressure applied at one end of the array of blocks provided
bulk liquid flow, from left to right in the figure. This liquid flow carried the
red blood cells throught the narrow passages. Video microscopy captured the
results. The figure shows consecutive video fields with the total elapsed time
just over one third of a second. (courtesy of James Brody)
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Figure 2.13: Structure of a fibroblast. (A) Atomic-force microscopy image of
a fibroblast (courtesy of Manfred Radmacher). (B) cartoon of the external
morphology of a fibroblast, (C) characteristic dimensions of the morphology of
a fibroblast.

images of some of the key organelles. These organelles serve as the specialized
apparatus of cell function, serving in capacities ranging from genome manage-
ment (the nucleus) to energy generation (mitochondria and chloroplasts) to pro-
tein synthesis and modification (endoplasmic reticulum and Golgi apparatus)
and beyond. The compartments that are bounded by organellar membranes
can have completely different protein and ion compositions. In addition, the
membranes of each of these different membrane systems are characterized by
distinct lipid and protein compositions.

A characteristic feature of many organelles is that they are compartmental-
ized structures that are separated from the rest of the cell by membranes. The
nucleus is one of the most familiar examples since it is often easily visible using
standard light microscopy. If we use the fibroblast as an example, then the cell
itself has dimensions of roughly 50 microns, while the nucleus has a character-
istic linear dimension of roughly 10 microns as shown schematically in fig. 2.13.
From a functional perspective, the nucleus is much more complex than simply
serving as a storehouse for the genetic material. Chromosomes are organized
within the nucleus forming specific domains as will be discussed in more detail
in chap. 8. Transcription occurs in the nucleus as well as several kinds of RNA
processing. There is a busy traffic of molecules such as transcription factors
moving in and completed RNA molecules moving out through elaborate gate-
ways in the nuclear membrane known as nuclear pores. Portions of the genome
involved in synthesis of ribosomal RNA are clustered together forming striking
spots that can be seen in the light microscope and called nucleoli.

Moving outward from the nucleus, the next membraneous organelle we en-
counter is often the endoplasmic reticulum. Indeed, the membrane of the nuclear
envelope is contiguous with the membrane of the nuclear envelope. In some cells
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Figure 2.14: Eukaryotic cell and its organelles. The schematic shows a eukary-
otic cell and a variety of membrane bound organelles. A thin-section electron
microscopy image shows a portion of a rat liver cell approximately equivalent
to the boxed area on the schematic. A portion of the nucleus can be seen in the
upper left corner. The most prominent organelles visible in the image are mito-
chondria, lysosomes, the rough endoplasmic reticulum and the Golgi apparatus.
(adapted from Fawcett, 1966)
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Figure 2.15: Electron micrograph and associated schematic of the endoplasmic
reticulum. The left panel shows a thin-section electron micrograph of an acinar
cell from the pancreas of a bat. The nucleus is visible at the upper right and
the dense and elaborate ER structure is strikingly evident. The right panel
shows a schematic diagram of a model for the three-dimensional structure of
the ER in this cell. Notice that the size of the lumen in the ER in the schematic
is exaggerated for ease of interpretation. Electron micrograph from Fawcett,
1966.

such as the pancreatic cell shown in fig. 2.15, the endoplasmic reticulum takes
up the bulk of the cell interior. This elaborate organelle is the site of lipid syn-
thesis and also the site of synthesis of proteins that are destined to be secreted
or incorporated into membranes. From images such as those in fig. 2.15 and
2.16 it is clear that the ER can assume different geometries in different cell types
and under different conditions. How much total membrane area is taken up by
the ER? How strongly does the specific membrane morphology affect the total
size of the organelle?

• Estimate: Membrane Area of the Endoplasmic Reticulum. One
of the most compelling structural features of the endoplasmic reticulum
is its enormous surface area. To estimate the area associated with the
endoplasmic reticulum, we take our cue from fig. 2.15 which suggests that
we think of the ER as a series of concentric spheres centered about the
nucleus. We follow Fawcett (1966) who characterizes the ER as forming
“lamellar systems of flat cavities, rather uniformly spaced and parallel to
one another” as shown in fig. 2.15.

An estimate can be made by adding up the areas from each of the con-
centric spheres making up our model ER. This can be done by simply
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Figure 2.16: Variable morphology of the ER. (A) In most cultured cells, the ER
is a combination of a web-like reticular network of tubules and larger flattened
cisternae. In this image, a cultured fibroblast was stained with a fluorescent dye
called DiOC6 that specifically labels ER membrane. On the right is a schematic
of an idealized three-dimensional reticular network. (B) Some specialized cells
and those treated with drugs that upregulate the synthesis of lipids reorganize
their ER to form tightly-packed, nearly crystalline arrays that resemble piles of
pipes.
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noticing that the volume enclosed by the ER can be written as

VER =
∑

i

Aid , (2.12)

where Ai is the area of the ith concentric sphere and d is the distance
between adjacent cisternae. Since two membranes bound each cisterna
the total area of the ER membrane is AER = 2 ×

∑
i Ai. In our model,

the total volume of the ER can be written as the difference between the
volume taken up by the outermost sphere and the volume of the innermost
concentric sphere, which is the same as the volume of the nucleus:

VER =
4π

3
R3

out −
4π

3
R3

nucleus . (2.13)

Combining the two ways of computing the volume of the ER, eqns. 2.12
and 2.13, we arrive at an expression for the ER area,

AER =
8π

3d
(R3

out −R3
nucleus) . (2.14)

Using the values Rnucleus = 5µm, Rout = 10µm and d = 0.05µm, we get
at an estimate AER = 15×104µm2. This result should be contrasted with
a crude estimate for the area of a fibroblast which can be obtained by
using the dimensions in fig. 2.13(c) and which yields an area of 104µm2

for the cell membrane itself. To estimate the area of the ER when it is
in reticular form we describe its structure as interpenetrating cylinders
of diameter d ≈ 10nm separated by a distance a ≈ 60nm, as shown in
fig. 2.16. The completion of the estimate is left to the problems, but
results in a comparable membrane area.

The other major organelles found in most cells and visible in fig. 2.14 include
the Golgi apparatus, mitochondria and lysosomes. The Golgi apparatus, similar
to the ER, is largely involved in processing and trafficking of membrane-bound
and secreted proteins. The Golgi apparatus is typically seen as a pancake-
like stack of flattened compartments, each of which contains a distinct set of
enzymes. As proteins are processed for secretion, for example by addition and
remodeling of attached sugars, they appear to pass in an orderly fashion through
each element in the Golgi stack. The mitochondria are particularly striking or-
ganelles with a smooth outer surface housing an elaborately folded system of
internal membrane structures. The mitochondria are the primary site of ATP
synthesis for cells growing in the presence of oxygen, and their physiology as well
as their structure are fascinating and have been well studied. We will return
to the topic of mitochondrial structure in chap. 11 and discuss the workings of
the tiny machine responsible for ATP synthesis in chap. 16. Lysosomes serve
a major role in the degradation of cellular components. In some specialized
cells such as macrophages, lysosomes also serve as the compartment where bac-
terial invaders can be degraded. These membrane-bound organelles are filled
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with acids, proteases and other degradative enzymes. Their shapes are poly-
morphous; resting lysosomes are simple and nearly spherical, whereas lysosomes
actively involved in degradation of cellular components or of objects taken in
from the outside may be much larger and complicated in shape.

These common organelles are only a few of those that can be found in eu-
karyotic cells. Some specialized cells have remarkable and highly specialized
organelles that can be found nowhere else such as the stacks of photoreceptive
membranes found in the rod cells of the visual system and as indicated schemat-
ically in fig. 2.9. The common theme is that all organelles represent specialized
subcompartments of the cell that perform a particular subset of cellular tasks
and represent a smaller, discrete layer of organization one step down from the
whole cell.

2.2.3 Macromolecular Assemblies: The Whole is Greater
than the Sum of the Parts

Macromolecules Come Together to Form Assemblies (Somes)
Proteins, nucleic acids, sugars and lipids often work as a team. Indeed, as

will become clear throughout the remainder of the book, these macromolecules
often come together to make assemblies, often dubbed “somes”. We think of
yet another factor of ten magnification relative to the previous section, and with
this increase of magnification we see assemblies such as those shown in cartoon
form in fig. 2.17. The genetic material in the eukaryotic nucleus is organized
into chromatin fibers which themselves are built up of protein-DNA assemblies
known as nucleosomes. The replication complex that copies DNA before cell
division is similarly a collection of molecules which has been dubbed the repli-
some. When the genetic message is exported to the cytoplasm for translation
into proteins, the ribosome (an assembly of proteins and nucleic acids) serves as
the universal translating machine that converts the nucleic acid message from
the RNA into the protein product written in the amino acid alphabet. The
production of ATP in mitochondria is similarly mediated by a macromolecu-
lar complex known as ATP synthase. When proteins have been targeted for
degradation, they are sent to another macromolecular assembly known as the
proteasome. The key idea of this subsection is to show that there is a very
important level of structure in cells that is built around complexes of individual
macromolecules (loosely designated as somes) and with a characteristic length
scale of 10nm.
Helical Motifs Are Seen Repeatedly in Molecular Assemblies

A second class of macromolecular assemblies, characterized not by function
but rather by structure is the wide variety of helical macromolecular complexes.
Several representative examples are shown in fig. 2.18. In fig. 2.18(a), we show
the geometric structure of microtubules. As will be described in more detail
later, these structures are built up of individual protein units called tubulin. A
second example shown in fig. 2.18(b) is the bacterial flagellum of E. coli. Here
too, the same basic structural idea is repeated with the helical geometry built
up from individual protein units, in this case flagellin. The third example given
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Figure 2.17: The macromolecular assemblies of the cell.
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Figure 2.18: Helical assemblies of the cell. Cells have a variety of different helical
assemblies, some formed from individual monomeric units (such as (A)-(C)) and
others resulting from coils of proteins.

in the figure is that of a filamentous virus, with tobacco mosaic virus (TMV)
chosen as one of the most well studied of viruses.

The helical assemblies described above are characterized by individual pro-
tein units which come together to form helical filaments. An alternative and
equally remarkable class of filaments are those in which alpha helices (chains
of amino acids forming protein subunits with a precise, helical geometry) wind
around each other to form superhelices. The particular case study which will
interest most in subsequent discussions is that of collagen which serves as one
of the key components in the extracellular matrix of connective tissues and is
one of the majority protein products of the fibroblast cells introduced earlier in
the chapter (see fig. 2.9).

Macromolecular Assemblies Are Arranged in Superstructures

Assemblies of macromolecules can interact with each other to create striking
instances of cellular hardware with a size comparable to organelles themselves.
Fig. 2.19 shows several examples. Fig. 2.19(A) shows the way in which ribosomes
are organized on the endoplasmic reticulum with a characteristic spacing which
is comparable to the size of the ribosomes (≈ 20nm). A second stunning example
is the organization of myofibrils in muscles as shown in fig. 2.19(B). This figure
shows the juxtaposition of the myofibrils and mitochondria. The myofibrils
themselves are an ordered arrangement of actin filaments and myosin motors
as will be discussed in more detail in chap. 16. The last example shown in
fig. 2.19(C) is of the protrusions of microvilli at the surface of an epithelial cell.
These microvilli are the result of collections of parallel actin filaments. The list
of examples of orchestration of collections of macromolecules can go on and on.
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Figure 2.19: Ordered macromolecular assemblies. Collage of examples of macro-
molecules organized into superstructures. (A) ribosomes on the endoplasmic
reticulum, (B) myofibrils in the flight muscle, (C) microvilli at the epithelial
surface.

2.2.4 Viruses as Assemblies

Viruses are one of the most impressive and beautiful class of macromolecular
assembly. These assemblies are a collection of proteins and nucleic acids (though
many viruses have lipid envelopes as well) that form highly ordered and sym-
metrical objects with characteristic sizes of 10s to 100s of nanometers. The
architecture of these viruses is usually a protein shell where the so-called capsid
is made up of a repetitive packing of the same protein subunits over and over
to form an icosahedron. Within the capsid, the virus packs its genetic material
which can be either DNA or RNA depending upon the type of virus. Fig. 2.20
is a gallery of the capsids of a number of different viruses. Different viruses have
different elaborations on this basic structure and can include lipid coats, surface
receptors, and internal molecular machines such as polymerases and proteases.
One of the most amazing features of these viruses is that by hijacking the host
cell, the viral genome commands the construction of its own inventory of parts
within the host and then in the crowded environment of that host, assembles
into these beautiful and subtle killing machines.

HIV (human immunodeficiency virus) is one of the viruses that has garnered
the most attention in recent years. Fig. 2.21 shows cryo-EM images of mature
HIV virions and gives a sense of both their overall size (roughly 130 nm) and
their internal structure. In particular, note the presence of an internal capsid
shaped like an ice-cream cone. This internal structure houses the roughly 10kb
RNA viral genome. As with our analysis of the inventory of a cell considered
earlier in the chapter, part of developing a “feeling for the organism” is to get
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Figure 2.20: Structures of viral capsids. The regularity of the structure of
viruses has enabled detailed, atomic-level analysis of their construction patterns.
This gallery shows a variety of the different geometries explored by the class of
nearly spherical viruses. For size comparison, a large protein bacteriorhodopsin
is shown in the bottom right.

a sense of the types and numbers of the different molecules that make up that
organism. In the case of HIV, these numbers are interesting for many reasons,
including that they say something about the “investment” that the infected cell
has to make in order to construct new virions.

For our census of an HIV virion, we need to examine the assembly of the
virus. In particular, one of the key products of its roughly 10kb genome is a
polyprotein known as Gag and shown schematically in fig. 2.22. The formation
of the immature virus occurs through the association of the N-terminal ends
of these Gag proteins with the lipid bilayer of the host cell and the C-termini
pointing radially inward like the spokes of a three-dimensional wheel. As more
of these proteins associate on the cell surface, the nascent virus begins to form
a bud on the cell surface ultimately resulting in spherical structures like those
shown in fig. 2.22. During the process of viral maturation, a viral protease
(an enzyme that cuts proteins) clips the Gag protein into its component pieces
known as matrix (MA), capsid (CA), nucleocapsid (NC) and p6. The matrix
forms a shell of proteins just inside of the lipid bilayer coat. The capsid proteins
form the ice-cream cone shaped object that houses the genetic material and the
nucleocapsid protein is complexed with the viral RNA.

• Estimate: Sizing Up HIV. Unlike many of their more ordered viral
counterparts, HIV virions have the intriguing feature that the structure
from one to the next is not exactly the same. Indeed, they come in both
different shapes and sizes. As a result, our attempt to “size up” HIV
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100 nm

Figure 2.21: Structure of HIV viruses. The planar image shows a single frame
from an electron microscopy tilt series. The three-dimensional images show
reconstructions of the mature viruses featuring the ice-cream cone shaped capsid
on the interior. figure from Briggs, Structure 2006
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Figure 2.22: HIV architecture. (A) Schematic of the Gag polyprotein, a 41,000
Da architectural building block. (B) Immature virions showing the lipid bilayer
coat and the uncut Gag shell on the interior, (C) mature virions in which the Gag
protein has been cut by proteases and the separate components have assumed
their architectural roles in the virus. The associated electron microscopy images
show actual data for each of the cartoons. (adapted from Briggs et al.).
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will be built around some representative numbers for these viruses, but
the reader is cautioned to think of a statistical distribution of sizes and
shapes. As shown in the cryo-EM picture of fig. 2.21, the size of the virion
is between 120 nm and 150 nm and we take a “canonical” size of 130nm.

We begin with the immature virion. To find the number of Gag proteins
within a given virion, we resort to simple geometrical reasoning. Since the
radius of the overall virion is roughly 65nm, and the outer 5nm of that
radius is associated with the lipid bilayer, we imagine a sphere of radius
60nm that is decorated on the inside with the inward facing spokes of the
Gag proteins. If we think of each such Gag protein as a cylinder of radius
2 nm, this means they take up an area AGag ≈ 4π nm2. Using this, we
can find the number of such Gag proteins as

NGag =
surface area of virion
area per Gag protein

≈ 4π(60 nm)2

4π nm2
≈ 3500. (2.15)

The total mass of these Gag proteins is roughly

MGag ≈ 3500× 41, 000Da ≈ 150MDa, (2.16)

where we have used the fact that the mass of each Gag polyprotein is
roughly 40 kDa. This estimate for the number of Gag proteins is of pre-
cisely the same magnitude as those that have emerged from recent cryo-
electron microscopy observations.

The number of lipids associated with the HIV envelope can be estimated
similarly as

Nlipids ≈
2× 4π(65 nm)2

1/2 nm2
≈ 200, 000 lipids, (2.17)

where the factor of 2 accounts for the fact that the lipids form a bilayer,
and we have used a typical area per lipid of 1/2 nm2. The lipid census
of HIV has been taken using mass spectrometry which permits the mea-
surement of each of the different types of lipids forming the viral envelope.
Interestingly, the diversity of lipids in the HIV envelope is enormous with
the lipid composition of the viral envelope distinct from that of the host
cell membrane. The measured total number of different lipids is roughly
300,000. Further analysis of the parts list of HIV is left to the problems
at the end of the chapter.

Ultimately, viruses are one of the most interesting classes of macromolecu-
lar assembly. These intriguing machines occupy a fuzzy zone at the interface
between the living and the nonliving.

2.2.5 The Molecular Architecture of Cells: From PDB
Files to Ribbon Diagrams

If we continue with another factor of ten in our powers of ten descent, we
find the individual macromolecules of the cell. In particular, this increase in
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spatial resolution reveals four broad categories of macromolecule: lipids, carbo-
hydrates, nucleic acids and proteins. As was shown in chap. 1, these four classes
of molecule make up the stuff of life and have central status in making up cells
both architecturally and functionally. Though often these molecules are highly
anisotropic (for example, a DNA molecule is usually many orders of magnitude
longer than it is wide), their characteristic scale is between one and ten nanome-
ters. For example, as shown earlier in the chapter, a “typical” protein has a size
of several nanometers. Lipids are more anistropic with lengths of 2-3 nm and
cross-sectional areas of roughly 1/2 nm2.

The goal of this section is to provide several different views of the molecules
of life and how they fit into the structural hierarchy described throughout the
chapter.
Macromolecular Structure Is Characterized Fundamentally By Atomic
Coordinates

The conjunction of X-ray crystallography, nuclear magnetic resonance and
cryo-electron microscopy have revealed the atomic-level structures of a dazzling
array of macromolecules of central importance to the function of cells. The list of
such structures includes molecular motors, ion channels, DNA-binding proteins,
viral capsid proteins and various nucleic acid structures too. The determination
of new structures is literally a daily experience. Indeed, as will be asked of
the reader in the problems at the end of the chapter, a visit to websites such
as the Protein Data Bank or VIPER reveals just how many molecular and
macromolecular structures are now known.

Though the word structure can mean different things to different people
(indeed, that is one of the primary messages of this chapter and chap. 8), at
the level of structural biology, the determination of structure ultimately refers
to a list of atomic coordinates for the various atoms making up the structure
of interest. As an example, fig. 1.1 introduced detailed atomic portraits of
nucleic acids, proteins, lipids and sugars. In such descriptions, the structural
characterization of the system amounts to a set of coordinates

ri = xii + yij + zik, (2.18)

where, having chosen some origin of coordinates, the coordinates of the ith

atom in the structure are given by (xi, yi, zi). That is, we have some origin of
Cartesian coordinates and every atomic position is an address on this three-
dimensional grid.

Because the macromolecules of the cell are subject to incessant jiggling due to
collisions with each other and the surrounding water, a static picture of structure
is incomplete. The structural snapshots embodied in atomic coordinates for a
given structure miss the fact that each and every atom is engaged in a constant
thermal dance. Hence, the coordinates of eqn. 2.18 are really of the form

ri(t) = xi(t)i + yi(t)j + zi(t)k, (2.19)

where the t reminds us that the coordinates depend upon time and what is



2.2. CELLS AND STRUCTURES WITHIN THEM 83

ball and stick

space-filling

ribbon

a-helix

b-strand

loop

atom

covalent bond

electron cloud

Figure 2.23: Three representations of triose phosphate isomerase. This enzyme
is one of the enzymes in the glycolysis pathway.

measured in experiments might be best represented as 〈ri(t)〉time, where the
brackets 〈〉time signify an average over time.

An example of an atomic-level representation of one of the key proteins of
the glycolysis pathway is shown in fig. 2.23. We choose this example because
glycolysis will arise repeatedly throughout the book as a canonical metabolic
pathway. The figure also shows several alternative schemes for capturing these
structures such as using ribbon-diagrams which highlight the ways in which the
different amino acids come together to form elements of secondary structure
such as alpha helices and beta sheets.
Chemical Groups Allow Us to Classify Parts of the Structure of
Macromolecules

When thinking about the structures of the macromolecules of the cell, one
of the most important ways to give those structures functional meaning (as
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opposed to just a collection of coordinates) is through reference to the chemical
groups that make them up. For example, the structure of the protein shown in
figs. 1.1 and 2.23 is not just an arbitrary arrangement of carbons, nitrogens,
oxygens and hydrogens. Rather, this structure reflects the fact that the protein
is made up of a linear sequence of amino acids which each have their own
distinct identity as shown in fig. 2.24. The physical and chemical properties of
these amino acids dictate both the folded shape of the protein as well as how it
functions.

Amino acids are but one example of a broader class of nanometer-scale struc-
tural building blocks known as “chemical groups”. These chemical groups occur
with great frequency in different macromolecules and, like the amino acids, each
have their own unique chemical identity. We identify such groups with a roughly
context-independent chemical behavior. Fig. 2.25 shows a variety of chemical
groups that are of interest in biochemistry and molecular biology. These are
all biologically important chemical functional groups that can be attached to
a carbon atom as shown in fig. 2.25 and are all found in protein structures.
The methyl and phenyl groups contain only carbon and hydrogen and are hence
hydrophobic (unable to form hydrogen bonds with water). To the right of these
are shown two chemically similar groups, alcohol and thiol consisting of oxygen
or sulfur plus a single hydrogen. The key feature of these two groups is that they
are highly reactive and can participate in chemical reactions forming new cova-
lent bonds. Amino acids containing these functional groups (serine, threonine,
tyrosine and cysteine) are frequently important enzyme residues in catalytic
reactions. The next row starts with a nitrogen containing amino group which
is usually postively charged at neutral pH and a negatively charged carboxylic
acid. All amino acids in monomeric form have both of these groups. In a protein
polymer, there is a free amino group at the N-terminus of the protein and a free
carboxylic acid group at the C-terminus of the protein. Several amino acids also
contain these groups as part of their sidechains and the charge-based interac-
tions are frequently responsible for chemical specificity in molecular recognition
as well as some kinds of catalysis. An amide group is shown next. This group is
not generally charged but is able to participate in a variety of hydrogen bonds.
The last group shown is a phosphoryl group which is not part of any amino
acid that is incorporated by the ribosome in a polypeptide chain during trans-
lation. On the other hand, these groups are frequently added to proteins as
a post-translational modification and perform extremely important regulatory
functions.

Nucleic acids can similarly be thought of from the point of view of chemical
groups. In fig. 1.3, we showed the way in which individual groups can be seen
as the building blocks of DNA structures such as that shown in fig. 1.1(a). In
particular, we note that the backbone of the double helix is built up of sugars
(represented as pentagons) and phosphates. Similarly, the nitrogenous bases
which mediate the pairing between the complementary strands of the backbone
are represented diagrammatically via hexagons and pentagons, with hydrogen
bonds depicted as shown in the figure.

This brief description of the individual molecular units of the machines of
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Figure 2.24: Amino acid side chains. The amino acids are represented here in
ball and stick form, where a black ball indicates a carbon atom, a small white
ball indicates a hydrogen atom and a gray ball, oxygen, nitrogen or sulfur. Only
the side chains are shown. The peptide backbone of the protein to which these
sidechains are attached is indicated by a flat gray tile. The amino acids are
subdivided based upon their physical properties. The group shown at the top
are hydrophobic and tend to be found on the interior of proteins. Those at the
bottom are able to form hydrogen bonds with water.



86CHAPTER 2. WHAT AND WHERE: CONSTRUCTION PLANS FOR CELLS AND ORGANISMS

methyl

amino carboxyl amide phosphoryl

phenyl
alcohol (hydroxyl) thiol (sulfhydryl)

Figure 2.25: Chemical groups. These are some of the most common groups
found in organic molecules such as proteins.

the cell brings us to the end of our powers of ten descent which examine the
structures of the cell. Our plan now is to zoom out from the scale of individual
cells to examine the structures they form together.

2.3 Telescoping Up in Scale: Cells Don’t Go It
Alone

2.3.1 Multicellularity As One of Evolution’s Great Inven-
tions

Our powers of ten journey has thus far shown us the way in which cells are built
from structural units going down from organelles to macromolecular assemblies
to individual macromolecules to chemical groups, atoms and ions. Equally in-
teresting hierarchies of structures are revealed as we reduce the resolution of
our imaginary camera and zoom out from the scale of individual cells. What
we see once we begin to zoom out from the scale of single cells is the emergence
of communities in which cells do not act independently.

Life has been marked by several different evolutionary events which wrought
a wholesale change in the way that cells operate. One important category of
such events is the acquisition of the ability of cells to communicate and coop-
erate with one another to form multicellular communities with common goals.
This has happened many times throughout all branches of life and has culmi-
nated in extremely large organisms such as redwood trees and giraffes among
eukaryotes. In this section, we explore the ways in which cell-cell communi-
cation and cooperation have given rise to new classes of biological structures.
Fig. 2.26 shows a variety of different examples of cellular communities, some of
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Figure 2.26: Representative examples of different communities of cells. (A)
Fossils of the ancient bacterial colonies known as stromatolites, (B) Bacterial
biofilm. (C) The social amoeba Dictyostelium discoideum forms fruiting bodies.
The picture shows a fruiting body with spores - the tall stalk with a bulb at the
top is a collection of amoebae. (D) The Drosophila eye.

which form the substance of the remainder of the chapter.
Bacteria Interact to Form Colonies Such as Biofilms

The oldest known cellular communities recorded in the fossil record are es-
sentially gigantic bacterial colonies called stromatolites such as those shown in
fig. 2.26(A). These fossils have a characteristic size of a meter and reflect col-
lections of bacterial cells held together by an extracellular matrix secreted by
these cells. Although most stromatolites were outcompeted in their ecological
niches by subsequent fancier forms of multicellular life, a few can still be found
today taking essentially the same form as their two-billion year old fossils.

Many interesting kinds of bacterial communities consist of more than one
species. Indeed, through a sophisticated system of signaling, detection and
organization, bacteria form colonies of all kinds ranging from biofilms to the
ecosystems within animal guts. Bacterial biofilms are familiar to us all as the
basis of the dentist’s warning to floss our teeth every night. These communi-
ties are functionally as well as structurally interdependent. Other biofilms are
noted for their destructive force when they attach to the surfaces of materials.
Fig. 2.26(B) shows a biofilm that grew on a silicon rubber voice prosthesis that
had been implanted in a patient for about three months.

Structurally, a biofilm is formed as shown schematically in fig. 2.27. The key
building blocks of such structures are a population of bacteria, a surface onto
which these cells may adhere and an aqueous environment. The formation of a
biofilms results in a population of bacterial cells that are attached to a surface
and enclosed in a polymeric matrix built up of molecules produced by these very
same bacteria. The early stages of biofilm formation involve the adhesion of the
bacteria to a surface followed by changes in the characteristics of these bacteria
such as the loss of flagella and the development of pili. At a larger scale, these
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Figure 2.27: Schematic of the formation of a biofilm by bacteria. The various
stages in the formation of the biofilm are: 1) attachment to surface, 2) secretion
of extracellular polymeric substance (EPS), 3) early development, 4) maturation
and 5) shedding of cells from the biofilm. The microscopy images below show
biofilms in various stages of the film formation process. (adapted from Stoodley
et al., 2002) RP: need scale bars and caption for lower figures.

changes at the cellular level are attended by the formation of colonies of cells and
differentiation of the colonies into structures which are embedded in extracellular
polysaccharides. Though there are a variety of different morphologies that are
adopted by such films, roughly speaking, these biofilms are relatively porous
structures (presumably to provide a conduit for import and export of nutrients
and waste, respectively) that typically take on mushroom-like structures such
as indicated schematically in fig. 2.27. These films have a relative proportion
of something like 85 percent of the mass taken up by extracellular matrix while
the remaining 15 percent is taken up by cells themselves. A typical thickness
for such films ranges from 10-50 µm.
Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum

Although bacteria can form communities, eukaryotes have clearly raised this
to a high art. One particularly fascinating example that may give clues as to
the origin of eukaryotic multicellularity is the cellular slime mold Dictyostelium
discoideum as shown in fig. 2.26(C). This small, soil-dwelling amoeba pursues
a solitary life when times are good but seeks the comfort of its fellows during
times of starvation. Dictyostelium is usually content to wander around as an
individual with a characteristic size between 5 and 10 µm. However, when
deprived of its bacterial diet, these cells undertake a radical change in lifestyle
which involves both interaction and differentiation through a series of fascinating
intermediate steps as shown in fig. 2.28. A group of Dictyostelium amoebae in
a soil sample that find themselves faced with starvation, send chemical signals
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Figure 2.28: Formation of a multicellular structure during starvation. The social
amoeba Dictyostelium discoideum responds to starvation by forming a structure
made up of tens of thousands of cells in which individual cells suffer different
fates. Cells near the top of the structure form spores which are resurrected
once conditions are favorable. The figure shows the developmental stages that
take place on the way to making fruiting bodies, starting in the bottom right
and proceeding clockwise. RP: the citation is ”Copyright, M.J. Grimson and
R.L. Blanton, Biological Sciences Electron Microscopy Laboratory, Texas Tech
University.” RP: scale bar

to one another resulting in the coalescence of thousands of separate amoebae
to form a slug that looks like a small nematode worm. These cells appear to
be poised on the brink between unicellular and multicellular lifestyles and can
readily convert between them. Ultimately, as shown in the figure, the slug
stops moving and begins to form a stalk. At the tip of the stalk is a nearly
spherical bulb that contains many thousands of spores, essentially cells in a
state of suspended animation. When environmental conditions are appropriate
for individual amoeba to thrive, the spores undergo the process of sporulation,
with each spore becoming a functional, individual amoeba.

• Estimate: Sizing Up the Slug and the Fruiting Body. The relation
between the number of cells in a slug and its size is shown in fig. 2.29
where we see that these slugs can range in size between several hundred
and several thousand microns with the number of cells making up the
slug between tens of thousands and several million. The next visible stage
in the development is the sprouting of a stalk with a bulb at the top
known as a fruiting body. The stalk is of order a millimeter in length
while the size of the fruiting body itself is several hundred microns across.
This fruiting body is composed of thousands of spores, amoeba that are
effectively in a state of suspended animation. An example of such a fruiting
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body that has been squished on a microscope slide is shown in fig. 2.30.
This structure has functional consequences. In particular, those cells that
are part of the spore remain in a sort of suspended animation, remaining
poised to respond to a better day, while the cells that formed the stalk
have effectively ended their lives for the good of those that survive.

An immediate question of interest concerning the multicellular fruiting
bodies shown in fig. 2.28 is how many cells conspire to make up such
structures. Fig. 2.30 provides the answer, but it is also of interest to try to
reason it out. An estimate of the number of cells in a fruiting body can be
constructed by examining the nearly hemispherical colony of cells shown
in fig. 2.30. The diameter of this hemisphere is roughly = 200µm. Our
rough estimate for the number of spores in the fruiting body is obtained
by evaluating the ratio

number of cells =
Vbody

Vcell
, (2.20)

where we assume that the entirety of the fruiting body volume is made up
of cells. If we assume that the cell size is 4 µm in diameter, this yields

number of cells =
2
3π(100µm)3
4
3π(2µm)3

≈ 2× 104cells. (2.21)

Note that the size of the ball of cells in a fruiting body can vary dra-
matically from the 200 µm scale shown here to several times larger, and
as a result, the estimate for the number of cells in a fruiting body can
vary. Also, note that a factor of two error in our estimate of the size of
an individual cell will translate into a factor of eight error in our count of
the number of cells in the slug or fully formed fruiting body.

Multicellular Organisms Have Many Distinct Communities of Cells

The three branches of life that have most notably exploited the potential
of the multicellular lifestyle are animals, plants and fungi. While bacterial and
protozoan colonial organisms rarely form communities with characteristic di-
mensions of more than a few millimeters (with the exception of stromatolites),
individuals in these three groups routinely grow to more than a meter in size.
Their enormous size and corresponding complexity can be attributed to at least
three factors: i) production of extracellular matrix material that can provide
structural support for large communities of cells, ii) a predilection towards cellu-
lar specialization such that many copies of cells with the same genomic content
can develop to perform distinct functions and iii) highly sophisticated mecha-
nisms for the cells to communicate with one another within the organism. We
emphasize that these traits are not unique to animals plants and fungi, but
they are used more extensively there than elsewhere. A beautiful illustration
of these principles is seen in the eye of the fruit fly Drosophila as shown in
fig. 2.26(D). The eye is made up of hundreds of small units called ommatidia,
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Figure 2.29: Slug size in Dictyostelium discoideum. The plot shows a rela-
tion between the size of the Dicty slug and the corresponding number of cells.
(adapted from Bonner, 20RP)
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Figure 2.30: Microscopy image of a fruiting body. The fruiting body has been
squished on a microscope slide revealing both the size of the spores and their
numbers.
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each of which contains a group of eight photoreceptor cells, support cells and
a cornea. During development of the eye, these cells signal to one another to
establish their identities and relative positions to create a stereotyped structure
that is repeated many times. The overarching theme of the remainder of this
chapter is the exploration of how cells come together to form higher order struc-
tures and how these structures fit into the overall hierarchy of structures formed
by living organisms.

2.3.2 Cellular Structures From Tissues to Nerve Networks

Multicellular structures are as diverse as cells themselves. Often, the nature of
these structures are a reflection of their underlying function. For example, the
role of epithelia as barriers dictates their tightly packed, planar geometries. By
way of contrast, the informational role of the network of neurons dictates an
entirely different type of multicellular structure.
One Class of Multicellular Structures Is the Epithelial Sheets

Epithelial sheets form part of the structural backdrop in organs ranging from
the skin to the bladder. Functionally, the cells in these structures have roles
such as serving as a barrier to transport of molecules, providing an interface at
which molecules can be absorbed into cells and as the seat of certain molecular
secretions. Several different views of these structures are shown in fig. 2.31.

The morphology of epithelial sheets are diverse in several ways. First, the
morphology of the individual cells can be different (isotropic vs anisotropic).
In addition, the assemblies of cells themselves have different shapes. For ex-
ample, the different structures can be broadly classified into those which are a
monolayer sheet (simple epithelium) and those which are a multilayer (stratified
epithelium). Within these two broad classes of structures, the cells themselves
have different morphologies. The cells making up a given epithelial sheet can
be flat, pancake-like cells, denoted as squamous epithelium. If the cells mak-
ing up the epithelial sheet have no preferred orientation, they are referred to
as cuboidal, while those which are elongated perpendicular to the extracellular
support matrix are known as columnar epithelia. Epithelial sheets have as one of
their functions (as do lipid bilayers) the segregation of different media which can
have highly different ionic concentrations, pH, macromolecular concentrations
and so on.
Tissues Are Collections of Cells and Extracellular Matrix

We have seen that cells can interact to form complexes. An even more in-
triguing example of a multicellular structure is provided by tissues such as that
shown in fig. 2.32. These connective tissues are built up from a diverse array
of cells and materials they secrete. Beneath the epithelial surface, fibroblasts
construct extracellular matrix. This connective tissue is built up of three main
components: cells such as fibroblasts and macrophage, connective fibers and
a structureless supporting substance made up of glycosaminoglycans (GAGs).
What is especially appealing and intriguing about these tissues is the orches-
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(B)

(C)

(D)
~10 mm

Figure 2.31: Shapes and architecture of epithelial cells. Epithelia are tissues
formed by continuous sheets of cells that form tight contacts with one another.
(A) Viewed from above, a simple epithelial sheet resembles a tiled mosaic. The
dark ovals are the cell nuclei stained with silver. (B) Viewed from the side,
simple epithelia such as this from the dog kidney, may form a single layer of
flattened cells above a loose, fibrous connective tissue. (C) In some specialized
epithelia, the cells may extend upwards forming elongated columns and develop
functional specializations at the top surface such as the beating cilia shown here.
This particular ciliated columnar epithelium is from the alimentary tract of a
freshwater mussel. (D) In other epithelia such as skin or the kitten’s gum shown
here, epithelial cells may form multiple layers.
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Figure 2.32: Connective tissue. The schematic shows the organization of cells
and extracellular matrix that make up connective tissue. The top layer is a
planar array of epithelial cells. The volume beneath these cells is made up of
fibroblasts and a secretion of extracellular matrix.

tration, both in space and time, leading to the positioning of cells and fibers.
The fibroblasts, which were already featured earlier in this chapter, serve as
factories for the proteins that make up the extracellular matrix. In particu-
lar, they synthesize proteins such as collagen and elastin which, when secreted,
assemble to form fibrous structures which can support mechanical loads. The
medium within which these fibers (and the cells) are embedded is made up of
the third key component of the extracellular matrix, namely, the hydrated gel
of glycosaminoglycans.
Nerve Cells Form Complex, Multicellular Complexes

A totally different example of structural organization involving multiple cells
is illustrated by collections of neurons. Neurons are the specialized cells in
animals that we associate with thinking and feeling. These cells allow for the
transmission of information over long distances in the form of electrical signals.
Neurons are constructed with many input terminals known as dendrites and a
single output path known as the axon. The fascinating structural feature of these
cells is that they assemble into complex networks that are densely connected
in patterns where dendrites from a given cell reach out to many others, from
which they take various inputs. An example of a collection of fluorescently
labeled neurons is shown in fig. 2.33. Note that the branches (dendrites and
axons) that reach out from the various cells have lengths far in excess of the 10
micron scale characteristic of typical eukaryotes. Indeed, axons of some neurons
can have lengths of centimeters and more.

One fascinating example of neuronal contact is offered by the so-called neu-
romuscular junction as shown in fig. 2.34. These junctions are the point of
contact between motor neurons, which convey the marching orders for a given
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Figure 2.33: Illustration of the complex network of cells formed by neurons.
GFP fluorescence observed for a collection of neurons from the brain of a rat.
Particular neurons were targeted using lentiviruses. (figure from RP)

muscle, and the muscle fiber itself. As is seen in the figure, the axon from a
given motor neuron makes contacts with various muscle fibers. As will be de-
scribed in more detail in chap. 17, when an electrical signal (action potential)
arrives at the contact point known as a synapse, chemical neurotransmitters are
released into the space between the nerve and muscle. These neurotransmitters
result in the opening of ligand-gated ion channels in the muscle which result in
a change in the electrical state of the muscle and lead to motion of the muscle.
Contrasting the contacts between epithelial sheets and neurons (or neurons and
muscles) reveals the diversity of cell-cell contacts.

2.3.3 Multicellular Organisms

The highest level in the structural hierarchy to be entertained here is individual
organisms. The diversity of living multicellular organisms is legendary ranging
from roses to hummingbirds, Venus flytraps to the giant squid. What is espe-
cially remarkable about this diversity is contained in the simple statement of
the cell theory: each and every one of these organisms is a collection of cells and
their products. And, each and every one of these organisms is the the result of
a long history of evolution resulting in specialization and diversification of the
various cells that make up that organism.
Cells Differentiate During Development Leading to Entire Organisms
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Figure 2.34: Neuromuscular junction. The axon from a nerve cell makes contact
with various skeletal muscle fibers. Neurotransmitters secreted by the nerve cell
at the synapse initiate contraction of the muscle fibers. (adapted from Bloom
and Fawcett, 20RP).

The fruit fly Drosophila melanogaster has had a long and rich history as one
of the “model” organisms of biology and is a useful starting point for thinking
about the size of organisms. As shown in fig. 2.35, the mature fly has a size
of roughly 3 mm that can be thought of morphologically as being built up of
14 segments: 3 segments making up the head, three segments making up the
thorax and 8 segments making up the abdomen.

Drosophila has attained its legendary status in part because of the way it has
revealed so many different concepts about embryonic development. One of the
most well-studied features of the development of Drosophila is the way in which
it lays down its anterior-posterior architecture during early development. The
pattern of expression of the so-called even-skipped genes is shown in fig. 2.36.
The gene even-skipped (eve) is expressed in seven stripes corresponding to seven
of the fourteen Drosophila segments. Another intriguing feature of this figure
is the sense in which different species of fly maintain the same overall relative
position of different morphological features, despite their up to tenfold difference
in overall size.

• Estimate: Sizing Up Stripes in Drosophila Embryos. To get a feeling
for the scales associated with the gradients in transcription factors that
dictate developmental decisions and the features they engender, we idealize
the Drosophila embryo as a spherocylinder. As shown in fig. 2.36, the
geometry is characterized by two parameters, the length of the cylindrical
region, L, and its radius R, where we use approximate values of 300 µm
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Figure 2.35: Mature Drosophila flies (a) male, (b) female. RP:
gotten from the flybase. We need to take our own pictures.
http://flybase.bio.indiana.edu/.bin/fbidq.html?FBrf0004865

100 mm

Figure 2.36: Pattern of gene expression in the Drosophila embryo. Image of
Drosophila embryos from different species after RP hours of development, (Scale
bars: 100 microns.) RP: here is caption from Gregor paper: Immunofluorescence
stainings for products of the gap and pair-rule genes in higher diptera. (A) Im-
munofluorescence staining of L. sericata (upper embryos) and D. melanogaster
(lower embryos) for Hunchback (green) and Giant (red) in the left column, and
for Paired (green) and Runt (red) in the right column. (B) Anti-Hunchback
(green) and anti-Runt (red) immunofluorescence staining of D. melanogaster
(upper embryo) and D. busckii (lower embryo). (Scale bars: 100 microns.)
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for the length of the cylindrical region and 100 µm for the radius. Since
the early embryo is a syncytium with all of the cells forming a surface
layer, our estimates will depend upon having a rough estimate of the areal
density of the cells. The area of the embryo in this simple model is given
by

A = 4πR2 + 2πRL. (2.22)

If we consider the embryo after 13 generations of cell division and before
the gastrulation which folds the developing embryo in, there are roughly
8000 cells. Hence, the resulting density is given by

σ =
N

4πR2 + 2πRL
. (2.23)

Using the numbers described above, this leads to an areal density of 0.025
cells /µm2. As seen in fig. 2.36(c), the stripe patterns associated with the
Drosophila embryo are very sharp and reflect cells making decisions at a
very localized level.

Inspection of fig. 2.36(c) reveals that the stripes are roughly 30 µm wide.
As a result, we can estimate the total number of cells participating in
these stripes as

n = σ2πRlstripe ≈ 0.026cells/µm2 × 2× 3.14× 100µm× 30µm ≈ 500.
(2.24)

Note that the average area per cell is given by 1/n ≈ 36µm2, suggest-
ing that the radii of these cells is roughly 3.5 µm. Our main purpose in
carrying out this exercise is to demonstrate the length scale of the struc-
tures that are put down during embryonic development. In this case, what
we have seen is that out of the roughly 8000 cells that characterize the
Drosophila embryo at the time of gastrulation, groups of roughly 500 cells
have begun to follow distinct pathways as a result of differential patterns
of gene expression.

The Cells of the Nematode Worm C. elegans Have Been Charted

A more recently popularized model organism for studying the genetics and
development of multicellular animals is the nematode worm Caenorhabditis el-
egans. Two factors that make this worm particularly attractive in its capacity
as a model multicellular eukaryote are that a) its complete genome has been
determined and b) the identity of each and every of its 959 cells has been deter-
mined (see fig. 2.38). Amazingly, all of the cells of this organism have had their
lineages traced from the single ancestral cell which is present at the moment
of fertilization. What this means precisely is that all of the roughly 1000 cells
making up this organism can be assigned a lineage of the kind cell A begat
cell B which begat cell C and so on. As shown in fig. 2.38, these worms are
roughly 1 mm in length and 0.05 mm across. Like Drosophila, they too have
been subjected to a vast array of different analyses including, for example, how



2.3. TELESCOPING UP IN SCALE: CELLS DON’T GO IT ALONE 99

100 mm

Figure 2.37: C. elegans. This DIC image of a single adult worm was assembled
from a series of high-resolution micrographs. The worm’s head is at the top left
corner and its tail is at the right. Its gut is visible as a long tube going down
the animal’s body axis. Its egg cells are also visible as giant ovals towards the
bottom of the body.

their behavior is driven by the sensation of touch. One of the most remarkable
outcomes of the series of experiments leading to the lineage tree for C. elegans
was the determination of the connectivity of the 302 neurons present in this ne-
matode. By using serial thin sections from electron microscopy, it was possible
to map out the roughly 7000 neuronal connections in the nervous system of this
tiny organism. The various nerve cells are typically less than 5 microns across.

• Estimate: Sizing Up C. Elegans. As a simple estimate of the cellular
content of a “simple” organism, we contemplate one of the key model
organisms of modern biology, Caenorhabditis elegans. For our present
purposes, we think of these small worms as cylinders of length 1 mm and
with a width of .05 mm. The total volume of such a worm is computed
simply as roughly 5 × 106µm3. A reasonable estimate for the volume of
eukaryotic cells is somewhere between 2000 - 10000 µm3. If we consider
a characteristic volume of 5000 µm3 per cell, this results in an order of
magnitude estimate that there are 1000 cells per worm.

Many different species of nematodes share a common body plan involving a
small number of well defined cells, however they may vary greatly in size. One
of the largest nematodes Ascaris, is a common parasite of pigs and humans. It
has been estimated that up to one billion people on the planet carry Ascaris in
their intestine. These worms closely resemble C. elegans except that they may
be up to 15 cm in length. This kind of observation is not unusual throughout
the animal kingdom. Many species have close relatives that differ enormously in
size. The reasons and mechanisms that determine the overall size of multicellular
organisms remain poorly understood.
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Figure 2.38: Cell lineages in C. elegans. The developmental pattern of every cell
in the worm is identical from one animal to the other. Because of this feature
it has been possible for developmental biologists to determine the family tree
of every cell present in the entire animal by patient direct observation. In this
schematic representation, the cell divisions that occur during embryogenesis are
shown in the band across the top. The later cell divisions of the epidermis,
vulva and somatic gonad all take place after the animal has hatched. The Xs
represent cells that die; death is a normal developmental fate.

Higher Level Structures Exist as Colonies of Organisms

Organisms do not exist in isolation. Every organism on the planet is part
of a larger ecological web that features both cooperation and competition with
other individuals and species. Corral reefs represent a vivid example of the
interdependence of huge varieties of species living together in close quarters. An
equally vivid and diverse community, though one frequently less appreciated is
found closer to home within our own intestines, which are inhabited by a teeming
variety of bacteria. It has been estimated that the human body actually harbors
nearly ten times more microbial cells than it does human cells, and at least one
hundred times more bacterial genes than human genes. Thus we should think
of ourselves not really as individuals but rather as complex ecosystems of which
the human cells form only a small part. Thus, our story of the hierarchy of
structures that make up the living world began with the bacterium Escherichia
coli and will end there now. It is a great irony that we as humans, it might be
argued, have been colonized by our standard ruler E. coli.

Though we have examined biological structures over a wide range of spatial
scales, our powers of ten journey still falls far short of being comprehensive.
Ultimately, what we learn from this is that the handiwork of evolution has
resulted in biological structures ranging from the nanometer scale of molecular
machines all the way to the scale of the planet itself. Trying to understand
what physical and biological factors drive the formation of these structures will
animate much of the remainder of the book.
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2.4 Summary and Conclusions

Biological structures range from the scale of nanometers (individual proteins)
to hundreds of meters (redwood trees) and beyond (ecological communities).
In this chapter, we have explored the sizes and numbers of biological things
starting with the unit of life, the individual cell and working our way down
and up. We have found that sometimes biological things show up in very large
numbers of identical copies such that averages, for example, concentration of
ribosomes in the E. coli cytoplasm, are reasonable approximations. On the
other hand, sometimes biological things show up in very few copies such that
the exact number can make a big difference in the behavior of the system. We
have found that cells are crowded, that there really is a world in a grain of sand
(or in a biological cell). We have also explored some of the ways that biological
units such as proteins or cells may interact with one another to form larger
and more complex entities. Having developed an intuitive feeling for size and
scale will better enable us to realistically envision the biological processes and
problems described throughout the remainder of the book.
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2.5 Further Reading

Boeke K., Cosmic View The Uni-
verse in 40 Jumps, The John Day
Company, New York: New York, 1957.
Boeke starts with a picture of a child
holding a cat and proceeds to view her
situation both by decreasing (26 or-
ders of magnitude) and increasing (13
orders of magnitude) the resolution of
the view.

Goodsell D., The Machinery of Life,
Springer-Verlag, New York: New York,
1998. Following on the work of Minton
and Zimmermann (RP: check), Good-
sell had the very clever idea of try-
ing to represent the cell as it really is,
crowded and to reveal the connection
between structure and function, explic-
itly and visually. His books make for
fascinating reading.

Kornberg A., For the Love of En-
zymes, Harvard University Press, Cam-
bridge: Massachusetts, 1991. Korn-
berg’s beautiful book, though featured
here because of its constant appeal to
cartoons, is hugely fascinating. It is a
great pleasure to see his passion for sci-
ence, with this book in particular read-
ing like one long ode to enzymes. Part
of the relevance to the current chapter
is his Figure 2-2 where he gives a bio-
logical view of the structures that are
seen as one telescopes through powers
of ten. In addition, Kornberg’s book is
amongst the most thoughtful we have
seen with respect to intelligent figures
which center on illustrating particular
modeling ideas.

Stryer RP
Fawcett D. W., The Cell, Its Or-
ganelles and Inclusions, W. B. Saun-
ders and Company, Philadelphia, Penn-

sylvania, 1966. We imagine our reader
comfortably seated with a copy of Fawcett
right at his or her side. Fawcett’s elec-
tron microscopy images are stunning.

Fawcett D. W. and Jensh R. P., Bloom
and Fawcett’s Concise Histology,
Arnold Publishers, London, England,
1997. This book is eye candy for for
those who wish to see some of the won-
derful and beautiful diversity of cells
both and their organelles.

Nelson D. L. and Cox M. M., Lehninger
Principles of Biochemistry, Worth
Publishers, New York: New York, 2000.
Just as Alberts et al. serves as a repre-
sentative example of the representation
of molecular biology via cartoons, the
present book gives a similar impression
of the way in which biochemical ideas
are represented.

Gilbert S. F., Developmental Biol-
ogy, Sinauer Associates, Sunderland:
Massachusetts, 2003. Gilbert’s book is
a beautiful source for learning about
the architecture of a host of different
organisms during early development. Chap.
9 is especially relevant for the discus-
sion of this chapter.

Wolpert L., Beddington R., Jessell T.,
Lawrence P., Meyerowitz E., and Smith
J., Principles of Development, Ox-
ford University Press, New York: New
York, 2002. Wolpert’s book is full of
useful cartoons and schematics that il-
lustrate many of the key ideas of de-
velopmental biology. We admire the
use of scale bars in some of the pho-
tographs and wish the practice were
universal.

Levine A. J., Viruses, Scientific Amer-
ican Library, New York: New York,
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1992. Levine’s book is full of inter-
esting cartoons in which the various
stages of viral infection are represented
by provocative cartoons.

Harold F., The Way of the Cell, Ox-
ford University Press, New York: New
York, 2001. Harold’s book is an ode to
emergence. He celebrates with glee the
insights that have been garnered on the
basis of reductionist thinking in molec-
ular biology. But he point also points
out that the emergent properties ex-
hibited by cellular phenomena defy de-
scription in terms of such purely reduc-
tionist notions. Can we quantify and
perfect this line of argument. We need
models of emergence. RP: Harold has
great quote we should use: “A physics
that has no place for life is as impov-
erished as would be a biology not in-
formed by chemistry.”

McMahon T. A. and Bonner J. T., On
Size and Life, Scientific American Li-
brary, New York: New York, 1983.

2.6 Problems

1. A feeling for the numbers: mi-
crobes as the unseen majority

(a) Justify the assumption that a typi-
cal (i.e. E. coli) bacterial cell has a vol-
ume of 1 µm3. Also, express this vol-
ume in femtoLiters. The claim is made
(see Whitman et al., PNAS, 95(12):6578
(1998)) that in the top 200 m of the
world’s oceans, there are roughly 1028

prokaryotes. Work out the total vol-
ume taken up by these cells in m3 and
km3. Compute their mean spacing.

(b) Recall that roughly 2-3 kg of bacte-
ria are to be found in the waste factory

of your large intestine. Make an esti-
mate of the total number of bacteria
inhabiting your intestine and then all
of the intestines of all of the humans
currently on the Earth.

(c) Look at the fascinating paper by
Zimmerman and Trach (JMB 222(3):599
(1991)) in which they attempt to mea-
sure the crowding in the cellular inte-
rior. In table 3 they tell us their esti-
mated macromolecular concentrations
in the cellular interior. Use these num-
bers to make an estimate of the mean
protein spacing.

2. A Feeling for the Numbers: Molec-
ular volumes, masses, numbers and
charges

(a) Estimate the volumes of the side
chains of the various amino acids, again
in Å3 units. (RP: see the sheet from
Michael Levitt in which he has these
estimates.)

(b) Generate an estimate for the
size of a “typical amino acid” in dal-
tons. Justify your estimate by explain-
ing how many of each type of atom you
chose. Compare your estimate to sev-
eral key amino acids such as glycine,
proline, arginine and tryptophan.

(c) On the basis of your result for
part (b), deduce a rule of thumb for
converting mass of a protein (reported
in kD) into a corresponding number of
residues. Apply this rule of thumb to
myosin, G-actin, hemoglobin and hex-
okinase and compare it to the actual
number of residues in each of these pro-
teins.

3. Atomic-Level Representations
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of Biological Molecules
(a) Obtain coordinates for ATP, phos-
phatidylcholine, B-DNA, G-actin, the
lambda repressor/DNA complex or Lac
repressor/DNA complex, myoglobin, green
fluorescent protein (GFP) and RNA poly-
merase. You can do this by searching
in the Protein Data Bank and various
other Internet resources.

(b) Download a structural viewing code
such as VMD (University of Illinois),
Rasmol (University of Massachusetts)
or DeepView (Swiss Institute of Bioin-
formatics) and create a plot of each of
the molecules you downloaded above.
Experiment with the orientation of the
molecule.

(c) By looking at phosphatidylcholine
justify the value of the area per lipid
used in the chapter.

(d) Phosphoglycerate kinase is a key
enzyme in the glycolysis pathway. One
intriguing feature of such enzymes is
their enormity in comparison with the
sizes of the molecules upon which they
act (their “substrate”). Obtain the co-
ordinates for both phosphoglycerate ki-
nase and glucose (for example, at Molecules
R Us) and examine the relative size of
these molecules. First, use your graph-
ics programs to plot both molecules si-
multaneously. Next, treat each of these
molecules as a sphere and characterize
them both in terms of their linear di-
mensions and also in terms of their rel-
ative volumes.

4. Packing of DNA in viruses Visit
the VIPER website and examine the
viral capsids of the double stranded DNA
viruses herpes and T7. Estimate the
lengths of the genomes of these viruses

by assuming that the packing of the
DNA is such that the effective diame-
ter of a DNA molecule is 25 Å and that
the space is completely filled. That is,
each base pair occupies a volume of a
stub cylinder with length 3.4 Å and ra-
dius 12.5Å. How accurate are your es-
timates of genome lengths? Compare
the packing fraction for different bac-
terial and eukaryotic viruses. Deduce
an expression relating the radius of the
capsid and the length of the genome in
number of base pairs, Nbp.

5. HIV estimates
a) Estimate the total mass of an HIV
virion by comparing it to E. coli.

b) The maturation process involves pro-
teolytic clipping of the Gag polypro-
tein so that the capsid protein CA can
form the shell surrounding the RNA
genome and nucleocapsid NC can com-
plex with the RNA itself. Estimate the
number of CA proteins that are used
up to make up the capsid and to see
how this number compares with the to-
tal number of Gag proteins.

6. Areas and volumes of organelles
and cells
(a) Consider reconstructions of the Golgi
complex such as those shown in fig.
4 of McIntosh, 2001 and estimate the
area of these membrane-bound organelles
as well as the number of lipid molecules.
Compare this area to that of the entire
plasma membrane.

(b) Estimate the membrane surface area
of a fibroblast and the area for a retic-
ular model of the ER.
(c) By looking at figure 2.19(a) esti-
mate the total number of ribosomes as-
sociated with the ER.
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(c) To take stock of the density of ri-
bosomes in eukaryotic cells we can ex-
amine their mean spacing in the rough
endoplasmic reticulum and use this to
estimate the total number of ribosomes
associated with the rough ER. Exami-
nation of electron micrographs like that
shown in fig. 2.19(a) suggests a mean
spacing between ribosomes of roughly
twice their diameter, or 40 nm. This
implies an areal density of

σ ≈ 1ribosome
1600nm2

≈ 6×10−4ribosomes/nm2.

(2.25)
Given our earlier estimate of the area
of the rough ER, namely, AER ≈ 1.5×
1011nm2, this implies the number of ri-
bosomes tied to the ER in a eukaryote
is of order 90× 106.

7. Minimal media and E. coli Look
up the formula for “minimal media” for
growing bacteria. What are the carbon
sources in this media? Make an esti-
mate of the number of carbon atoms it
takes to make up the macromolecular
contents of a bacterium such as E. coli.
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Chapter 3

When: Stopwatches at
Many Scales

“Dost thou love life? Then do not squander time, for that is the stuff life is
made of.” - Benjamin Franklin

Chapter Overview: In Which Various Stopwatches Are Used to Mea-
sure the Rate of Biological Processes

Just as biological structures exist over a wide range of spatial scales, bi-
ological processes take place over time scales ranging from much faster than
microseconds to the time scales that characterize the history of Earth itself.
Using the cell cycle of E. coli as a standard stopwatch, this chapter develops a
feel for the rates at which different biological processes occur. With this “feeling
for the numbers” in hand, we then explore several different views of the passage
of biological time.

3.1 The Hierarchy of Temporal Scales

One of the defining features of living systems is that they are dynamic. The time
scales associated with biological processes run from the nanosecond (and faster)
scale of enzyme action to the more than 109 years that cover the evolutionary
history of life itself. The inexorable march of biological time is revealed over
many orders of magnitude difference in time scale, as illustrated in fig. 3.1. If
we are to watch biological systems unfold with different stopwatches in hand,
the resulting phenomena will be different - at very fast time scales we will see
the molecular dance of different biochemical species as they interact and change
identity. At much slower scales we see the unfolding of the lives of individual
cells. If we slow down our stopwatch even more, what we see is the trajectories
of entire species. To some extent, there is a coupling between the temporal
scales described in this chapter and the spatial scales described in the previous

107
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chapter; small things such as individual molecules tend to operate at fast rates,
and large things such as elephants tend to operate at slow rates.

The aim of this chapter is to describe the time scales of biological phenomena
from a number of different perspectives. In section 3.1, we develop a feeling for
biological time scales by examining the range of different time scales seen in cell
biology and evolutionary biology. This discussion is extended by describing the
experimental basis for what we know about time scales in biology. As in chap. 2,
we once again invoke E. coli, this time by using the cell cycle of our “reference
cell” as the standard stopwatch. The remainder of the chapter is built around
viewing time in biology from three distinct perspectives. In section 3.2, we show
how the time scale of certain biological processes is dictated by how long it takes
some particular procedure (such as replication) to occur. We will refer to this
as procedural time. Section 3.3 explores time from a different angle. In this case,
we consider a broad class of biological processes whose timing is of the “socks
before shoes” variety. That is, processes are linked in a sequential string and
in order for one process to begin, another must have finished. We will refer to
this kind of time keep as relative time. Finally, section 3.4 reveals a third way
of viewing time in biological processes, as a commodity to be manipulated. In
this case, we show how cells and organisms find ways to either speed up or slow
down key processes such as replication and metabolism.

3.1.1 Biological Processes: A Rogue’s Gallery

Biological Processes Are Characterized By a Huge Diversity of Time
Scales

A range of different processes associated with individual organisms, and their
associated time scales, is shown in fig. 3.2 (we leave a discussion of evolutionary
processes for the next section). Broadly speaking, the aim of this figure is to
show a loose powers of ten representation of different biological processes. As we
will see later in the chapter, an absolute measure of time in seconds or minutes
is sometimes not the most useful way to think about the passage of time within
cells. For example, embryonic development for humans takes drastically longer
than for chickens, but the relative timing of common events is meaningfully
compared. For the moment, our discussion of fig. 3.2 is intended to give a
feeling for the numbers how long do various key biological processes actually
take in absolute terms as measured in seconds, minutes and hours?

We begin (fig. 3.2(A) and (B)) with some of the processes associated with
the development of the fruit fly Drosophila melanogaster. Drosophila has been
one of the key workhorses of developmental biology, and much that we know
about embryonic development was teased out of watching the processes which
take place over the roughly ten days between fertilization of the egg and the
emergence of a fully functioning fly. If we increase our temporal resolution by
a factor of ten, we see the processes in the development of the fly embryo itself.
Over the first ten hours or so after fertilization as shown in fig. 3.2(B), a single
cell is turned into more than 5000 cells with particular spatial positions and
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maximum biological time scale; age of Earth 4 billion years = 1017 sec
diversification of metazoans 600 million years = 2x1016 sec

diversification of humans and chimpanzees 6 million years = 2x1014 sec

Sequoia lifespan 3000 years = 1011 sec

Galapagos tortoise lifespan 150 years = 5x109 sec

human ES cell line doubling time 72 hours = 3x105 sec
mayfly adult lifespan 1 day = 9x104 sec

E. coli doubling time 20 min = 1.2x103 sec
unstable protein half-life 5 min = 300 sec
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Figure 3.1: Logarithmic scale showing range of times scales associated with
various biological processes.
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functions. One of the most dramatic parts of this embryonic development is the
process of gastrulation when the future gut forms as a result of a series of folding
events in the embryo. This process is indicated schematically in fig. 3.2(B).

Individual cells have a natural developmental cycle as well. The cell cycle
refers to the set of processes whereby a single cell, through the process of cell
division, becomes two daughter cells. The time scales associated with the cell
cycle of a bacterium such as E. coli are shown in fig. 3.2(C), with a characteristic
scale of several thousand seconds. The lives of individual cells are fascinating
and complex. If we are to dissect the activities of an individual cell as it goes
about its business between cell divisions, we would find a host of processes tak-
ing place over a range of different time scales. If we stare down a microscope at
a swimming bacterium for several seconds, we will notice episodes of directed
motion, punctuated by rapid directional changes. Fig. 3.2(D) shows the time
scales over which an individual bacterium such as E. coli exercises its random
excursion during movement. If our stopwatch now runs a factor of ten faster
we are now operating at the scale of deciseconds, a scale which characterizes
the rate of amino acid incorporation during protein synthesis, a process rep-
resented in fig. 3.2(E). Macromolecular synthesis is one of the most important
sets of processes which any cell must undertake to make a new cell. Another
key part of the macromolecular synthesis required for cell division is the process
of transcription, which is the intermediate step connecting the genetic material
as contained in DNA and the readout of that message in the form of proteins.
Transcription refers to the synthesis of messenger RNA molecules as faithful
copies of the nucleotide sequence in the DNA, a polymerization process cat-
alyzed by the enzyme RNA polymerase. The rate of incorporation by RNA
polymerase of nucleotides onto the messenger RNA during transcription, as de-
picted schematically in fig. 3.2(F), happens roughly ten times as fast as does
the rate of amino acid incorporation by ribosomes during protein synthesis.

In the moment to moment life of the cell, proteins do most of the work.
Many proteins are able to operate at time scales much faster than the relatively
stately machinery carrying out the central dogma operations. For example, a
great number of biological processes are dictated by the passage of ions across ion
channels, with a characteristic time scale of milliseconds as shown in fig. 3.2(G).
A factor of thousand speed up of our stopwatch brings us to the world of enzyme
kinetics at the microsecond time scale (fig. 3.2(H)) and faster. It is important
to note that these time scales merely represent a general rule of thumb. For
example, turnover rates for individual enzymes may range from 0.5 sec−1 to
600,000 sec−1.

Before proceeding, one of the questions we wish to consider is how the time
scales depicted in fig. 3.2 are actually known. As with much of our story,
the stopwatches associated with each of the cartoons in that figure have been
determined as the results of many kinds of complementary experiments.

• Experiments Behind the Facts. Broadly speaking, the experiments
which characterize the dynamics of cells and the molecules that populate
them are ultimately based on tracking transformations. We can divide
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these experiments into four broad categories that can be applied across
all levels of spatial scale from molecular to ecological. These methods are
summarized in fig. 3.3.

Direct Observation. The first and most obvious way to characterize time in
a biological process is simply to observe the process unfold and to record
the absolute time at which transformation occurs. An example of this
strategy is shown in fig. 3.3. For example, looking down a microscope
at a mammalian cell in tissue culture it is possible to observe many of
the steps in the cell cycle unfolding over real time, including condensation
of the chromosomes, alignment of the chromosomes through the action
of the mitotic spindle, their segregation into daughter nuclei and finally
cytokinesis when the cell is pinched into two fully formed daughter cells.
Although this is easy to do for processes that take minutes to hours and
occur over spatial scales that can be observed with the light microscope
or the unaided human eye, it is extremely difficult to measure time sim-
ply by observation for events that are very fast, very slow, very small or
very large. Over the past few decades there have been vast experimental
improvements in direct or near-direct observation of single molecules such
that this naturalistic approach to “observing a lot just by watching” can
be applied all the way down to the molecular scale. We will see many
examples of this approach throughout the book.

Fixed time points. When events of interest cannot be directly observed,
there are other ways to probe their duration. Rather than continuously
observing an individual over time, one can draw individuals from a popu-
lation at given time intervals and examine their properties at this series of
fixed time points. For example, a bacterial population in a liquid culture
started from a single cell will grow exponentially and then plateau and
eventually die off over a period of several days. Rather than staring at the
tube continuously for several days, the essential kinetics of this process
can be measured simply by examining cell density at some fixed interval
such as every hour as shown in fig. 3.3. Similarly, the events of embry-
onic development for useful model organisms such as flies and frogs unfold
over a period of days to weeks. However, under a given set of environ-
mental conditions, the sequence and timing of these events is stereotyped
from one individual to another. Therefore the investigator can accurately
describe the sequence of events in frog development by examining one
dish of embryos an hour after fertilization, a second dish of embryos two
hours after fertilization, etc. This is useful when the methods used to
examine the embryos result in their death. For example, fixing them and
staining for a particular protein of interest or preparing them for electron
microscopic examination. At a much smaller spatial scale and faster time,
the method of stop-flow kinetics enables investigators to follow enzymatic
events by mixing together an enzyme and its substrate and then squirting
the mixture into a denaturing acid bath after fixed intervals of time. These
methods are all more indirect than direct observation, but in many cases
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are technically easier and different kinds of complementary information
can be gleaned by comparing both for a single process.

Pulse-chase. Many biological processes operate in a continuous fashion.
For example, bacteria constantly take in sugar from their medium for
energy and to generate the molecular building blocks to synthesize new
constituents. The process of glycolysis converts a molecule of glucose into
two molecules of pyruvate. Because glucose is continuously taken up and
pyruvate is continuously generated, it is extremely difficult to ask how
long the conversion process takes. The set of methods used to tackle
these kinds of problems are generally called pulse-chase experiments. In
this particular example, a bacterial cell may be fed glucose tagged with
radioactive carbon for a very brief period of time, for example one minute.
This is followed by feeding with nonradioactive glucose. Cells can then
be removed from the bacterial culture at various time intervals and their
metabolites can be examined to see which contain the radioactive carbon.
Over time, the amount of labeled glucose will decrease and the major
radioactive species will pass through a series of intermediates until finally
most of the radioactive carbon will be found in pyruvate. Thus, a pulse-
chase experiment can be used to determine the order of intermediates in
a metabolic pathway and also the amount of time it takes for the cell
to perform each transformation. A classic example of this strategy to
examine transport in neurons is shown in fig. 3.3. Essentially the same
method is used by naturalists examining dispersion times of birds and
other animals by tagging individuals with a band or radio-transmitter
and releasing them back into their natural population to see where they
are and when.

Product accumulation. The final type of experiment used to determine
biological rates is exemplified by an assay with a purified enzyme where
a colorless substrate is converted into a colored product over time. By
measuring the concentration of the colored product as a function of time,
the investigator can extrapolate the average turnover rate given the known
concentration of enzymes in the test tube. Similar experiments where ob-
servation of the accumulation of a product can be used as a surrogate for
rate measurements can also be performed in living cells. A particularly
useful example is expressing the green fluorescent protein (GFP) down-
stream of a promoter of interest as shown in fig. 3.3. When the promoter
is induced (i.e. by exposing the cells to some molecule that turns the gene
of interest on) GFP begins to accumulate and the amount of fluorescence
can be directly measured and converted into numbers of GFP molecules.
Because GFP is remarkably stable, its accumulation can often represent a
more accurate reporter for promoter activity than the promoter’s natural
product which may be subject to other layers of regulation including rapid
degradation.



114 CHAPTER 3. WHEN: STOPWATCHES AT MANY SCALES

43.5

13.5

70

60

50

40

30

20

10

0
0 1 2 3 4 5

o
p
ti

ca
l 
d
en

si
ty

hours

radioactive amino acids

30 mm

4
days

16
days

METHOD
direct

observation fixed time points pulse-chase product
accumulation

EXAMPLE cell crawling bacterial growth
curve

axonal transport GFP expression

TYPICAL
TIMESCALES

milliseconds
to hours

microseconds
to years

minutes to days minutes
to days

TYPES OF
PROCESSES

individual
transformations

population changes
continuous

(e.g., metabolism,
transport)

biosynthetic or
enzymatic

0 sec

1 sec

2 sec

0 min

72 min

144 min

216 min

288 min

324 min

20 mm

flu
o

rescen
ce

B
rig

h
tfield

Figure 3.3: Experiments to measure the timing of biological processes. The
figure summarizes four strategies for measuring biological rates. For direct ob-
servation the example shows three frames from a video sequence of a single white
blood cell (neutrophil) pursuing a bacterium through a forest of red blood cells.
The movement of the cell is sufficiently fast that it can be directly observed by
the human eye. For fixed time points, the experiment shown is a classic per-
formed by Monod who tracked the growth of E. coli in a single culture when two
different nutrient sugars were mixed together. The bacteria initially consumed
all of the available glucose and then their growth rate slowed as they switched
over into a new metabolic mode enabling them to use lactose. For pulse-chase,
labeling proteins at their point of synthesis in a neuron cell body with a pulse of
radioactive amino acids followed by a chase of unlabeled amino acids was used
to measure the rate of continuous axonal transport. Product accumulation is
illustrated by the expression of GFP under a regulated promoter in a bacterial
cell. The rate of gene transcription can be inferred by measuring the amount of
GFP present as a function of time.
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3.1.2 The Evolutionary Stopwatch

The general rule that all biological processes are dynamic and undergo change
over time applies to molecules, cells, organisms and species. The evolutionary
clock started more than three billion years ago with the appearance of the first
cellular life forms on Earth. It is generally accepted that there were complex
life-like processes occurring prior to the emergence of the first recognizable cells,
though we cannot learn anything about what they were like either from the fossil
record or comparative studies among organisms living today.

All of the astonishing diversity of cellular life currently existing on the planet
ranging from archaea living in geothermal vents deep in the ocean to giant squid
to redwood trees to the yeast that make beer were all descended from a univer-
sal common ancestor (probably a population of cells rather than an individual).
This last universal common ancestor (LUCA) would have been clearly recog-
nizable as a cell: it contained DNA as a genetic material, it transcribed its
DNA into mRNA and translated mRNA into proteins using ribosomes. It also
processed sugar to make energy through the process of glycolysis and contained
a rudimentary cytoskeleton consisting of an actin-like molecule and a tubulin-
like molecule. We can attribute all of these features to LUCA because they
are universally shared among all existing branches of cellular life. However, the
demonstrable differences between redwood trees and giant squids accumulated
slowly over evolutionary time as individual cellular populations became genet-
ically isolated from one another and underwent change and divergence to fill
different ecological niches. As the planet Earth is constantly being reshaped and
remodeled by the uncounted legion of organisms that inhabit it, environmental
niches are always unstable and can be changed either by geological processes,
global climate alterations or the actions of competing organisms.

We can fruitfully think of evolution as the process of change in the genetic
information carried by a population of related organisms. Sometimes a single
lineage can be seen as altering over time as its environment changes. More
commonly, a single population will subdivide into populations that will become
isolated and suffer different fates. Some will die off, some will remain similar
to the ancestral population and some will undergo significant biochemical, mor-
phological or behavioral alterations over time that are ultimately recognized as
new species. These basic ideas were beautifully articulated by Charles Dar-
win in The Origin of Species and illustrated by the single figure in that book
reproduced as fig. 3.4.

How long does this evolutionary process take and how can we measure the
passage of evolutionary time? It is unsatisfying to rely on the extrapolation of
mutation rates measured in artificial laboratory experiments to the evolution of
species over time in the real world. Real world conditions are much less stable or
controlled than laboratory conditions, and furthermore the time scales of great-
est interest for studying the evolution of species are much longer than can be
achieved in the laboratory by even the most patient experimentalist. Tradition-
ally, our understanding of evolutionary alterations depended upon two kinds of
observations: comparisons among currently living species and examination of
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(A)

(B)

Figure 3.4: Two versions of Darwin’s phylogenetic tree. (A) In his notebooks,
Darwin drew the first version of what we now recognize as a common schematic
demonstrating the relatedness of organisms. He introduced this speculative
sketch with the words “I think” as his theory was beginning to take form. (B)
In the final published version of The Origin of Species, the tree had assumed
more detail showing the passage of time and explicitly indicating that most
species have gone extinct.
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the fossil record. Information about the age of particular fossils can be inferred
from identification of the geological strata in which they are found, and also by
examining the proportions of different radioisotopes which decay at a regular
rate and thereby provide information about when the rock was formed.

Comparison of living species to ascertain degree of relatedness was carried
out for many hundreds of years before the modern theory of evolution was
first described. It is immediately obvious that some organisms are more closely
related than others. For example, horses and donkeys are clearly more similar
to each other than either is to a dog, but horses and dogs are more similar to
each other than either is to a squid. These obvious morphological differences
have been the basis of the science of systematics going back to Linnaeus in the
1700s. In the modern era of molecular genetics, we can more easily ascribe a
universal metric for genetic similarity among organisms based on similarities
and differences in DNA sequence. As a population evolves over time, its DNA
complement will change by several mechanisms. First, small scale mutations
or large scale rearrangements of its genome may occur (an illustration of the
consequences of this kind of rearrangement is shown in fig. 3.5). Second, it may
acquire new genes or even entire groups of genes by horizontal transfer from
other organisms. And third, it may simply lose large chunks of DNA. Thus
different organisms contain different complements of genes as well as sequence
differences between homologous copies of the same gene. The term homologous
refers to descent from a common ancestor. For example, ribosomal RNAs are
homologous in all cells. In chap. 18, we will give some examples of ribosomal
RNA sequences and show how they can be used to build a universal phylogenetic
tree. One example of a tree based on ribosomal RNA sequences that attempts
to show the relatedness among all branches of existing life is shown in fig. 3.6.

Phylogenetic trees established by molecular methods tend to be in excellent
agreement with analogous trees of similarity based on morphological or biochem-
ical criteria as have been established by botanists, zoologist and microbiologists
over the past several hundred years. We will examine statistical methods for
constructing such trees in chap. 18.

What does any of this have to do with the determination of evolutionary
time? In the laboratory, we can observe that certain types of changes in DNA
sequences within a population happen frequently (for example, single point mu-
tations changing a C to a T) while others happen more rarely (crossover events
reversing the order of all the genes within a segment of a chromosome). We can
even measure the time constants that characterize such events. If we assume
that these kinds of mutational events happen with the same frequency in wild
populations as they do in the laboratory, then we can estimate divergence times
for organismal populations based on calculating how long on average it would
take to achieve the observed number of sequence alterations given known rates
of sequence alteration events. In a few cases, these time estimates can be an-
chored by reference to the fossil record. In reality, inferring evolutionary time
from sequence similarity is fraught with peril because not all sequence alter-
ations are equally likely to be randomly incorporated into the genetic heritage
of a population of organisms. Some mutations will prove to be unfavorable
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Figure 3.5: Inferring evolutionary relatedness by chromosome alignment. Equiv-
alent regions of four chromosomes from mouse, rat, dog and human were com-
pared to find the location of homologous genes. The graphs at top show the
position of each gene in the rat, dog and human sequences as a function of
their positions on the mouse sequence. Because little change has occurred in
chromosomal structure between the mouse and the rat, the points representing
the locations of homologous genes form a nearly perfectly straight line. On the
equivalent chromosomal segment from the dog, the genes are again mostly in
the same order, but the spacing between them has changed substantially. Com-
paring the human to the mouse, a large inversion can be detected. The same
data is shown in a different form in the chart at the bottom. Each vertical line
on the chromosome represents a particular gene and the diagonal lines between
the chromosomes link up homologs between human and mouse, mouse and rat
and rat and dog.
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for a given organism’s lifestyle and individuals carrying those mutations will
be eliminated from the population by natural selection. Other mutations will
prove to be advantageous and organisms carrying those mutations will quickly
outcompete other members of their species. These selection effects can make
the sequence-determined evolutionary clock appear to run too slow or too fast.
Biologists face challenges similar to those faced by astronomers. In the astro-
nomical setting, continual refinements in cosmological distance scales based on
various types of standard candle (light sources of known absolute intensity) have
led to increasingly refined measurements of astronomical distance. Similarly, bi-
ologists have a number of different standard stopwatches that can be used to
calibrate the flow of evolutionary time.

3.1.3 The Cell Cycle and the Standard Clock

The E. coli Cell Cycle Will Serve as Our Standard Stopwatch

In fig. 2.1 we used the size of an E. coli cell as our standard measuring stick.
Similarly, we now invoke the time scale of the E. coli cell cycle as our standard
stopwatch. The goal of fig. 3.2 was to illustrate the variety of different processes
that occur in cell biology and the time scales over which they are operative.
As with our discussion of structural hierarchies, we once again use the trick of
invoking E. coli as our reference, this time with the several thousand seconds of
its cell cycle as our reference time scale.

As shown in fig. 3.27, the bacterial cell cycle will be defined as the time
between the “birth” of a given cell resulting from division of a parental cell
to the time of its own subsequent division. This cell cycle is characterized
structurally by the segregation of the duplicated bacterial chromosome into two
separate clumps and the construction of a new portion of the cell wall, or septum,
that separates the original cell into two daughters. Because E. coli is a roughly
cylindrical cell that maintains a nearly constant cross-sectional area as it grows
longer, the total cell volume can be easily estimated simply from measuring the
length and this also provides a guide as to the point in the cell cycle. As cell
division proceeds, E. coli doubles in length and hence also doubles in volume.
The time scale associated with the binary fission process of interest here is of
order an hour (to within a factor of two), though division can take place in
under 20 minutes under optimal growth conditions.

In the previous chapter, we argued that having a proper molecular inventory
of a cell is a prerequisite to building models of many problems of biological
interest. Here we argue that a similar “feeling for the numbers” is needed
concerning biological time scales. How long does it take for an E. coli cell to
copy its genome and is this rate consistent with the speed of the molecular
machine (DNA polymerase) that does this copying? On what time scale do
newly formed proteins in neurons reach the ends of their axons and can this be
explained by diffusion? Often, the time scale associated with a given process
will provide a clue about what physical mechanisms are in play. In addition,
one of our biggest concerns in coming chapters will be to figure out under
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mins

Figure 3.7: Schematic of an idealized bacterial cell cycle. A newborn cell shown
at the top has a single chromosome with a single origin of replication marked
by the dot. The cell cycle initiates with the duplication of the origin and DNA
replication then proceeds in an orderly fashion around the circular chromosome.
At the same time, a group of cell division proteins beginning with the tubulin
analog FtsZ form a ring at the center of the cell that will dictate the future
site of septum formation. As DNA replication proceeds and the cell elongates,
the two origins become separated from each other with one traveling the entire
length of the cell to take up residence at the opposite pole. As the septum
begins to close down, the two chromosomal masses are physically separated into
the two daughter cells where the cycle can begin anew.
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what conditions we are justified in using the ideas from equilibrium physics
(as opposed to nonequilibrium physics). The answer to this question will be
determined by whether or not there is a separation of time scales and the only
way we can know that is by having a feeling for what time scales are operative
in a given problem. To that end, we begin by taking stock of the processes that
an E. coli cell must make to copy itself.

For estimates in this book we will choose a standard for bacterial growth in a
minimal defined medium with glucose as the sole carbon source. As mentioned
previously, the rate of cell division can vary by more than tenfold depending
upon nutrient availability and temperature, so we must define the terms under
which we will proceed with our estimates. The choice of minimal media with
glucose at 37 degrees Celsius is a practical one since many quantitative exper-
iments have been performed under this condition. With sufficient aeration, E.
coli in this medium typically double in the range of 40-50 minutes and we will
use 3000 seconds as our canonical cell cycle time. In general, time scales for
biological processes are much more variable than spatial scales, although it is
true that rapidly growing E. coli are slightly larger than slowly growing E. coli.
The difference in size may be an order of magnitude less than the difference in
cycle time.

• Estimate: Timing E. coli. In chap. 2, we sized up E. coli by giving a
series of rough estimates of its parts list. We now borrow those estimates
to gain an impression of the rates of various processes in the E. coli cell
cycle. The simple idea behind these estimates is to take the total quantity
of material that must be used to make a new cell and to divide by the
time (≈ 3000 seconds) of the cell cycle. When E. coli is grown on min-
imal media with glucose as the sole carbon source, six atoms of carbon
are added to the cellular inventory for each molecule of glucose taken up.
In the previous chapter, we estimated that the number of carbon atoms
it takes to double the material in a cell so that it can divide in two (just
the construction material) is of order 1010. For this estimate we ignored
the material released as waste products and the reader will have the op-
portunity to estimate this contribution in the problems at the end of the
chapter. We are also deliberately ignoring the glucose molecules that must
be consumed to generate energy for the synthesis reactions - this topic will
be taken up in chap. 5. At this point, we can estimate the rate of sugar
uptake required simply to deliver the 1010 carbon molecules necessary for
building the material of the new cell. 1010 carbons must be captured over
3000 seconds with 6 carbons per glucose molecule, giving an average rate
of roughly 5 × 105 glucose molecules every second.

Of course, having the carbon present is not the same as the macromolec-
ular synthesis required to make a new cell. One of the most important
processes in the cell cycle is replication. Given that the complete E. coli
genome is about 5 × 106 base pairs (bp) in size, we can estimate the
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required rate of replication as

dNbp

dt
≈ Nbp

τcell
≈ 5× 106 bp

3000 sec
≈ 2000 bp/sec. (3.1)

Similarly, the rate of protein synthesis can be estimated by recalling from
the previous chapter that the total number of proteins in E. coli is roughly
3× 106, implying a protein synthesis rate of

dNprotein

dt
≈ Nprotein

τcell
≈ 3× 106proteins

3000sec
≈ 1000 proteins/sec. (3.2)

Note that we have rounded to the nearest thousand. A similar estimate
can be performed for the rate of lipid synthesis resulting in

dNlipid

dt
≈ Nlipid

τcell
≈ 5× 107lipids

3000sec
≈ 20, 000 lipids/sec. (3.3)

Yet another intriguing aspect of the mass budget associated with the cell
cycle is the control of water content within the cell. Recalling our estimate
from the previous chapter that an E. coli cell has roughly 1011 water
molecules, results in the estimate that the rate of water uptake during the
cell cycle is

dNH2O

dt
≈ NH2O

τcell
≈ 1011waters

3000sec
≈ 3× 107 waters/sec. (3.4)

This rate of water uptake can be considered slightly differently by working
out the average mass flux across the cell membrane. The flux is defined as
the amount of mass crossing unit area per unit time and in this instance
is given by

jwater ≈
dNH2O/dt

AE.coli
≈ 3× 107waters/sec

6× 106nm2
≈ 5 waters/nm2 sec, (3.5)

though we also note that this mass transport is mediated primarily by
proteins which are distributed throughout the membrane.

We argue that each of these estimates tells us something about the nature
of the machinery that mediates the processes of the cell. In remaining
sections, these estimates will serve as our jumping off point for estimating
the rate at which individual molecular machines carry out the processes of
synthesis and transport needed to support metabolism and the cell cycle.

3.1.4 Three Views of Time in Biology

Modern humans have built much of the activity of our societies around an
obsession with absolute time. This obsession is revealed by the propensity for
events to occur at a certain time of day, for example, class starts at 9am, or



124 CHAPTER 3. WHEN: STOPWATCHES AT MANY SCALES

scheduling our activity by measured blocks of time, for example, you must
practice the piano for half an hour. It is not clear, however, that other organisms
relate to time in this manner. In the remainder of the chapter we will discuss
three different views of time that seem to be important to life and we will term
them procedural time, relative time and manipulated time.

In the previous chapter we explored the question of why biological things
are a certain size and the ultimate reason is the finite extent of the atoms that
make up biological molecules. Here we are trying to understand why biological
processes take a certain amount of time, a difficult task. For the most part, the
size of things does not strongly depend on environment and external conditions,
but the time scale of processes often does. For example, bacteria growing in
leftover potato salad will replicate rapidly when the salad is left on a picnic table
in full sun but much more slowly in a refrigerator. The fundamental reason for
the difference in replication rates as a function of temperature can be attributed
to the slowing of the many individual enzymatic steps that must take place for
the cell to double in size and divide. In this sort of context, it appears that
organisms pay attention to procedural time rather than absolute time: they do
something for as long as it takes to get it done since there is some procedure such
as DNA replication dictated by an enzymatic rate. A particularly interesting
class of procedural time mechanisms are those that organisms use to build clocks
that are extremely good at keeping track of absolute time without regard to
perturbation by external conditions. One fascinating example of this that we
will explore in more detail later in the chapter is the diurnal clock that enables
an organism to perform different acts at different times of the day, even in the
absence of external signals such as the rising and setting of the sun. For these
clocks to work, organisms must have a way to convert procedural time into
absolute time so as to ignore external conditions, including temperature.

Although calculating procedural time for a process of interest can often put
a lower limit on how fast that process can occur, cells often seem to put as much
effort into making sure that processes occur in the correct order as in making
sure that they occur quickly. In the context of cell division, for example, it
would be disastrous for a cell to try to segregate its chromosomes into the two
daughters until the process of DNA replication is complete. The result would be
that at least one daughter would lack the full genetic complement of the mother
cell. We will refer to processes where one must be complete before another can
start under the category of relative time (i.e. before or after rather than how
long).

Third, and perhaps most interestingly, it appears that living organisms are
rarely content to accept time as it is. In some cases, they seem to be impatient,
demanding that their life processes occur more quickly than permitted by the
underlying chemical and physical mechanisms. Rate acceleration by enzyme
catalysis is a prime example. In other cases, they seem to delay the intrinsic
proceeding of events, freezing time in suspended animation as in formation of
bacterial spores that can survive for hundreds or thousands of years, only to
be reanimated when conditions become favorable. In section 3.4, we will argue
that these processes are examples of what we will refer to as manipulated time.
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3.2 Procedural Time

The underlying idea of measurements of procedural time is simply that the
chemical and physical transformations characteristic of life do not happen in-
stantaneously. Complex processes can be thought of as being built up from
many small steps, each of which takes a finite amount of time. For many bio-
logical processes that are intrinsically repetitive such as the replication of DNA
or the synthesis of proteins, the same step is used over and over again; addition
of single nucleotides to a growing daughter strand or addition of single amino
acids to a growing polypeptide chain. In this section on procedural time, we
will begin by making some estimates about these processes of the central dogma
as an example of the general issues of computing procedural time for multi-step
biological processes. Then we will move on to the interesting special examples
of clocks and oscillators where procedural times are calibrated so that cell cycles
and diurnal cycles can follow the constant ticking of a reliable clock.

3.2.1 The Machines (or Processes) of the Central Dogma

The Central Dogma Describes the Processes Whereby the Genetic
Information Is Expressed Chemically

One of the most important classes of processes in cellular life are those as-
sociated with the so-called Central Dogma of molecular biology. The suite of
processes associated with the Central Dogma are those related to the poly-
merization of the polymer chains that make up the nucleic acids and proteins
that are at the heart of cellular life. The fundamental processes of replication,
transcription and translation and their linkages are shown in fig. 3.8. The ba-
sic message of this “dogma” in its least sophisticated form is that DNA leads
to RNA which leads to proteins. From the standpoint of cellular timing, the
processes of the Central Dogma will serve as a prime example of procedural
time. A typical circular bacterial genome, for example, is replicated by just two
DNA polymerase complexes that take off in opposite directions from the origin
of replication and each travel roughly halfway around the bacterial genome to
meet on the opposite side. The time to replicate a bacterial genome is governed
by the rate at which these polymerase motors travel along to copy the roughly
5 × 106 bp of the bacterial genome. Similarly, the time to synthesize a new
protein is governed by the rate of incorporation of amino acids by the ribosome.
The Processes of the Central Dogma Are Carried Out By Sophisti-
cated Molecular Machines

One of the primary processes shown in fig. 3.8 is the copying of the genome,
also known as replication. DNA replication must take place before a cell divides.
As shown in fig. 3.8, the process of DNA replication is mediated by a macro-
molecular complex (the replisome) which has a variety of intricate parts such
as the enzyme DNA polymerase which incorporates new nucleotides onto the
nascent DNA molecule, and helicases and primases which tear open the DNA
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Figure 3.8: The processes of the central dogma. DNA is replicated to make
a second copy of the genome. Transcription refers to the process when RNA
polymerase makes a mRNA molecule. Translation refers to the synthesis of a
polypeptide chain whose sequence is dictated by the arrangement of nucleotides
on mRNA.
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at the replication fork and prime the polymerization reaction.
The DNA molecule serves as a template in two different capacities. As

described above, a given DNA molecule serves as a template for its own repli-
cation. However, in its second capacity as the carrier of the genetic material, a
DNA molecule must also dictate the synthesis of proteins (the expression of its
genes). The first stage in this process of gene expression is the synthesis of a
messenger RNA molecule (mRNA) with a nucleotide sequence complementary
to the DNA strand from which it was copied, which will serve as the template
for protein synthesis. This transcription process is carried out by a molecular
machine called RNA polymerase that is shown schematically in fig. 3.8. In
eukaryotes, transcription takes place in the nucleus while subsequent protein
synthesis takes place in the cytoplasm so there must be an intermediate step of
mRNA export.

Once the messenger molecule (mRNA) has been synthesized, the translation
process can begin in earnest, (RNA → Protein). As already described in section
2.1.4, translation is mediated by one of the most fascinating macromolecular as-
semblies, namely, the ribosome. The ribosome is the apparatus that speaks
both of the two great polymer languages and in particular, forms a string of
amino acids (a polypeptide chain) which are dictated by the codons (collec-
tions of three letters) on the mRNA molecule. The structure of the ribosome is
indicated in cartoon form in fig. 3.8. As might be expected for a bilingual ma-
chine, the ribosome contains structural components of both RNA and protein.
The two halves of the ribosome clamp a messenger RNA and then the ribosome
moves processively down the length of the mRNA. As the ribosome moves along,
successive triplets of nucleotides are brought into registry with active sites in
the ribosomal machinery that align special RNA molecules (tRNA), charged
with various amino acids, to recognize the complementary triplet codon. Sub-
sequently, the ribosome catalyzes transfer of the correct amino acid from the
tRNA onto a growing polypeptide chain and releases the now empty tRNA.
As shown in fig. 3.9, the nascent mRNA molecules in bacteria are immediately
tackled by ribosomes so that protein translation can occur before transcription
is even finished.

The timing of all three of these processes is dictated by the intrinsic rate at
which these machines carry out their polymerization reactions. All of them can
be thought of in the same framework as repetitions of N essentially identical
reactions, each of which takes a time ∆t to perform. We will now estimate total
times for each of the three central processes of the central dogma.

• Estimate: Timing the Machines of the Central Dogma. The es-
timates concerning the mass budget of dividing cells from chap. 2 can be
used as a springboard for contemplating the rates of the machines that
mediate the processes of the central dogma. In our first estimate, we ex-
pand upon the estimate of the rate at which the genome of an E. coli cell
is copied performed earlier in the chapter with the aim of learning more
about the speed of the DNA replication complex. DNA replication in
bacteria such as E. coli is undertaken by two replication complexes which
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Figure 3.9: Electron microscopy image of simultaneous transcription and trans-
lation. The image shows bacterial DNA and its associated mRNA transcripts,
each of which is occupied by ribosomes.

travel in opposite directions away from the origin of replication on the
circular chromosome.

Given that the complete E. coli genome is about 5×106 base pairs (bp) in
size and it is copied in the 3000 seconds of the cell cycle, we already found
that the rate of DNA synthesis is roughly 2000bp/sec, or 1000bp/sec per
DNA replication complex (replisome). Biochemical studies have found
rates for the DNA polymerase complex in the 250-1000 bp/s range. As
we have mentioned, E. coli are actually capable of dividing in much less
than 3000 seconds, in fact, as little as 1000 seconds, although their DNA
replication machinery cannot proceed any faster than this absolute speed
limit. How do they pull it off? For now we will leave this as an open
mystery and will return to the question in the final section of the chapter
on manipulating time.

For a bacterial cell, transcription involves the synthesis of messenger RNA
molecules with a length of roughly 1000 bases. Our reasoning is that the
typical protein has a length of 300 amino acids, with 3 bases needed to
specify each such amino acid. Both bulk and single-molecule studies have
revealed that a characteristic transcription rate is tens of nucleotides per
second. Using 40 nucleotides/sec, we estimate the time to make a typical
transcript is roughly 25 seconds.

Yet another process of great importance in the central dogma is protein
synthesis by ribosomes. Recall from our estimates in the previous chapter
that the number of proteins in a “typical” bacterial cell like E. coli is of
order 3×106. This suggests, in turn, that there are of order 9×108 amino
acids per E. coli cell which are produced over the roughly 3000 seconds of
the cell cycle. We have made the assumption that each protein has 300
amino acids. This implies that the mean rate of amino acid incorporation
per second is given by

dNaa

dt
≈ 9× 108amino acids

3000seconds
≈ 3× 105aa/sec. (3.6)
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The number of ribosomes at work on synthesizing these new proteins is
roughly 20,000 which implies that the rate per ribosome is 15 aa/sec, while
the measured value is 25 amino acids incorporated per second. These
numbers also imply that the mean time to synthesize a typical protein is
roughly 20 seconds.

One of our conclusions is that the rate of protein synthesis by the ribosome
is slower than the rate of mRNA synthesis by RNA polymerase. However,
as shown in fig. 3.9, multiple ribosomes can simultaneously translate a
single mRNA by proceeding in a linearly, orderly fashion and indeed,
multiple RNA transcripts may exist in different degrees of completion,
being transcribed from the same genetic locus. Thus when considering
the net rates of processes in cells, the number of players is clearly as
important as the intrinsic rate.

3.2.2 Clocks and Oscillators

In the context of the central dogma, we have described measurements of proce-
dural time for processes that essentially happen once and run to completion such
as the synthesis of a protein molecule. However, many cellular processes run
in repeated regular cycles. These cyclic or oscillatory processes frequently rep-
resent control systems where procedural times of some subprocess can be used
to set the oscillation period. Two widely studied examples are the oscillators
used to drive the cell division cycle and the mechanisms governing behavioral
switches between day time and night time which will be explored in detail below.
These daily clocks are called circadian or diurnal oscillators. Other everyday
oscillators run the beating of our hearts and the pattern of our breathing.
Developing Embryos Divide on a Regular Schedule Dictated by an
Internal Clock

One of the best understood examples of an oscillatory clock used by cells
is seen in the early embryonic cell cycle of many animals. The best studied
example is the South African clawed frog, Xenopus laevis. After the giant egg
( 1mm) is fertilized, a cell division cycle proceeds roughly every twenty minutes
until the egg has been cleaved into approximately four thousand similar sized
cells. The regularity and synchrony of these cell divisions reflects an underlying
oscillatory clock based on a clever manipulation of procedural time. The clock
starts each cell division with the synthesis of a protein called cyclin. Cyclin is
made from a relatively rare mRNA. As a result, the protein accumulates slowly.
The biological function of cyclin is to activate a protein kinase, an enzyme which
covalently attaches phosphate groups to amino acid sidechains on other proteins.
This process, known as phosphorylation, is one of the key ways that proteins are
controlled after translation. Essentially, the protein is inactive in the absence
of its phosphate group. Kinase activation cannot begin until the cyclin protein
has accumulated to a certain threshold level. After the kinase is activated, one
of its targets is an enzyme which in turn catalyzes the destruction of the cyclin
protein. All cyclin in the cell is quickly destroyed within RP seconds, resetting
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the clock to its zero position.
The regularity of this oscillatory clock depends upon several measurements

of procedural time. First, accumulation of the cyclin protein to its threshold
level depends upon the rate of ribosomal synthesis of that protein. Second,
activation of the cyclin-dependent protein kinase kicks off a second procedural
time measurement which reflects the length of time required by the kinase to
encounter and phosphorylate its enzymatic substrates. Third, the degradation
of the cyclin protein also requires a fixed, but brief amount of time. The sum of
these three procedural times gives the total period of the clock. The outcome
of these molecular events in terms of molecular concentrations is illustrated in
fig. 3.10. Just as for all the examples of procedural time described above, the
amount of absolute time in seconds, minutes or hours may change depending
upon external conditions such as temperature.

This cyclin driven cell cycle oscillator is one example of a very general cate-
gory of two-component oscillatory systems found throughout biology. A simpli-
fied idealized representation of such an oscillator is shown in fig. 3.11(A), while
a more accurate representation of the real cell cycle control system from the
yeast S. cerevisae is shown in fig. 3.11(B). The mathematics of these oscillators
is explored in the problems at the end of the chapter.
Diurnal Clocks Allow Cells and Organisms to Be on Time Everyday

A second example of the use of procedural time to build a clock is when cells
arrange a series of molecular processes in such a way that they can measure
an absolute time. Unlike the cell cycle clock, it is critical that the diurnal
clock not change its period when the temperature changes such as during the
change of seasons. Many organisms perform some specific task at the same time
everyday. A spectacular example is shown in fig. 3.12 where an animal alters the
light sensitivity of its eyes in anticipation of sundown. While we might imagine
that these kind of daily changes are triggered by, for example, the intensity
of sunlight, it has been demonstrated for many organisms that they continue
to perform their diurnal cycle even when kept in the dark. Direct observation
of these cycles over long periods of time in cyanobacteria have demonstrated
that they can operate with tight precision over a week time scale without any
external cues about absolute time.

Different organisms use information about the time of day for vastly differ-
ent purposes. Nevertheless, as illustrated in fig. 3.13, the molecular circuitry
governing their circadian rhythms conserves certain common features. Gen-
erally, these systems include positive elements which activate transcription of
so-called clock genes which drive rhythmic biological outputs as well as promot-
ing the expression of negative elements that inhibit the activities of the positive
elements. Phosphorylation of the negative elements leads to their degradation
allowing them to restart the cycle. Although the circadian oscillators are capa-
ble of continuing to measure time in constant light or constant darkness, they
can nevertheless accept inputs from environmental signals such as the sun to
reset their phase. Humans commonly experience the inefficiency of the phase
resetting mechanisms as the phenomenon of jetlag.

The circadian oscillator known to function with the fewest components is
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Figure 3.10: The oscillatory cell-cycle clock. This diagram shows the proce-
dural events that underlie the regular oscillations of the cell-cycle clock in the
Xenopus laevis embryo. Cyclin protein concentration rises slowly over time un-
til it reaches a threshold at which point it activates cyclin-dependent kinase.
Cyclin-dependent kinase activity increases sharply at this threshold and in turn
activates enzymes involved in cyclin protein degradation. Once the degradation
machinery is turned on, cyclin protein levels quickly fall back to zero. Cyclin-
dependent kinase activity also falls and the degradation machinery inactivates.
This oscillatory cycle is repeated many times.
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Figure 3.11: Logic diagrams for construction of cell cycle oscillators. (A) The
minimal oscillator requires only two components. The first component activates
the second component, for example by catalyzing its synthesis. The second
component inhibits the first, for example by catalyzing its degradation. (B) A
biochemically realistic representation of the cell cycle oscillator in yeast is out-
rageously more complicated. This is because the real oscillator must work under
a wide variety of conditions, be insensitive to fluctuations in the concentrations
or activities of its components, and be subject to multiple kinds of regulatory
inputs.
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Figure 3.12: An extreme example of a structural change driven by the diurnal
clock. (A) The net-casting spider, Deinopis subrufa, is a nocturnal hunter with
an unusual strategy. It spins a small net which it holds with its legs and tosses
to entangle unwary prey passing by. (B) In order to see the prey and know
when to toss its net, the spider must have excellent night vision. Two of its
eight eyes are extremely enlarged and exquisitely light sensitive. (C) The light
sensitivity of the spider’s eyes change by a factor of approximately one thou-
sand between daytime and nighttime. During the day, the photoreceptor cell
processes are short and fairly disorganized. At night, the total amount of mem-
brane containing light sensors increases both by lengthening of the cells and by
the construction of convoluted membrane folds, all packed with photoreceptor
molecules. (D) In cross section, the photosensitive membranes of neighboring
cells abut each other forming a regular tile-like pattern. (E) A cross section
through the photoreceptor cells of a spider sacrificed during the day shows rela-
tively modest thickening of the boundary membranes. (F) An equivalent section
taken from a spider sacrificed at night shows a vast increase in the number and
size of the membrane folds. At dawn, these membranes will all be degraded
only to be resynthesized the following dusk.
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Figure 3.13: Schematic showing generic features of circadian clocks. Circadian
clock mechanisms are autonomously driven oscillators that can be modulated
by external inputs. Different organisms ranging from cyanobacteria to fungi to
insects, birds and mammals use their circadian timers to regulate different kinds
of biological outputs and also use very different kinds of protein components in
the internal circuitry. The names of some of the genes involved in circadian
oscillation for each of the species are shown, with a plus sign indicating positive
elements and a minus sign indicative negative elements.
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Figure 3.14: Reconstitution of the circadian oscillator. (A) In a mixture of
purified KaiC protein together with KaiA, KaiB and ATP, the molecular weight
of KaiC can be seen to shift up and down slightly over a twenty-four hour period.
The upper band on this gel shows the phosphorylated form of KaiC protein and
the lower band is the nonphosphorylated form. (B) Quantitation of the density
of these two bands over time reveals that their concentration oscillates in a
reciprocal manner such that the total amount of KaiC protein remains roughly
constant. (C) The ratio of the amount of phosphorylated KaiC to total KaiC
oscillates with a regular period of slightly under twenty-four hours.

the one from the photosynthetic cyanobacterium Synechoccus elongatus. This
organism’s clock requires just three proteins called KaiA, KaiB and KaiC and
remarkably, it appears that neither gene transcription nor protein degradation
is necessary for this clock to function. A purified mixture of just these three
proteins together with ATP is capable of sustaining an oscillatory cycle of KaiC
protein phosphorylation over periods of at least several days. KaiC is able to
catalyze both its own phosphorylation and its own dephosphorylation. KaiA en-
hances KaiC auto-phoshorylation and KaiB inhibits the effect of KaiA. Fig. 3.14
shows the data supporting this remarkable finding.

3.3 Relative Time

The examples in the previous section on procedural time have emphasized the
ways that cells set and measure the time that it takes to accomplish specific
tasks. Some processes are rapid and others are slow because of intrinsic fea-
tures or environmental circumstances. In the well-regulated life of the cell, it
is frequently important that fast and slow processes not be permitted to run
independently of one another, but instead be linked in a logical sequence that
depends upon the cell’s needs. In this context, we now turn to what we will call
relative time which includes the governing mechanisms that ensure that related
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processes can be strung together in a “socks before shoes” fashion in which event
A must be completed before event B can begin. Event C dutifully awaits the
completion of event B before it begins, and so on.

3.3.1 Checkpoints and the Cell Cycle

In our initial discussion of the eukaryotic cell division cycle in the context of
clocks and oscillators, we used the example of early embryonic divisions in the
frog Xenopus laevis and asserted that the underlying driver was a simple two-
component oscillator. Once past the earliest stages of embryonic development,
the cell cycle becomes much more complex and in particular, becomes sensi-
tive to feedback control from the cell’s environment. The points in the cell
cycle which are subject to interruption by external signals are referred to as
checkpoints. These checkpoints ensure, for example, that chromosomes are not
segregated until the DNA replication process is complete.
The Eukaryotic Cell Cycle Consists of Four Phases Involving Molec-
ular Synthesis and Organization

Fig. 3.15 shows the key features of the eukaryotic cell cycle with an emphasis
on the regulatory checkpoints that ensure that all processes will occur in the
correct order. There is not a single universal time scale for the eukaryotic cell
cycle, which can vary greatly from one cell type to the next. In the human
body, some cells in the intestinal lining can divide in as little as 10-12 hours
while others such as some tissue stem cells have cell cycles measured in days
or weeks. The eukaryotic cell cycle is usually described in terms of four stages
denoted as G1, S, G2 and M, with the M phase including the most recognized
features, namely, nuclear division (mitosis) and cell division (cytokinesis), the
two G phases (gap) as periods of growth and the S phase (synthesis) during
which the nuclear DNA is replicated. Together, the phases other than the M
phase constitute interphase. During interphase, the mass content of the cell
increases as does its size.

If we use a cultured animal cell such as a fibroblast as our standard, G1 is
roughly 10 hours long and is characterized by a significant increase in cell mass
and culminates in a checkpoint to insure sufficient cell size and appropriate
environmental conditions to pass to the next stage. At this point, the cell
examines itself for DNA damage. Any signs of damage such as double-strand
breaks will trigger a checkpoint control that prevents the cell from initiating
DNA replication until the damage is completely repaired. This checkpoint also
ensures a critical aspect of the regulation of relative time for the cell’s replication,
specifically, that it must have grown to approximately twice its prior size before
it is allowed to begin to divide. If this checkpoint is successfully passed then
DNA replication can begin. In S phase, the eukaryotic DNA is replicated over
a period of about 6 hours.

Following S phase and a shorter gap phase called G2, another checkpoint
verifies that every chromosome has been completely replicated before the initi-
ation of assembly of the mitotic spindle, the microtubule-based apparatus that
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Figure 3.15: The eukaryotic cell cycle. This cartoon shows some of the key
elements of the process of cell division. (adapted from Pollard and Earnshaw)

physically separates the chromosomes into the two daughter cells. This en-
forcement of relative time is particularly critical because if a cell were to try to
segregate the chromosomes before replication was complete, then at least one of
the daughters would inherit an incomplete copy of the genome. After passing
this checkpoint, M phase begins. This relatively brief period of the cell cycle (of
order one hour) involves most of the spectacular events of cell division that can
be directly observed in a light microscope. Within M phase again, it is critical
that events occur in the proper order. The bipolar mitotic spindle built from
microtubules forms symmetric attachments to each pair of replicated sister chro-
mosomes. When they have all been attached to the spindle, the chromosomes
all suddenly and simultaneously release their sisters and are pulled to opposite
poles. A spindle-assembly checkpoint ensures that every chromosome is prop-
erly attached before segregation begins. The molecular mechanisms governing
the enforcement of relative time in the cell cycle involve protein phosphorylation
and degradation events as well as gene transcription. In order to delve deeper
into the principles governing the measurement and enforcement of relative time,
we will now turn to a different example where gene transcription is the principal
site of regulation.

3.3.2 Measuring Relative Time

There is great regulatory complexity involved in orchestrating the cell cycle.
That is, the time ordering of the expression of different genes follows a complex
program with certain parts clearly following a progression in which some pro-
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Figure 3.16: Network of interacting genes. Representation of a hypothetical
genetic network where the output of the first gene represses or activates the
expression of the second. (A) Repression process in which the output of gene X
represses the expression of gene Y. (B) Activation process in which the output
of gene X activates the expression of gene Z.

cesses must await others before beginning. By measuring the pattern of gene
expression, it becomes possible to explore the relative timing of events in the
cell cycle. To get a better idea of how this might work, we need to examine how
networks of genes are coupled together.
Genetic Networks Are Collections of Genes Whose Expression Is In-
terrelated

Sets of coupled genes are shown schematically in fig. 3.16. For simplicity,
this diagram illustrates how the product of one gene can alter the expression
of some other gene. Perhaps the simplest regulatory motif is direct negative
control in which a specific protein binds to the promoter region on DNA of a
particular gene and physically blocks binding of RNA polymerase and subse-
quent transcription. This protein is itself the result of some other gene which
can in turn be subject to control by yet other proteins (or perhaps the output of
the gene that it controls). The second broad class of regulatory motif is referred
to as activation and results when a regulatory protein (a transcription factor
called an activator) binds in the vicinity of the promoter and “recruits” RNA
polymerase to its promoter.

One way to measure the extent of gene expression is using a technique known
as a DNA microarray. The idea is that a surface is decorated with fragments
of DNA in an orderly arrangement, and the sequence of each spot on this array
is different. To take a census of the current mRNA contents of a cell (which
gives a snapshot of the current expression level of all genes), the cell is broken
open and the mRNA contents are hybridized to the DNA on the microarray.
DNAs on the surface which are complementary to RNAs in the cell lysate will
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Figure 3.17: Gene expression during the cell cycle for Caulobacter crescentus.
The figure shows a distinct time ordering for the expression of different genes
over the course of the cell cycle. The microarray data shows how different
batteries of related genes are expressed in a precise order.

hybridize with their complementary fragments. There is a bit more subtlety
in the procedure than we describe since really the mRNA is turned into DNA
first, but we focus on the concept of the measurement rather than its practical
implementation. The intensity of the spots on the microarray report the extent
to which each gene of interest was expressed. By repeating this measurement
again and again at different time points, it is possible to profile the state of gene
expression for a host of interesting genes at different times in the cell cycle.
These measurements yield a map of the relative timing of different genes.

One of the key model systems for examining the bacterial cell cycle is
Caulobacter crescentus. In a beautiful set of experiments roughly 20% of the
Caulobacter genome was implicated in cell cycle control as a result of time
varying mRNA concentrations which were slaved to the cell cycle itself. The
idea of the experiment is to break open synchronized cells every fifteen minutes
and to harvest their messenger RNA. Then by using a DNA microarray to find
out which genes were being expressed at that moment, it was possible to put
together a profile of which genes were expressed when. The outcome of this ex-
periment is shown in fig. 3.17. What these experiments revealed is the relative
timing of a series of events associated with the cell cycle.
The Formation of the Bacterial Flagellum Is Intricately Organized in
Space and Time

A higher resolution look at the relative timing of cellular events is offered
by the macromolecular synthesis of one of the key organelles for cell motil-
ity, namely, the bacterial flagellum. Fig. 3.18 shows the various gene products
(FlgK, MotB, etc.) that are involved in the formation of the bacterial flagellum.
Essentially, each of these products corresponds to one of the protein building
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Figure 3.18: Molecular architecture of the bacterial flagellum. The schematic
shows both the membrane-bound parts of the flagellar apparatus as well as the
flagellum itself. The labels refer to the various gene products involved in the
assembly of the flagellum.

blocks associated with flagellar construction. Once the flagella are assembled,
the cell propels itself around by spinning them. The dynamical question posed
in the experiment is to what extent is the expression of the genes associated
with these different building blocks orchestrated in time.

The basic idea of the experiment is to induce the growth of flagella in starved
E. coli cells and to use a reporter gene, namely, a gene leading to the expression
of green fluorescent protein, to report on when each of the different genes associ-
ated with the flagellar pathway are being expressed. This experiment permits us
to peer directly into the dynamics of assembly of the bacterial flagellum which
reveals a sequence of events that are locked into succession in exactly the sort
of “socks before shoes” way that we argued is characteristic of relative time.
Fig. 3.19 shows the results of this experiment. To deduce a time scale from this
figure, we consider the band of expression shown for “Condition A” and note
that the roughly 15 genes are turned on over a period of roughly 180 minutes.
This implies an approximate delay time between each product of roughly 12
minutes.

3.3.3 Killing the Cell: The Life Cycles of Viruses

Cells are not the only biological entities that care about relative timing. Once
viruses have infected a host cell, they are like a ticking time bomb with an ever
shortening fuse of early, middle and late genes. Once these genes have been
expressed and their products assembled, as many as hundreds of new viruses
emerge from the infected (and now defunct) cell to repeat the process elsewhere.
Viral Life Cycles Include a Series of Self-Assembly Processes
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Figure 3.19: Timing of gene expression during the process of formation of the
bacterial flagellum. (A) The extent of gene expression (as measured by fluo-
rescence intensity) of each of the gene products as a function of time. (B) The
cartoon show the timing of synthesis of different parts of the flagellum. (adapted
from Kalir et al., Science, 292, 2080, 2001)

We have already described the cell cycle as a master process characterized
by an enormous number of subprocesses. A more manageable example of an
entire “life cycle” is that of viruses, which illustrate the intricate relative timing
of biological processes. An example of the viral life cycle of a bacteriophage
(introduced in the last chapter as a class of viruses that attack bacterial cells)
is shown in fig. 3.20 which shows the key components in the life history of the
virus. The key stages in this life cycle are captured in kinetic verbs such as
infect, transcribe, translate, assemble, package and lyse. Infection is the process
of entry of the viral DNA into the host cell. Transcription and translation refer
to the hijacking of the cellular machinery so as to produce viral building blocks
(both nucleic acid and proteins). Assembly is the coming together of these
building blocks to form the viral capsid. Packaging, in turn, is the part of the
life cycle when the viral genome is enclosed within the capsid. Finally, lysis
refers to the dissolution of the host cell and the emergence of a new generation
of phage to go out and repeat their life cycle elsewhere.

As illustrated by the cartoon in fig. 3.20 and in particular, by our use of
the stopwatch motifs, the time between the arrival of the virus at the bacterial
surface and the destruction of that very same membrane during the lysis phase
when the newly formed viruses are released seems very short at 30 minutes.
Indeed, one of our charters in the chapters that follow will be to come to terms
with the 30 minute characteristic time scale of the viral life cycle and the various
processes that make it up. On the other hand, though the absolute units (30
minutes) are interesting, it is important to emphasize that this set of processes
is locked together sequentially (as with the synthesis of the bacterial flagellar
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apparatus).
Because of their stunning structures and rich lifestyles, we now examine a

second class of viruses, namely, RNA animal viruses such as HIV. As shown in
fig. 3.21, the infection process for these viruses is quite distinct from that in
bacterial viruses. In particular, we note the presence of a membrane coat on the
virus which allows the entire virus to attach to membrane-bound receptors on
the victim cell. As a result of this interaction between the virus and the host
cell, the virus is swallowed up by the cell which is under attack in a process of
membrane fusion. Once the virus has entered the embattled cell, the genetic
material (RNA) is released and reverse transcriptase creates a DNA molecule
encoding the viral genome which is then delivered to the host nucleus and in-
corporated into its genome. After the genetic material has been delivered to the
nucleus, a variety of synthesis processes are undertaken which result in copies of
the viral RNA as well as fascinating polyproteins (the Gag proteins described
in chap. 2) which are exported to the plasma membrane where they undergo
an intricate process of self-assembly at the membrane of the infected cell. Once
the newly formed virus is exported, it undergoes a maturation process result-
ing in new, fully infectious, viral particles. Each of these processes is locked in
succession in a pageant of relatively timed events.

One of the intriguing features of viral life cycles is the variety of different dy-
namical mechanisms they exploit in order to produce fully infectious progeny. In
this brief section, we have seen processes such as DNA translocation, transcrip-
tion and reverse transcription, diffusion-based self-assembly, molecular-motor-
assisted transport and membrane fusion and budding.

3.3.4 The Process of Development

One of the most compelling, mysterious and visually pleasing processes in bi-
ology is the development of multicellular organisms. Development refers to the
orchestrated (both in space and time) division and differentiation of cells to con-
struct the full organism and, like the cell cycle of individual cells, depends upon
a fixed, relative ordering of events. Perhaps the most studied organism from the
developmental perspective is the fruit fly Drosophila melanogaster. The process
of Drosophila development was already schematized in fig. 3.2(A) and (B). The
process of development refers to the disciplined outcome of an encounter be-
tween an egg and its partner sperm. In the hours that follow this encounter
for the fruit fly, the nascent larva undergoes a series of nuclear divisions and
migrations as shown in fig. 3.22. In particular, as the nuclei divide to the tenth
generation (512 nuclei), they also start to collect near the surface of the de-
veloping larva forming the synctial blastoderm, a football shaped object with
all of the cells localized to the surface. At the 13th generation, the individual
nuclei are enclosed by their own membranes to form the cellular blastoderm.
The structural picture by the end of this process is a collection of roughly 5000
cells which occupy the surface of a football shaped object (roughly) which is
500 µm in length and roughly 200 µm in cross-sectional diameter.

Accompanying these latter stages of the developmental pathway is the be-
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Figure 3.20: Timing the life cycle of a bacteriophage. The cartoon shows stages
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Figure 3.22: Early development of the Drosophila embryo. After fertilization,
the single nucleus undergoes a series of eight rapid divisions producing 256 nuclei
that all reside in a common cytoplasm. At this point the nuclei begin to migrate
towards the surface of the embryo while continuing to divide. After reaching the
surface, cell boundaries form by invaginations of the plasma membrane. At this
early stage, the cells that are destined to give rise to sperm or eggs segregate
themselves and cluster at the pole of the embryo. All these events happen within
roughly two hours.
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Figure 3.23: Early pattern formation in the Drosophila embryo. (A - C) show
schematics of the shape of the Drosophila embryo at two hours, six hours and ten
hours after fertilization, respectively. At two hours, no obvious structures have
yet begun to form but the eventual fates of the cells that will form different parts
of the animal’s body have already been determined. By six hours, the embryo
has undergone gastrulation and the body axis of the embryo has lengthened and
curled back on itself to fit in the egg shell. By ten hours, the body axis has
contracted and the separate segments of the animal’s body plan have become
clearly visible. On the right are scanning electron micrographs of embryos at
each of these stages. Remarkably, all of this pattern formation takes place
without any growth.

ginning of a cellular dance in which orchestrated cell movements known as gas-
trulation lead to the visible emergence of the macroscopic structures associated
with the nascent embryo. Snapshots from this process are shown in fig. 3.23
with a time scale associated with the process of gastrulation is of order hours.
We already proclaimed the importance and beauty of the temporal organization
of gene expression associated with the cell cycle. We now add to that compli-
ment by noting that during the development of the Drosophila body plan, there
is an ordered spatial pattern of expression of genes with colorful names such
as hunchback and giant, which determine the spatial arrangement of different
cells.

These developmental processes make their appearance here because they
too serve as an example of relative time. In particular, an example of the
“socks before shoes” time ordering is the cascade of genes associated with the
segmentation of the fly body plan into its anterior and posterior parts. The long
axis of the Drosophila embryo is subject to increasing structural refinement as
a result of a cascade of genes known collectively as segmentation genes. This
collection of genes acts in a cascade which is a code word for precisely the kind of
sequential processes that are behind relative time as introduced in this section.
The first set of genes in the cascade are known as the gap genes. These genes
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divide the embryo into three rough regions, the anterior, middle and posterior.
The gap genes have as protein products transcription factors that control the
next set of genes in the cascade which are known as pair-rule genes. The pair-
rule genes begin to form the identifiable set of seven stripes of cells. Finally, the
segment polarity genes are expressed in 14 stripes.

• Estimate: Timing Development. A simple estimate of the number of
cells associated with a developing organism can be obtained by assuming
perfect synchrony from one generation to the next,

number of cells ≈ 2N , (3.7)

where N is the number of generations. Further, if we assume that the cell
cycle is characterized by a time τcc, then the number of cells as a function
of time can be written simply as

number of cells ≈ 2t/τcc . (3.8)

Interestingly, in the early stages of Drosophila development, since it is
only nuclear division (and hence, largely DNA replication) which is taking
place, the mean doubling time is eight minutes. Thus after 100 minutes,
roughly 10 generations worth of nuclear division will have occurred with
the formation of the approximately 1000 cells which form the syncytial
blastoderm.

3.4 Manipulating Time

Sometimes the cell is not satisfied with the time scales offered by the intrinsic
physical rates of processes and has to find a way to beat these speed limits. For
example, in some cases the bare rates of biochemical reactions are prohibitively
slow relative to characteristic cellular time scales and as a result, cells have tied
their fate to enzymatic manipulation of the intrinsic rates. In a similar vein,
diffusion as a means of intracellular transport is ineffective over large distances.
In this case, cells have active transport mechanisms involving molecular motors
and cytoskeletal filaments which can overcome the diffusive speed limit. There
are even more tricky ways in which cells manipulate time such as in the case of
beating the bacterial replication limit. These examples and others will serve as
the basis of our discussion of the way cells manipulate time.

3.4.1 Chemical Kinetics and Enzyme Turnover

Some chemical reactions proceed much more slowly than necessary for them
to be biologically useful. For example, the hydrolysis of the peptide bonds
that make up proteins would take times measured in years in the absence of
proteases, which are the enzymes that cleave these bonds. Triose phosphate
isomerase, one of the enzymes in the glycolysis pathway featured in fig. 2.23, is
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responsible for a factor of 109 speed up in the glycolytic reaction it catalyzes.
What these numbers show is that even if a given reaction is favorable in terms
of free energy, the energy barrier to that reaction can make it prohibitively
slow. As a result, cells have found ways to manipulate the timing of reactions
using enzymes as catalysts. Indeed, the whole of biochemistry is in some ways
a long tale of catalyzed reactions many of which take place on time scales much
shorter than milliseconds, whereas, in the absence of these enzymes, they might
not take place in a year! The individual players in the drama of glycolysis such
as hexokinase, phosphofructokinase, triose phosphate isomerase and pyruvate
kinase reveal their identity as enzymes with the ending ase in their names. En-
zymes are usually denoted by the ending ase and are classified according to the
reactions they catalyze. There are six broad classes of enzymes: i) oxidore-
ductases, which catalyze oxidation-reduction reactions, ii) transferases, which
transfer groups from one molecule to another, iii) hydrolases, which catalyze
hydrolysis reactions, iv) lysases, which catalyze reactions where a group is re-
moved from a substrate to form a double bond, v) isomerases, which catalyze
isomerization reactions and vi) ligases, which are responsible for joining two
molecules together.

The basic idea of enzyme action is depicted in fig. 3.24. For concreteness,
we consider an isomerization reaction where a molecule starts out in some high
energy state A and we interest ourselves in the transitions to the lower energy
state B. The key point about the reaction rate is that, as shown in the figure,
it depends upon the energy barrier separating the two states according to

ΓA→B = ν0e
−∆E/kBT , (3.9)

where ΓA→B is the transition rate with units of sec−1 and ν0 is a frequency
prefactor, also with units of sec−1. Even though the energy of state B might be
substantially lower than state A, the transitions can be exceedingly slow because
of large barrier heights (i.e. ∆E >> kBT ). The presence of an enzyme does
not alter the end states or their energies, but it suppresses the barrier between
the two states.

3.4.2 Beating the Diffusive Speed Limit

A second example of the way in which cells manipulate time is offered by the
question of transport and trafficking. Organelles, proteins, nucleic acids, etc.
are often produced in one part of the cell only to be transported to another part
where they are needed. For example, the messenger RNA molecules produced
in the nucleus need to make their way to the ribosomes which are found in the
endoplasmic reticulum. One physical process that can move material around is
passive diffusion.
Diffusion Is the Random Motion of Microscopic Particles in Solution

Ions, molecules, macromolecular assemblies and even organelles, wander
around aimlessly as a result of diffusion. Diffusion refers to the random mo-
tions suffered by microscopic particles in solution, and is sometimes referred to
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as Brownian motion in honor of the systematic investigations made by Robert
Brown in the 1820s. Brown noticed the random jiggling of pollen particles sus-
pended in solution, even for systems that are ostensibly in equilibrium and have
no energy source. Indeed, so determined was he to find out whether or not this
was some effect intrinsic to living organisms, he even examined exotic suspen-
sions using materials such as the dust from the Sphinx and found the jiggling
there too. The effects of Brownian motion are palpable for particles in solution
which are micron size and smaller, exactly the length scales that matter to cells.
Diffusion results from the fact that in the cell (and for microscopic particles in
solution), deterministic forces are on nearly an equal footing with thermal forces.
Thermal forces result from the random collisions between particles that can be
attributed to the underlying jiggling of atoms and molecules. This fascinating
topic will dominate the discussion of chap. 8.

• Estimate: The Thermal Energy Scale. One way to quantify the
relative importance of the energy scale of a given process and thermal
energies is by measuring the energy of interest in kBT units. At room
temperature, the thermal energy scale is

kBT = 1.38× 10−23J/K× 300K ≈ 4.1× 10−21J = 4.1pNnm. (3.10)

One way to see the importance of this energy scale is revealed by eqn. 3.9
(and will also be revealed by the Boltzmann distribution that says that the
probability of a state with energy Ei is proportional to e−Ei/kBT ). These
expressions show that when the energy is comparable to kBT , barriers
will be small (and probabilities of microstates high). The numerical value
(kBT ≈ 4 pN nm) is especially telling since many of the key molecular
motors relevant to biology act with piconewton forces over nanometer dis-
tances, implying a competition between deterministic and thermal forces.
This discussion tells us that for many problems of biological interest, ther-
mal forces are on nearly an equal footing with deterministic forces arising
from specific force generation.

Diffusion Times Depend Upon the Length Scale

One simple and important biological example of diffusion is the motion of
proteins bound to DNA which can be described as one-dimensional diffusion
along the DNA molecule. Another example is provided by the arrival of ligands
to their specific receptors. The basic picture is that of molecules being battered
about and every now and then ending up in the same place at the same time.
To get a feeling for the numbers, it is convenient to consider one of the key
equations that presides over the subject of diffusion, namely,

tdiffusion =
x2

D
, (3.11)

where D is the diffusion constant. This equation tells us that the time scale for
a diffusing particle to travel a distance x scales as the square of that distance.
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• Estimate: Getting Proteins from Here to There. For molecules
and assemblies that move passively within the cell, the time scale can be
estimated using eqn. 3.11. For a protein with a 5nm diameter the diffusion
constant in water is roughly 100µm2/s; this estimate can be obtained from
the Stokes-Einstein equation (to be discussed in more detail in chap. 12)
which gives the diffusion constant of a sphere of radius R moving through
a fluid of viscosity η at temperature T , as D = kBT/6πηR. The time
scale for such a typical protein to diffuse a distance of our standard ruler
(i.e. across an E. coli) is

tE. coli ≈
L2

E. coli
D

≈ 1µm2

100µm2/sec
≈ 0.01s. (3.12)

This should be contrasted with the time scale required for diffusion to
transport molecules from one extremity of a neuron to the other as shown
in fig. 3.3. In particular, the diffusion time for the squid giant axon which
has a length of the order of 10cm is tdiffusion ≈ 108s! The key conclusion
to take away from such an estimate is the impossibly long time scales
associated with diffusion over large distances. Nature’s solution to this
conundrum is to exploit active transport mechanisms in which ATP is
consumed in order for motor molecules to carry out directed motion.

Molecular Motors Move Cargo Over Large Distances in a Directed
Way

In many instances, diffusion is too slow to be of any use for intracellular
transport. To beat the diffusive speed limit, cells manipulate time with a so-
phisticated array of molecular machines (usually proteins) that result in directed
transport. These processes are collectively powered by the consumption of some
energy source (usually ATP). Broadly construed, the subject of active transport
allows us to classify a wide variety of molecules as molecular motors. We have
already seen the existence of such motors in a number of different contexts, with
both DNA polymerase and RNA polymerase introduced in the previous section
satisfying the definition of active transport.

Concretely, the class of motors of interest here are those that mediate trans-
port of molecules from one place in the cell to another. Often, such transport
takes place as vesicular traffic, with the cargo enclosed in a vesicle (a flexible
spherical shell made up of lipid molecules in the form of a lipid bilayer) which
is in turn attached to some molecular motor. These molecular motors travel
in a directed fashion on the cytoskeletal network which traverses the cell. For
example, traffic on microtubules runs in both directions as a result of two trans-
lational motors, kinesin and dynein. Molecular motor mediated transport on
actin filaments is shown in cartoon form in fig. 3.25. Note that this cartoon is
meant to indicate a rough idea of the relative proportions of the motors and
the actin filaments on which they move and to convey the overall structural
features, such as two heads, of the motors themselves. In addition, fig. 3.25(B)
shows a time trace of the position of a fluorescently labeled myosin motor which
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Figure 3.25: Motion of myosin on an actin filament. (A) Schematic of the motor
on an actin filament. Note that the step size is determined by the periodicity
of the filament. (B) Position as a function of time for the motor myosin V as
measured using single-molecule techniques.

illustrates the discrete steps of the motor, also permitting a measurement of the
mean velocity.

• Estimate: Getting Proteins from Here to There, Part 2. We
have already noted that biological motility is based in large measure on
diffusion. On the other hand, there are a host of processes that cannot
wait the time required for diffusion. In particular, recall that our estimate
for the diffusion time for a typical protein to traverse an axon was a
whopping 108 seconds, or roughly three years. For comparison we can
estimate the transport time for kinesin moving on a microtubule over the
same distance. As the typical speed of kinesin in a living cell is 1µm/s, the
time for it to transport a protein over a distance of 10cm is 105 seconds,
or just over a day.

To see these ideas play out more concretely, we can return to fig. 3.3(C).
The classic experiment highlighted there traces the time evolution of ra-
dioactively labeled proteins in a neuron. What the figure shows is that
the radiolabeled proteins travel roughly 18mm in 12 days, which trans-
lates into a mean speed of roughly 20 nm/sec. Observed axonal transport
speeds for single motors are a factor of ten or more larger, but we can
learn something from this as well. In particular, motors are not perfectly
“processive” - that is, they fall off of their cytoskeletal tracks occasionally
and this has the effect of reducing their mean speed. Observed motor ve-
locities are reported, on the other hand, on the basis of tracking individual
motors during one of their processive trajectories.

Membrane Bound Proteins Transport Molecules From One Side of a
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Membrane to the Other

Another way in which cells manipulate transport rates is by selectively and
transiently altering the permeability of cell membranes through protein chan-
nels and pumps. Many ionic species are effectively unable to permeate (at least
on short time scales) biological membranes. What this means is that concen-
tration gradients can be maintained across these membranes until or if these
protein channels open which then permits a flow of ions down their concen-
tration gradient. In fancier cases such as indicated schematically in fig. 15.12,
ions can be pumped up a concentration gradient through mechanisms involving
ATP hydrolysis. In fig. 3.2(RP) we showed the process of ion transport across
a membrane with a characteristic time of microseconds.

• Estimate: Ion Transport Rates in Ion Channels. An ion chan-
nel embedded in the cell membrane can be thought of as a tube with
a diameter of approximately d = 0.5nm (size of hydrated ion) and a
length l = 5nm (width of the lipid bilayer). With these numbers in hand,
and a typical value of the diffusion constant for small ions (eg. sodium),
D ≈ 2000µm2/s, we can estimate the flux of ions through the channel,
assuming that their motion is purely diffusive.

To make this estimate, we invoke an approximate version of Fick’s law
(to be described in detail in chap. 8) which says that the flux (number of
molecules crossing unit area per unit time) is proportional to the difference
in concentration and inversely proportional to the distance between the
two “reservoirs”. Mathematically, this can be written as

Jion ≈ D
∆c

l
, (3.13)

where ∆c is the difference in ion concentration across the cell membrane.
For typical mammalian cells the concentration difference for sodium or
potassium is ∆c ≈ 100mM, and

Jion ≈ 2000µm2/s× 100× 6× 1020dm−3

5nm
≈ 2× 107nm−2s−1. (3.14)

Given the cross-sectional area of a typical channel Achannel = d2π/4 ≈
0.2nm2, the number of ions traversing the membrane per second is esti-
mated to be

dNion

dt
= JionAchannel ≈ 104nm−2s−1 × 0.2nm2 = 4× 106s−1, (3.15)

or alternatively, we can say that a single ion makes it across in roughly
1/Nion = 1/2 a millisecond. This estimate does remarkably well at giving
a sense of the time scales associated with ion transport across ion channels.

RP: not satisfied with this estimate. Can use the known conductances in
pS and then see what number crossing is and it is a lot higher.
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Figure 3.26: Active transport across membranes. Molecular pumps consume
energy in the form of ATP hydrolysis and use the liberated free energy to pump
molecules against their concentration gradient.

Enzymes, molecular motors and ion channels (and pumps) are all ways in
which the cell uses proteins to circumvent the intrinsic rates of different physical
or chemical processes.

3.4.3 Beating the Replication Limit

The most fundamental process of cellular life is to form two new cells. A minimal
requirement for this to take place is that an individual cell must duplicate its
genetic information. Replication of the genetic material proceeds through the
action of DNA polymerase, an enyzme which copies the DNA sequence informa-
tion from one DNA strand into a complementary strand. Like all biochemical
reactions, this requires a certain amount of time which we estimated earlier in
the chapter. Why should any cell accept this speed limit on its primary directive
of replication? When we calculated the replication time for the E. coli chro-
mosome, we concluded that two replication forks operating at top speed would
be sufficient to replicate the chromosome in approximately the 3000 second di-
vision time that we stipulated for a bacterium growing in a minimally defined
medium with glucose as the sole carbon source under a continuous supply of
oxygen. While this set of conditions is in many ways convenient for the human
experimentalist, it is by no means ideal for the bacterium. If instead of only
supplying glucose we add a rich soup of amino acids, E. coli will grow much
faster with a doubling time of order twenty minutes (1200 seconds).

How can the bacterium double more quickly than its chromosome can repli-
cate? For E. coli and other fast growing bacteria, the answer is a simple and
elegant manipulation of the procedural time limit imposed by the DNA replica-
tion apparatus. The bacterium begins replicating its chromosome a second time
before the first replication is complete. In a rapidly growing E. coli there may be
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between four and eight copies of the chromosomal DNA close to the replication
origin, even though there may be only one copy of the chromosome close to the
replication terminus. In other words, the bacterium has started replicating its
daughter’s, grandaughter’s or even great grandaughter’s chromosome before its
own replication is complete. The newborn E. coli cell is thus essentially already
pregnant with partially replicated chromosomes preparing for the next one or
two generations.

As we have noted above, the genome size for bacteria tends to be substan-
tially smaller than the genome size for eukaryotic cells. Nonetheless, eukaryotic
cells are still capable of replicating at a remarkably fast rate. For example,
early embryonic cells of the South African clawed frog Xenopus laevis can di-
vide every 30 minutes. Despite the fact that its genome (3100MB) is roughly
six-fold larger than the genome of E. coli, two mechanical changes enable rapid
replication of the Xenopus genome (and the genome of other eukaryotes). First,
the genome is subdivided into multiple linear chromosomes rather than a single
circular chromosome. Second, and more importantly, replication is initiated si-
multaneously from many different origins sprinkled throughout the chromosome
as opposed to the single origin of bacterial chromosomes. This parallel process-
ing for the copying of genomic information enables the task to be completed
more rapidly than would be dictated by the procedural time limit dictated by
a single molecule of DNA polymerase.

3.4.4 Eggs and Spores: Planning for the Next Generation

We have been considering the processes of cell growth and division as though
they are tightly coupled with one another. In some cases, however, organisms
may separate the processes of growth and division so that they occur over differ-
ent spans of time. The most dramatic example of this is in the growth of giant
egg cells followed by extremely rapid division of early embryos after fertilization.
For example, in the frog Xenopus laevis, each individual egg cell is enormous
- up to 1mm across - and grows gradually within the body of the female over
a period of three months. Following fertilization, cell division occurs without
growth so that a tadpole hatches after 36 hours that has the same mass as the
egg from which it is derived.

Even for organisms where cell growth normally is coupled to cell division,
there are several mechanisms whereby cells may choose to postpone either
growth or division if conditions are unfavorable. For example, many cells rang-
ing from bacteria through fungi to protozoans such as Dictyostelium are capable
of creating spores. Spores are nearly metabolically inert and serve as a stor-
age form for the genomic information of the species that can survive periods of
drought or low nutrient availability. This is a mechanism by which an organism
can effectively exist in suspended animation waiting for however much time is
needed to pass until conditions become favorable again. When fortune finally
favors the spore, it can germinate releasing a rapidly growing cell. The max-
imum survival time of spores is unknown. However, there are Bacillus spores
that were put into storage by Louis Pasteur in the late 1800s that appear to



3.5. SUMMARY AND CONCLUSIONS 155

be fully viable today and it is generally accepted that some spores may be able
to survive for thousands of years. Some controversial reports even suggest that
viable bacterial spores can be recovered from bodies trapped in amber over at
least a few million years. The seeds of flowering plants perform a similar role,
though they are typically not as hearty as spores.

Although animals do not form true spores, several do have forms that per-
mit long term survival under starvation conditions. The most familiar exam-
ples are hibernation of large animals such as bears which can survive an entire
winter season without eating. Smaller animals perform similar tricks. These
include dauer form larvae of several worms. The most impressive example of
“suspended animation” among animals is presented by the tardigrade or water
bear, a particularly adorable segmented metazoan that rarely grows larger than
1mm. The tardigrade normally lives in water, but when it is dried out it, it
slows its metabolism and alters its body shape, extruding almost all of its water,
to form a dried out form called a tun. Tardigrade tuns can be scattered by wind
and can survive extreme highs and lows of temperature and pressure. When the
tun falls into a favorable environment like a pond, the animal will reanimate.
Each of these examples shows how organisms have evolved mechanisms that are
completely indifferent to the absolute passage of time.

3.5 Summary and Conclusions

Because life processes are associated with constant change, it is important to
understand how long these processes take. In the case of the diurnal clock,
organisms are able to measure the passage of time with great regularity to
determine their daily behaviors. For most other kinds of biological processes,
times are not absolute. In this chapter, we explored several different views
of time in biological systems starting with the straightforward assignment of
procedural time as measured by the amount of time it takes to complete some
process. In complex biological systems, processes that occur at intrinsically
different rates may be linked together such that one must be completed before
another can begin. Examples of this kind of measurement of relative time are
found in the regulation of the cell cycle, the assembly of complex structures such
as the bacterial flagellum, etc. Finally, we briefly explored some of the ways that
organisms manipulate biological processes to proceed faster or slower than the
normal intrinsic rates. Armed with these varying views of time, we will use time
as a dimension in our estimates and modeling throughout the remainder of the
book. Time will particularly take center stage in Part III, Life in Motion, where
dynamic processes will be revealed in all their glory.
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3.6 Further Reading

Bier E., The Coiled Spring: How
Life Begins, Cold Spring Harbor Lab-
oratory Press, Cold Spring Harbor, New
York, 2000. This is the best introduc-
tion to developmental biology that we
are aware of. This book is a wonderful
example of the seductive powers of de-
velopment.

Carroll S. B., Endless Forms Most
Beautiful, W.W. Norton and Com-
pany, New York, New York, 2005. One
of us (RP) read this book twice in the
first few weeks after it hit the shelves.
From the perspective of the present chap-
ter, this book illustrates the connection
between developmental and evolution-
ary time scales.

F. Neidhardt, “Bacterial Growth: Con-
stant Obsession with dN/dt”, J. Bacte-
riol., 181, 7405 (1999). Bacterial growth
curves are one of the simplest and most
enlightening tools for peering into the
inner workings of cells. Neidhardt’s
ode to growth curves is both entertain-
ing and educational.

D. Dressler and H. Potter, Discover-
ing Enzymes, W. H. Freeman and
Company, New York, New York, 1991.
This book is full of fascinating insights
into enzymes.

John Gerhart and Marc Kirschner, Cells,
Embryos, And Evolution, Blackwell
Science, 1997 and The Plausibiity of
Life, Yale University Press, 2006.
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Figure 3.27: Replication forks in
Drosophila (from ECB).

3.7 Problems

1. Numerics of the cell cycle

2. E. coli cell cycle Improve the es-

timates for the synthesis rates E. coli
during a cell cycle from section 3.1.3
by including the effect of degradation.

3. DNA replication rates Look

at fig. 3.27 and assuming that this is
a representative sample of the replica-
tion process, estimate the number of
DNA polymerase molecules in a eukary-
otic cell like this one from the fly. Note
that the fly DNA is about 1.8 × 108

nucleotide pairs in size. Estimate the
fraction of the total fly DNA shown in
the micrograph. There are eight forks
in the micrograph, numbered 1-8. Es-
timate the lengths of the DNA strands
between replication forks 4 and 5 where
we count the forks from left to right. If
a replication fork moves at a speed of
100 nucleotides/s, how long will it take
for forks 4 and 5 to collide. Also, given
the mean spacing of the bubbles, esti-
mate how long it will take to replicate
the entire fly genome.
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4. Metabolic rates Bacterial cells
have a much higher rate of metabolism
than animal cells. For example, most
bacterial cells under optimal conditions
divide on a 20 ∼ 30 minutes time scale,
while animal cells can take a day or
more. To gain some understanding of
the large difference in metabolic rates
consider the fact that for energy pro-
duction to occur in an aerobic cell, oxy-
gen must be transported through the
cell membrane and distributed across
the cellular interior.

(a) Argue that the maximum metabolic
rate is larger for cells with a larger sur-
face to volume ratio.
(b) Compare the surface to volume ra-
tio of E. coli to that of a globular amoeba
which can be thought of as a sphere of
radius 150µm.
(c) In this problem we examine the lim-
itations imposed on the size of a bac-
terium by metabolism. Lets take that
the bacterium burns oxygen at a rate
of 0.02 mole/kgs; this is the amount
of oxygen spent per unit time per unit
mass of the bacterium, which we as-
sume is a sphere of radius R = 1µm.
This oxygen gets into the bacterium by
diffusion through its surface at a rate
given by Φ = 4πDRc0. D = 2µm2/ms
is the diffusion constant for oxygen in
water, and c0 = 0.2mole/m3 is the oxy-
gen concentration.



Chapter 8

Random Walks and the
Structure of
Macromolecules

“The journey of a thousand miles begins with a single step.” - Chinese proverb

Chapter Overview: In Which We Think of Macromolecules as Ran-
dom Walks

A useful alternative to the deterministic description of structure in terms of
well defined atomic coordinates is the use of statistical descriptions of structure.
For example, the arrangement of a large DNA molecule within the cell is often
best characterized statistically in terms of average quantities such as the mean
size and position. The goal of this chapter is to examine one of the most
powerful ideas in all of science, namely, the random walk, and to show its utility
in characterizing biological macromolecules such as DNA. We will show how
these ideas culminate in a probability distribution for the end-to-end distance
of polymers and how this distribution can be used to compute the “structure”
of DNA in cells as well as to understand recent single-molecule experiments
in which molecules of DNA (or proteins) are pulled on and the subsequent
deformation is monitored as a function of the applied force. In addition, we will
show how these same ideas may be tailored to thinking about proteins.

8.1 What is a Structure: PDB or RG?

The study of structure is often a prerequisite to tackling the more interesting
question of the functional dynamics of a particular macromolecule or macro-
molecular assembly. Indeed, this notion of the relation between structure and
function has been elevated to the status of the true central dogma of molecular

359
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biology, namely, “sequence determines structure determines function” (Petsko
and Ringe, 2004), which calls for uncovering the relation between sequence and
consequence. The idea of structure is hierarchical and subtle, with the relevant
detail that is needed to uncover function often living at totally disparate spatial
scales. For example, in thinking about phosphorylation-induced conformational
changes, an atom-by-atom description is required, whereas in thinking about
cell division, a much coarser description of DNA is likely more useful. The key
message of the present chapter is that there is much to be gained in some cir-
cumstances by abandoning the deterministic, pdb mentality described in earlier
chapters for a statistical description in which we attempt only to characterize
certain average properties of the structure. We will argue that this type of
thinking permits immediate and potent contact with a range of experiments.

8.1.1 Deterministic vs Statistical Descriptions of Struc-
ture

PDB Files Reflect a Deterministic Description of Macromolecular
Structure

The notion of structure is complex and ambiguous. In the context of crystals,
we can think of structure at the level of the monotonous regular packing of the
atoms into the unit cells of which the crystal is built. This thinking applies even
to crystals of nucleic acids, proteins or complexes such as ribosomes, viruses and
RNA polymerase. Indeed, it is precisely this regularity that makes it possible
to deposit huge pdb files containing atomic-coordinates on databases such as
the Protein Data Bank and VIPER. In this world view, a structure is the set
(r1, r2, · · · rN ), where ri is the vector postion ri = (xi, yi, zi) of the ith atom
in this N -atom molecule. However, the structural descriptions that emerge
from x-ray crystallography provide a deceptively static picture which can only
be viewed as a starting point for thinking about the functional dynamics of
macromolecules and their complexes in the crowded innards of a cell.
Statistical Descriptions of Structure Emphasize Average Size and
Shape Rather Than Atomic Coordinates

As noted above, in the context of polymeric systems, the notion of structure
is subtle and brings us immediately to the question of the relative importance
of universality (for example, how size scales with the number of monomers) and
specificity in macromolecules. In particular, there are certain things that we
might wish to say about the structure of polymeric systems that are indifferent
to the precise chemical details of these systems. For example, when a DNA
molecule is ejected from a bacteriophage into a bacterial cell, all that we may
really care to say about the disposition of that molecule is how much space
it takes up and where within the cell it does so. Similarly, in describing the
geometric character of a bacterial genome, it may suffice to provide a descrip-
tion of structure only at the level of characterizing a blob of a given size and
shape. Indeed, these considerations bring us immediately to the examination of
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(A) (B)

Figure 8.1: Random walk model of polymer. Schematic representation of a (A)
one-dimensional random walk and a (B) three-dimensional random walk as an
arrangement of linked segments of length a.

statistical measures of structure. As hinted at in the title to this section, one
such statistical measure of structure is provided by the radius of gyration, RG,
which, roughly speaking, gives a measure of the size of a polymer blob. It is the
business of the remainder of the chapter to show the calculable consequences of
adopting such a description of structure.

8.2 Macromolecules as Random Walks

Random Walk Models of Macromolecules View Them as Rigid Seg-
ments Connected by Hinges

One way to characterize the geometric disposition of a macromolecule such
as DNA is through the deterministic function r(s). This function tells us the
position (r) of that part of the polymer which is a distance s along its contour.
An alternative we will explore here is to discretize the polymer into a series
of segments, each of length a, and to treat each such segment as though it is
rigid. The various segments that make up the macromolecular chain are then
imagined to be connected by flexible links that permit the adjacent segments
to point in various directions. Both one- and three-dimensional versions of this
idea are shown in fig. 8.1. Note that in the figure, we illustrate the case in which
the links are restricted to 90 degree angles, though there are many instances in
which we will consider links that can rotate in arbitrary directions (the so-called
freely jointed chain model).

Fig. 8.2 shows an example of the correspondence between the real structures
of these molecules and their idealization in terms of the lattice model of the
random walk. In particular, fig. 8.2 shows a conformation of DNA on a surface.
Using the discretization advocated above, we show how this same structure can
be approximated using a series of rigid rods (the Kuhn segments) connected
by flexible hinges. We will argue that this level of description can be useful
in settings ranging from estimating the entropic cost to confine DNA to the
response of DNA when subjected to mechanical forces.
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100 nm

Figure 8.2: Structure of DNA on a surface as seen experimentally using atomic-
force microscopy.

8.2.1 A Mathematical Stupor

Every Macromolecular Configuration Is Equally Probable When the
Polymer Is Viewed as a Random Walk

In this section we work our way up by degrees to some of the full beauty
and depth of the random walk model. The aim of the analysis is to obtain a
probability distribution for each and every macromolecular configuration and
to use these probabilities to compute properties of the macromolecule that can
be observed experimentally, such as the mean size of the macromolecule and
the free energy required to deform that molecule. Our starting point will be an
analysis of the random walk in one-dimension, with our discussion being guided
by the ways in which we will later generalize these ideas and apply them in what
might at first be considered unexpected settings.

We begin by imagining a single random walker confined to a one-dimensional
lattice with lattice parameter a as already shown in fig. 8.1(A). The life history
of this walker is built up as a sequence of left and right steps, with each step
constituting a single segment in the polymer. In addition, for now we postulate
that the probabilities of left and right steps are given as pr = pl = 1/2. The
trajectory of the walker is built up by assuming that at each step the walker
starts anew with no concern for the orientation of the previous segment. We
note that for a chain with N segments, this implies that there are a total of
2N different permissible macromolecular configurations, each with probability
1/2N .
The Mean Size of a Random Walk Macromolecule Scales as the
Square Root of the Number of Segments,

√
N

Given the spectrum of possible configurations and their corresponding prob-
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abilities, one of the most immediate questions we can pose concerns the mean
distance of the walker from its point of departure as a function of the number
of segments in the chain. In the context of biology, this question is tied to
problems such as the cyclization of DNA, the likelihood that a tethered ligand
and receptor will find each other and to the gross structure of plasmids and
chromosomal DNA in cells. To find the end-to-end distance for the molecule
of interest we can use both simple arguments as well as brute force calculation,
and we will take up both of these options in turn. The simple argument notes
that the expected value of the walkers distance from the origin, R, after N steps
can be obtained as

〈R〉 = 〈
N∑

i=1

xi〉, (8.1)

where xi = ±a is the excursion suffered by the walker during the ith step
and where we have introduced the bracket notation 〈· · · 〉 to signify an average.
Recall that to obtain such an average we sum over all possible configurations
with each configuration weighted by its probability (in this case they are all
equal). This result may be simplified by noting that the averaging operation
represented by the brackets 〈· · · 〉 on the righthand side of the equation can be
passed within the summation symbol (i.e. the average of a sum is the sum of the
averages) and through the recognition that 〈xi〉 = 0. Indeed, this leaves us with
the conclusion that the mean excursion undertaken by the walker is identically
zero.

A more useful measure of the walker’s departure from the origin is to examine

〈R2〉 = 〈
N∑

i=1

N∑
j=1

xixj〉 . (8.2)

This is the variance of the probability distribution of R, while
√
〈R2〉 is the

standard deviation. Its significance is that the probability of finding our random
walker within one standard deviation of the mean is close to 70%. In other words
the standard deviation is the measure of the typical excursion of the random
walker after N steps, and therefore serves as a good surrogate for the typical
size of the related polymer.

In order to make progress on eqn. 8.2 we break up the sum into two parts
as

〈R2〉 =
N∑

i=1

〈x2
i 〉+

N∑
i 6=j=1

〈xixj〉. (8.3)

Note that each and every step is independent of all steps that precede and follow
it. This implies that the second term on the righthand side is zero. In addition,
we note that 〈x2

i 〉 = a2, with the result that

〈R2〉 = Na2. (8.4)

Thus, we have learned that the walker’s departure from the origin is charac-
terized statistically by the assertion that

√
〈R2〉 = a

√
N , meaning that the
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distance from the origin grows as the square root of the number of segments in
the chain.
The Probablity of a Given Macromolecular Configuration Depends
Upon it’s Microscopic Degeneracy

In addition to the simple argument spelled out above, it is also possible to
carry out a brute force analysis of this problem using the conventional machinery
of probability theory. We consider this an important alternative to the analysis
given above since it highlights the fact that there are many microscopic config-
urations that correspond to a given macroscopic configuration. In particular,
in the case in which the walker makes a total of N steps, we pose the question,
what is the probability that nr of those steps will be to the right (and hence
nl = N −nr to the left)? Since the probability of each right or left step is given
by pr = pl = 1/2, the probability of a particular sequence of N left and right
steps is given by (1/2)N . On the other hand, we must remember that there are
many ways of realizing nr right steps and nl left steps out of a total of N steps.
In particular, there are

W (nr;N) =
N !

nr!(N − nr)!
, (8.5)

distinct ways of achieving this outcome. A particular example of this thinking to
the case N = 3 is shown in fig. 8.3 where we see that there is one configuration
where all three segments are right pointing, one configuration in which all three
segments are left pointing and three configurations each for the cases in which
nr = 2, nl = 1 and nr = 1, nl = 2.

We have now enumerated the microscopic degeneracies of each macroscopic
configuration (characterized by a given end-to-end distance). As a result, we
are poised to write down the probability of an overall departure nr from the
origin which is given by

p(nr;N) =
N !

nr!(N − nr)!
(
1
2
)N . (8.6)

With this probability distribution in hand, we can now evaluate any average
characterizing the geometric disposition of the chain by summing over all of the
configurations.

To develop facility in the use of this probability distribution, we begin by
confirming that it is normalized. To do so, we ask for the outcome of the sum

N∑
nr=0

p(nr;N) =
N∑

nr=0

N !
nr!(N − nr)!

(
1
2
)N . (8.7)

To evaluate this sum, we recall the binomial theorem that tells us

(x + y)N =
N∑

nr=0

N !
nr!(N − nr)!

xnryN−nr . (8.8)
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W = 1, nr = 3

W = 3, nr = 1
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W = 1, nl = 3

W = 3, nl = 1

Figure 8.3: Random walk configurations. The schematic shows all of the allowed
conformations of a polymer made up of three segments (23 = 8 conformations)
and their corresponding degeneracies.

For the case in which x = y = 1, we see that this implies

N∑
nr=0

N !
nr!(N − nr)!

= 2N . (8.9)

Plugging this result back into eqn. 8.7 demonstrates that the probability distri-
bution is indeed normalized (i.e.

∑N
nr=0 p(nr;N) = 1).

Entropy Determines the Elastic Properties of Polymer Chains

The probability distribution for nr can be used to deduce a more telling
quantity, the probability distribution for the end to end distance, R = (nr−nl)a.
If we use the condition nr + nl = N to solve for nl and substitute this into
R = (nr −nl)a, it follows that nr = (N + R/a)/2 and eqn. 8.6 can be rewritten
as

p(R;N) =
N !(

N
2 + R

2a

)
!
(

N
2 −

R
2a

)
!

(
1
2

)N

, (8.10)

to give the probability distribution of the end-to-end distance. This distribution
is plotted in fig. 8.4. For large N this probability distribution is sharply peaked
at R = 0. Next we show that it takes on the form of a Gaussian distribution
for R � Na. This calculation involves two math methods we have discussed
previously, the Stirling approximation (pg. 256), lnn! ≈ n lnn − n + 1

2 ln(2πn)
for n � 1, and the Taylor expansion (pg. 249), ln(1 + x) ≈ x− x2/2 for x � 1.
Note that here we take the first three terms in the Stirling approximation, and



366CHAPTER 8. RANDOM WALKS AND THE STRUCTURE OF MACROMOLECULES

-40 -20 0 20 40
0

0.02

0.04

0.06

0.08

end-to-end distance

Figure 8.4: End-to-end probability distribution for a one-dimensional “macro-
molecule” with 100 segments. RP: Fix the figure so that it shows a comparison
of the Binomial distribution and the approximate Gaussian for different values
of N.

keep terms up to x2 in the Taylor expansion, in anticipation that the leading
term of ln p(R;N) is of order R2.

We begin by taking the logarithm of the probability distribution for R shown
in eqn. 8.10 and then we apply the Strirling approximation to each of the three
factorials resulting in,

ln p(R;N) = N lnN −N +
1
2

ln(2πN)︸ ︷︷ ︸
ln N !

−
[(

N

2
+

R

2a

)
ln
(

N

2
+

R

2a

)
−
(

N

2
+

R

2a

)
+

1
2

ln
(

2π

(
N

2
+

R

2a

))]
︸ ︷︷ ︸

ln(N/2+R/2a)!

−
[(

N

2
− R

2a

)
ln
(

N

2
− R

2a

)
−
(

N

2
− R

2a

)
+

1
2

ln
(

2π

(
N

2
− R

2a

))]
︸ ︷︷ ︸

ln(N/2−R/2a)!

− N ln 2 . (8.11)

In the next step we rewrite the logarithms,

ln
(

N

2
± R

2a

)
= ln

[
N

2

(
1± R

Na

)]
= ln

N

2
+ ln

(
1± R

Na

)
(8.12)

where we have used the rule about logarithms that ln [AB] = ln(A)+ln(B). We
can now make use of the Taylor expansion,

ln
(

1± R

Na

)
≈ ± R

Na
− 1

2

(
± R

Na

)2

(8.13)
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which we substitute repeatedly in eqn. 8.11. After some annoying algebra (which
is left as an exercise for the reader) we arrive at the formula

ln p(R;N) = ln 2− 1
2

ln(2πN)− R2

2Na2
. (8.14)

If we now exponentiate both sides of this equation, we find the coveted Gaussian
distribution,

p(R;N) =
2√

2πN
e−

R2

2Na2 . (8.15)

Note that the derived approximate formula is a probability for values of R which
come in multiples of 2a. To turn this into a probability distribution function,
P (R;N), such that P (R;N)dR is the probability that R falls within an interval
of length dR, all that remains is to divide out the result in eqn. 8.15 by the
density of integer R values per unit length, which is 1/2a. This yields the result
for the probability distribution function for the end to end distance of a freely
jointed chain,

P (R;N) =
1√

2πNa2
e−

R2

2Na2 , (8.16)

which we will make use of repeatedly throughout the book.
The result derived above is a special case of the so-called central-limit the-

orem which is arguably the most important result of probability theory. In a
nutshell, it states that the probability distribution of x1 + x2 + · · ·+ xN , which
is a sum of identical, independently distributed random variables, is Gaussian
in the limit of large N , as long as the mean and variance of each individual xi

is finite. Since the individual displacements of the random walker satisfy this
condition, it immediately follows that for large number of steps N , the total
displacement R will be Gaussian distributed, with mean 〈R〉 = 0 and variance
〈R2〉 = Na2. Note that this will hold regardless of whether the walk is executed
in 1, 2 or 3 dimensions.

We leave it as a homework problem to show that the Gaussian distribution
of R for a 1-dimensional walk given in eqn. 8.16 indeed has the required mean
and variance. Here we make use of this result to derive the large-N distribution
for the end-to-end distance of a 3-dimensional random walk. Since the mean is
zero the distribution is of the form

P (R;N) = N e−κR2
(8.17)

where the parameters N and κ are to be determined from two conditions that
the distribution must satisfy∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
P (R, N)d3R = 1 (Normalization)∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
R2P (R, N)d3R = Na2 (Variance) . (8.18)
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Since both integrands are functions of R2 we can transform the volume integral
in both cases to an integral over spherical shells of radius R to obtain,∫ +∞

0

P (R, N)4πR2dR = 1 (Normalization)∫ +∞

0

R2P (R, N)4πR2dR = Na2 (Variance) . (8.19)

To compute the integrals in the above equations we make use of the Gaussian
integral formulas∫ +∞

0

4πNR2e−κR2
dR = 4πN 1

4

√
π

κ3
= 1∫ +∞

0

4πNR4e−κR2
dR = 4πN 3

8

√
π

κ5
= Na2. (8.20)

To compute κ we can divide the second equation by the first to give

κ =
3

2Na2
. (8.21)

Substituting this result into the first of the two integrals above gives us

N =
(κ

π

) 3
2

=
(

3
2πNa2

) 3
2

, (8.22)

the normalization constant. Putting this all together we obtain the end-to-end
distribution for a 3-dimensional random walk with N Kuhn segments of length
a,

P (R;N) =
(

3
2πNa2

) 3
2

e−
3R2

2Na2 . (8.23)

• Estimate: End-End Probability for the E. coli genome. One in-
teresting application of these ideas that will be explored more throughout
the chapter is to the structure of chromosomal DNA. The DNA associ-
ated with an E. coli cell is roughly 5 million nucleotides long, and can be
modeled as a random walk of roughly N = 15000 steps since the Kuhn
length for bare DNA is roughly 300 bp in length. The probability that the
end-to-end distance is zero for a one-dimensional walk of this many steps
is 7×10−3. The probability that R = 500a is 2×10−6 while for R = 1000a
the probability drops all the way down to 2 × 10−17. This overwhelming
probability that R is close to zero is responsible for the elastic properties
of polymer chains. Namely, if you imagine stretching a polymer (say, the
E. coli DNA) so that R is non-zero, then upon release it will quickly find
itself in the R ≈ 0 state solely by virtue of this being a much more likely
state. Note that this is not the result of any real physical force, such as, for
example, the electric force which is ultimately responsible for the elastic
properties of crystals, but purely a result of statistics. As such it is, like
the case of pressure of the ideal gas, another example of an entropic force.
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The Persistence Length Is a Measure of the Length Scale Over Which
a Polymer Remains Roughly Straight

With the random walk model in hand we can describe the structure of long
polymers, whose contour length L is much larger than the persistence length ξp,
which is the length over which the polymer is essentially straight. In particular,
the persistence length is the scale over which the tangent-tangent correlation
function decays along the chain. To see this idea more clearly, we imagine
a polymer as a curve in three dimensional space. At each point along that
curve, we can draw a tangent vector which points along the polymer at that
point. As a result of thermal fluctuations, the polymer meanders in space and
the persistence length is the length scale over which “memory” of the tangent
vector is lost. From a mathematical perspective, we can write the tangent-
tangent correlation function as 〈t(s) · t(s′)〉, where t(s) is the tangent vector
evaluated at the point a distance s along the polymer and the notation 〈· · · 〉
is an instruction to average over all the configurations. The persistence length
determines the scale over which correlations in tangent vectors decay through
the equation

〈t(s) · t(s′)〉 = e
− |s−s′|

ξp . (8.24)

A good example of a long flexible polymer is provided by genomic DNA
of viruses such as λ-phage with a contour length of 16.6µm. This should be
compared to the persistence length ξp ≈ 50nm of DNA at room temperature
and solvent conditions typical of the cellular environment. Since the persistence
length is the length over which the tangent vectors to the polymer backbone
become uncorrelated, we can think of the polymer as consisting of N ∼ L/ξp

connected links which take random orientations with respect to each other.
This is the logic which gives rise to the freely jointed chain model (essentially
the random walk picture undertaken in the previous section).

As already described, in the freely-jointed-chain model, polymer conforma-
tions are random walks of N steps. The length of the step is the Kuhn length
which is roughly equal to the persistence length. As promised in the earlier
discussion, we now establish the relation between the persistence length and
the Kuhn length invoked in the random walk model. To make a more precise
determination of the Kuhn length we calculate the mean-squared end-to-end
distance of an elastic beam undergoing thermal fluctuations, and compare it to
the same quantity obtained for the freely jointed chain. The end-to-end vector
R of a beam can be expressed in terms of the tangent vector t(s),

R =
∫ L

0

dst(s) (8.25)

Therefore

〈R2〉 = 〈
∫ L

0

dst(s)
∫ L

0

dut(u)〉 (8.26)
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where 〈· · · 〉 is the thermal average. Using the tangent-tangent correlation func-
tion, eqn. 8.24, we find

〈R2〉 = 2
∫ L

0

ds

∫ L

s

due−(u−s)/ξp . (8.27)

The above integral is obtained by splitting up the integration over the L × L
box in s-u space to integrals over the two triangles, one with s < u and the
other with s > u, which give equal contributions (thus the factor of two). In
the limit L � ξp we are considering here, we have

〈R2〉 ≈ 2
∫ L

0

ds

∫ ∞

0

dxe
− x

ξp = 2Lξp . (8.28)

Comparing this to the result that follows from the random walk model, 〈R2〉 =
aL, we see that Kuhn length a is twice the persistence length. We are now
prepared to make estimates of the physical size of genomes in solution.

8.2.2 How Big is a Genome?

In previous sections we have demonstrated how the size of a polymer, when
viewed as a random walk, can be written in terms of key parameters such as
the persistence length ξp and the number of Kuhn lengths making up the entire
contour. In particular, we deduced the size of the polymer in solution may be
written as √

〈R2〉 = 2ξp

√
N. (8.29)

This equation may be rewritten in terms of the polymer length once we recall
that the number of “monomers” (more correctly, the number of Kuhn lengths)
in the chain is given by N = L/2ξp. In light of this result, we then have√

〈R2〉 =
√

2Lξp. (8.30)

The radius of gyration is perhaps a more intuitive measure of the size of a
polymer in solution and is defined through the expression

〈R2
G〉 =

1
N

N∑
i=1

〈(Ri −RCM )2〉. (8.31)

The center of mass can be defined as

RCM =
1
N

N∑
i=1

Ri. (8.32)

With this definition of the radius of gyration in hand, a simple relation between
radius of gyration, contour length (L) and persistence length ( ξp) can be written
as (proven by the reader in the problems at the end of the chapter)√

〈R2
G〉 =

√
Lξp

3
. (8.33)
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Figure 8.5: Plot of the average size of a DNA molecule in solution as a function
of the number of base pairs using the random walk model.

We may write this result in an alternative form in terms of the number of
base pairs in the genome of interest by noting that L ≈ .34Nbp nm, and hence,√

〈R2
G〉 ≈ .3

√
Nbpξpnm. (8.34)

This relation between the radius of gyration of DNA in solution and the number
of base pairs is plotted in fig. 8.5.

• Estimate: The Size of Viral and Bacterial Genomes. One applica-
tion of ideas like those described above in the setting of biological electron
microscopy is to images of viruses and cells that have ruptured and are
thus surrounded by the DNA debris from their genome. We already men-
tioned in conjunction with fig. 1.12 (pg. 41) that the appearance of DNA
in electron microscopy images can be used as the basis of an estimate of
genome length. A second example is shown in fig. 8.6 where it is seen
that the DNA adopts a configuration in solution which is much larger than
the configuration it has when packed inside of the virus or bacterium. To
develop intuition for what is seen in such images, we exploit eqn. 8.33
to formulate an estimate of the size of the DNA. Consider fig. 1.12 which
shows bacteriophage T2. As seen in the figure, the viral genome has leaked
from what is apparently a ruptured capsid and we will assume that this
DNA in solution has adopted an equilibrium configuration. The genomes
of T2 and T4 are very similar with a genome length of roughly 150 kB.
For a genome of length L = Nbp3.4Å ≈ 510, 000Å and recalling that the
persistence length is ξp ≈ 500Å, eqn. 8.33 tells us that the mean size of the
DNA seen in fig. 1.12 is

√
〈R2

G〉 =
√

2× 500× 510× 103Å ≈ 2µm. This
result is comparable to though larger than the length scale of the exploded
DNA seen in fig. 1.12. Given the crudeness of the model and probably
more importantly, the fact that the DNA seems to be constrained via links
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Figure 8.6: Illustration of the spatial extent of a bacterial genome which has
escaped the bacterial cell. The expanded region in the figure shows a small
segment of the DNA and has a series of arrows on the DNA, each of which have
a length equal to the persistence length in order to give a sense of the scale over
which the DNA is stiff.

to the capsid itself, this analysis provides a satisfactory first approximation
to the structures seen in electron microscopy.

These same arguments can be invoked again to coach our intuition con-
cerning the size of the DNA cloud surrounding a bacterium that has lost
its DNA as well. In this case, the genome length is substantially larger
than that of the T2 phage, namely, L ≈ 4.6× 106× 3.4 Å ≈ 1.5× 107 Å ≈
1600 µm. Once again invoking eqn. 8.33 tells us that the mean size of the
DNA seen in fig. 8.6 is

√
〈R2

G〉 ≈ 12 µm. As with the phage calculation,
the random walk calculation should be seen as an overestimate since the
DNA is clearly forced to return to the bacterium repeatedly, inhibiting
the structure from adopting a fully expanded configuration.

8.2.3 The Geography of Chromosomes

Genetic Maps and Physical Maps of Chromosomes Describe Different
Aspects of Chromosome Structure.

In our discussion of DNA so far, we have described it as a featureless, self-
similar polymer chain. However, of course, DNA is much better known and
appreciated as the carrier of genetic information. Classical genetics focused on
identification and characterization of genes as abstract entities, ignoring the
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importance of their physical location on chromosomes and overlooking the con-
sequences of the physical nature of the carrier DNA molecule. The ground
breaking work of Thomas Hunt Morgan and his gene hunters which we described
in chap. 4 was an early and vivid illustration of the fact that the abstract in-
formational entities known as genes exist with concrete physical relationships
to one another. As we have learned more about the regulation and activity
of genes, it has become more and more clear that the physical location and
dynamic properties of the DNA molecule that carries them are critical compo-
nents of their biological activity. For example, Morgan’s mapping strategy relied
on measuring the frequency of recombination between two or more genes. The
physical process of recombination requires that two homologous DNA molecules
be mobile within a nucleus such that they can physically encounter one another
with a measurable frequency. Recombinations do not seem to occur in all nuclei.
In the fruit fly, chromosomes are able to recombine in meiosis during oogenesis
in the female germline, but not during spermatogenesis in the male germline.
Why is it that sometimes DNA segments are able to physically encounter one
another and sometimes they are not? What determines the probability of such
encounters? These issues in polymer conformations set physical limits on ge-
netic events ranging from transformation and transduction in bacterial cells to
the generation of diverse antibodies in the immune system of mammals.
Different Structural Models of Chromatin Are Characterized by the
Linear Packing Density of DNA.

One of the themes that we will keep revisiting is the question of DNA pack-
ing. In eukaryotic cells DNA is condensed into chromatin fibers. The basic unit
of chromatin is the nucleosome. How nucleosomes are packaged into chromatin
depends on whether the cell is dividing or not. In the interphase the cell is ac-
tively transcribing genes, and the chromosomes are not as condensed as during
mitosis when the two copies of the complete genome need to be equally divided
among the two daughter cells.

One measure of the degree of DNA packaging into chromosomes is the liner
density of chromatin ν, which specifies the number of base pairs of DNA in a
nanometer of chromatin fiber. For the 30nm-fiber, shown in fig. 8.7(A), ν ≈
100bp/nm, while for the 10nm-fiber the packing density is about an order of
magnitude smaller. A simple estimate of ν can be made based on the micrograph
in fig. 8.7(B) which shows individual nucleosomes along the 10nm-fiber. We see
that there are on average 2 nucleosomes for every 50nm of fiber. In yeast cells,
for example, there is 200bp per nucleosome (150bp wound around the histones
plus 50bp of linker DNA) therefore ν ≈ 2 × 200bp/50nm = 8bp/nm. For
comparison, for metaphase chromosomes ν ≈ 30, 000bp/nm.
Spatial Organization of Chromosomes Shows Both Elements of Ran-
domness and Order.

Until recently it was believed that interphase chromosomes were randomly
distributed within the cell nucleus resembling a bowl of spaghetti. Contrary to
this view there is mounting evidence from experiments with fluorescently tagged
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Figure 8.7: Chromatin under the electron microscope. (A) Chromatin extracted
from an interphase nucleus appears as a 30nm thick fiber. (B) The 10nm fiber
structure shows individual nucleosomes.

chromosomes that the spatial organization of genes in the cell is ordered, as de-
picted in fig. 8.8. These experiments have put forward the notion of chromosome
territories whereby individual chromosomes and particular genetic loci are al-
ways found in the same region of the nucleus. The existence of chromosome
territories raises a number of questions about how gene expression and pairing
interactions of genes (such as during recombination) are orchestrated in space
and time.

The observation that interphase chromosomes are segregated would not be
surprising if we were dealing with a polymer system which is very dilute. In a
dense situation free polymers in solution will interpenetrate each other. Simple
estimates can be made for the density of chromatin within the nucleus, and they
typically lead to the conclusion that the expected, equilibrium state of chromo-
somes should be that of a dense polymer system. The fact that segregation is
not observed points to the existence of mechanisms beyond polymer chain en-
tropy and confinement, that affect the spatial distribution of chromosomes. We
will examine chromosome tethering as one such mechanism. Possible tethering
scenarios are shown in fig. 8.9.

• Estimate: Chromosome Packing in the Yeast Nucleus. To ex-
amine the question of whether the separate chromosomes in yeast are
expected to behave as independent blobs or an interpenetrating mess,
we pursue the discussion given above in quantitative detail. The yeast
cell has 16 chromosomes in its nucleus. The diameter of the interphase
nucleus is about 2µm. The chromosome size varies between 230kb to
1500kb, with a total genome size of 12Mb. This gives a density of c =
12 Mb/(4π/3 × 1µm3) ≈ 3Mb/µm3. Lets compare this density with the
density of a typical yeast chromosome released from the confines of the cell
nucleus. If we adopt the random walk model of a polymer to describe chro-
matin free in solution, this density can be estimated as c∗ = NG/(4π/3R3

g)
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Figure 8.8: Fluorescently stained chromosomes 18 and 19 in a human cell. The
chromosomes assume separate territories within the nucleus.
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Figure 8.9: Cartoon representation of possible tethering scenarios of interphase
chromosomes. The left panel shows tethering at the centromere and the two
telomeres at the nuclear periphery. The right panel shows tethering at interme-
diate locations.
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where NG is the chromosome size in base pairs, and Rg is the radius of
gyration of the polymer. If we take an average size of a yeast chromosome
to be 12 Mb/16 = 750 kb and a packing density of 8bp/nm the length of
this polymer is 750kb/(8bp/nm) = 94 µm. Using the in vitro measured
value of the persistence length for a 10nm-fiber, ξP = 30nm, the estimate
for the radius of gyration is, Rg = 0.97µm. This then leads to a density for
an ”free” chromosome of c∗ = 750kb/(4π/3× (0.97 µm)3) ≈ 200 kb/µm3

which is about 10 times smaller than the density of chromosomes in the
nucleus. The same qualitative conclusion is reached assuming a 30nm-
fiber model for the chromosomes. Using a packing density of 100 bp/nm
and the reported persistence length of 200nm an average chromosome has
a density of c∗ ≈ 500 kb/µm3. This indicates that the chromosomes in
the yeast nucleus should typically be found in an entangled melt-like con-
figuration. The fact that yeast chromosomes are segregated with each
chromosome taking up a well defined region of the nucleus indicates the
need for a specific mechanism for segregation, such as tethering to the
nuclear periphery, as shown in fig. 8.9.

Chromosomes Are Tethered at Different Locations.

One of the recent experimental tricks that has made it possible to examine
chromosome geography is the use of repeated DNA binding sites that are the
target of particular fluorescently labeled proteins. Conceptually, the experiment
can be designed by having two distinct sets of DNA binding sites that are sep-
arated by a known genomic distance. Then, by measuring the physical distance
between these binding sites in space as revealed by where the colored spots ap-
pear in a fluorescence image, it is possible to map out the spatial distribution
of different sites on the genome. Experiments that utilize fluorescence in-situ
hybridization, or lacO arrays inserted into the chromosomes and labeled with
GFP fused Lac repressors, can yield detailed information about the distribution
of distances between chromosomal loci. In the absence of tethering a random
walk model of chromatin leads to a Gaussian distribution of distances between
two tagged loci,

P (r) =
(

3
2πNa2

)3/2

exp
(
−3r2

2Na2

)
, (8.35)

while the presence of a tether at position R would simply lead to a displaced
Gaussian,

P (r) =
(

3
2πNa2

)3/2

exp
(
−3(r−R)2

2Na2

)
. (8.36)

In these formulas a = 2ξp is the Kuhn or segment length of the polymer, while
N is the total number of segments; Na is the polymer contour length. Using the
linear packing density of DNA in chromatin ν, the contour length can be written
in terms of the genomic distance as NG/ν. For example, two genomic loci NG =
100kb apart would be separated by a 30-nm fiber which is 100kb/100bp/nm =
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Figure 8.10: Physical distance between two fluorescently labeled loci on human
chromosome four as a function of the genomic distance. The physical distance
is measured in terms of the average squared distance between the two labels.

1µm in contour length. Assuming that the chromatin structure is that of a
10nm fiber the contour distance along the fiber between the loci would be ten
times as large given the ten times smaller packing density.

The end-to-end distribution function for a random walk polymer is deter-
mined by a single parameter Na2, the mean end-to-end distance squared. Since
the contour length Na = NG/ν, the mean end-to-end distance squared can also
be written as

〈
R2
〉

= NGa/ν. Therefore the material parameter that charac-
terizes the random-walk model of chromosomes is the ratio of the Kuhn length
and the packing density. This parameter can be determined from measure-
ments of the average distance squared between two regions of the chromosome
as a function of their genomic distance. The results of such a measurement on
human chromosome four are shown in fig. 8.10, where the fit to the data yields
an estimate of a/ν = 2nm2/bp, which is nothing but the initial slope of the
linear portion of the data. The fact that the plot levels off at large genomic
distance can be contributed to the effect of chromosome confinement within the
cell nucleus. Below we analyze this confining effect using a random walk model
in the context of the chromosomes of the bacterium V. cholerae.

It is interesting to use the measured value of a/ν to estimate the Kuhn length
for the 30-nm and the 10-nm chromatin fiber. Since ν30−nm ≈ 100bp/nm and
ν10−nm ≈ 10bp/nm, the corresponding persistence lengths are 100nm and 10nm.
Even more interestingly the measured a/ν makes a prediction for the probability
distribution of distances between fluorescently tagged loci on the chromosome,
which we take up next.

Typically, due to random orientations of cells in the microscope, experiments
with tagged chromosomes only yield information about the magnitude r of the
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Figure 8.11: Statistics of yeast chromosome III. Distribution of distances be-
tween two fluorescent tags placed in proximity of the cetromere and the HML
region on yeast chromosome III. These two regions are separated by approxi-
mately 100kb in genomic distance.

distance vector r between the two marked spots on the chromosome. These
can be obtained from eqn. 8.35 and eqn. 8.36 by integrating out the angular
variables θ and φ associated with the vector r. This procedure yields

P (r) =
(

3
2πNa2

)3/2

4πr2 exp
(
−3r2

2Na2

)
, (8.37)

for the untethered case and

P (r) =
(

3
4πNa2

)1/2
r

R

[
exp

(
−3(r −R)2

2Na2

)
− exp

(
−3(r + R)2

2Na2

)]
. (8.38)

when the polymer is tethered. The parameter characterizing the mechanical
properties of the DNA is Na2 = NGa/ν. Note that that tethering gives a
different functional form for the distribution of distances.

Measurement of the distribution of distances between tagged regions on yeast
chromosome III demonstrates that this difference in distributions can be ob-
served in vivo. Namely, in fig. 8.11 we show the distance distribution measured
between two florescent tags, one placed near the HML region of chromosome
III of budding yeast and the other on the spindle pole body, which essentially
marks the location of the centromere. The measured distribution is poorly fit-
ted by the free-polymer formula, eqn. 8.37, while the tethered polymer formula,
eqn. 8.38 does the job nicely.

The fit to the tethered-polymer distribution yields two quantities that char-
acterize the model, the mean squared distance, Nb2 = 0.5µm2, and R ≈ 0.9µm,
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Figure 8.12: Chromosome geography in Caulobacter crescentus. Average posi-
tions (x/L) and the standard deviation (∆x/L) of the position along the long
axis of the cell, for 112 different fluorescently tagged locations along the chro-
mosome of C.crescentus. The locations of the fluorescent tags are shown on the
diagram.

the distance to the tethering point. Note that in order to compute the ge-
nomic location of the putative tethering point we need the parameter b/ν which
characterizes chromatin structure. For yeast chromosomes measurements of the
physical distance as a function of the genomic distance yield anu ≈ 3nm2/bp
which in turn predicts a genomic distance of NG = Na2/(a/ν) = 160kb. More
importantly the tether model makes quantitative predictions for the distance
distribution if the marker at HML is moved to a new genomic location.
Chromosome Territories Have Been Observed in Bacterial Cells.

Bacterial chromosomes were until recently thought of as unstructured and
random. This view has been seriously challenged by experiments that utilize
fluorescent markers placed at different genomic locations, as shown in fig. 8.12.
In this experiment 112 different mutants of C.cresentus were created with fluo-
rescent tags placed at 112 different locations covering the length of its circular
chromosome. Measurements of the average position of the markers along the
length of the cell revealed a linear relationship between the genomic distance
from the origin of replication and the physical distance away from the pole of
the bacterium. This is not too be expected assuming a simple model of the
4Mbp circular chromosome as a polymer loop confined to the cell.

• Estimate: Chromosome organization in C. crescentus. Another
measure of the organization of chromosome in C.cresentus is provided
by the width of the distribution of positions of the marked regions. As
shown in fig. 8.12 the standard deviation of the position is independent
of genomic distance from the origin of replication, and is approximately
0.2µm (cell length L ≈ 2µm). We can rationalize this measurement within
a simple model where the chromosome is partitioned into loops. This
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can be affected by proteins that make contact between different loca-
tions on the chromosome (H-NS is a possible candidate). To estimate
the size of a loop we assume that the observed dispersion of the position
is due to the random walk nature of the loop. Since the mean of the
square of the three-dimensional end-to-end distance is Na2 the mean of
x2 is three times less, or Na2/3. Using the relation between genomic
distance and the mean distance squared, Na2 = NGa/ν, and assum-
ing that the chromosome has the same Kuhn length (a = 100nm) and
packing density (ν = 3bp/nm) as naked DNA, we arrive at an estimate
(0.2µm)2 = Na2/3 = NG/3(100/3)nm2/bp, NG ≈ 4kb, which means that
the loop should be 8kb or less. (A more careful analysis would take into
account the closed nature of a loop yielding an estimate which is higher by
a factor of two.) This correlates nicely with other measurements of topo-
logical domains in bacterial chromosomes which find them to be roughly
10kb in size.

Chromosome Territories in V. cholera Can Be Explained by Models
of Polymer Confinement and Tethering

Another experiment placed a fluorescent markers close to each of the two
origins of replication on the two chromosomes of the bacterium V.cholerae. This
bacterium has two chromosomes, 3Mb and 1Mb in size. In this case the position
along the length of the cell (x) and perpendicular to it (y) were both measured.
The distribution of x and y are shown in fig. 8.13 for the origin of replication
for the larger of the two chromosomes. For comparison, the length of the cell is
about 3.2µm, while its diameter is roughly 0.8µm.

The width of the distribution of x positions is roughly half a micron, which is
considerably less than the length of the cell. The distribution is centered around
x0 = 0.6µm, consistent with a tether located at this position in the cell, and is
well described by a Gaussian, as expected for a random walk polymer that is
unaffected by the presence of cell walls. By fitting the Gaussian distribution for
the end-to-end distance of a simple one-dimensional random walk polymer,

P (x) =

√
1

2πNa2
e−(x−x0)

2/Na2
(8.39)

we extract the parameter Na2 = 0.16µm2. Assuming once again the Kuhn
length of bare DNA, a = 0.1µm, we conclude that the number of Kuhn seg-
ments between the fluorescent marker and the tethering point at x0 = 0.6µm,
is N = 16. Taking ν = 3bp/nm this gives a genomic distance of 16 × 0.1µm ×
3bp/nm = 4.8kb to the tether. Therefore the simple one-dimensional model of
the chromosome predicts a tether at genomic position roughly 5kb away from
the location of the fluorescent marker.

The distribution of positions along the y-direction is spread over the width of
the cell and is centered at zero. The latter is a consequence of the experimental
procedure whereby distance data was collected from cells whose orientation



8.2. MACROMOLECULES AS RANDOM WALKS 381

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.05

0.1

0.15

0.2

P(x) P(y)

x [µm] y [µm]

pk 8.14.5 

-0.3 -0.2 -0.1 0.1 0.2 0.3

0.05

0.1

0.15

0.2

0.25

0.3

(B)

(A)

(C)

x 

y 

3.2 µm

0.8 µm

Figure 8.13: Chromosome position distributions in vivo. (A) The position of
the fluorescently tagged origin of replication on the larger of the two V.cholerae
chromosomes, is measured along the long axis of the cell (x-direction) and per-
pendicular to it (y-direction). The cell can be modeled as a cylinder, while
the distribution of x and y positions can be explained with a model of a chro-
mosome as a confined and tethered random walk polymer. (B-C) Measured
distance distribution functions and comparison to theory.

along the azimuthal direction was random. Furthermore, the distribution is not
Gaussian, indicative of confinement by the cell walls.

To develop quantitative intuition about confinement we develop a model of
a one-dimensional polymer made up of N segments, each of length a, tethered
at position x0 and confined to a cell of size L; see fig. 8.14. We would like to
calculate the distribution of the end-to-end distance P (x;N).

To compute P (x;N) we once again make use of the mapping to the random
walk model whereby polymer configurations are identified with trajectories of a
random walker that has taken N steps starting at position x0. As we are only
interested in those random walks that stay within the box, we impose absorbing
boundary conditions at the boundaries. This guarantees that any walk that
crosses the boundary of the box is excluded from the ensemble of allowed walks.
The fraction of random walks that start at x = x0 and end up at x without
leaving the box is then G(x;N). This quantity satisfies the diffusion equation,

∂G(x;N)
∂N

=
a2

2
∂2G(x;N)

∂x2
. (8.40)

The probability that a walk which stays in the box also ends up at position x,
is then

P (x;N) =
G(x;N)∫ L

0
G(x;N)dx

. (8.41)

Therefore to obtain the probability distribution P (x;N) we must first solve
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Figure 8.14: Simplified one-dimensional model of a chromosome confined to a
cell of size L and tethered at position x0. The model makes a prediction for the
distribution of distances to the fluorescent marker P (x).

eqn. 8.40 with boundary conditions G(0;N) = G(L;N) = 0 and the initial
condition G(x; 0) = δ(x− x0).

To solve eqn. 8.40 we expand the function G(x;N) into a Fourier series,

G(x;N) =
∞∑

n=1

An(N) sin
(nπ

L
x
)

; (8.42)

Note that every term in the sum satisfies the absorbing boundary condition.
We still need to satisfy the initial condition and the differential equation itself.

The initial condition states

δ(x− x0) =
∞∑

n=1

An(0) sin
(nπ

L
x
)

(8.43)

and it needs to be solved for the constants An(0). To do this we multiply both
sides with sin(mπx/L) and integrate the equation from 0 to L. The left hand
side gives sin(mπx0/L) while the right hand side is

∞∑
n=1

An(0)
∫ L

0

sin
(nπ

L
x
)

sin
(mπ

L
x
)

dx = Am(0)
L

2
(8.44)

where we have used the orthogonality property of sine functions:∫ L

0

sin
(nπ

L
x
)

sin
(mπ

L
x
)

dx = δn,m
L

2
. (8.45)

Putting the results of integration of the left and right hand side of eqn.8.43
together, we find

Am(0) =
2
L

sin
(mπ

L
x0

)
. (8.46)
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Now we turn to the differential equation itself. The question at hand is
what should we choose for the coefficients An(N) so that the diffusion equa-
tion, eqn. 8.40, is satisfied. To figure this out we simply substitute the Fourier
expansion of G(x;N) into the differential equation. This yields:

∞∑
n=1

∂An(N)
∂N

sin
(nπ

L
x
)

= −a2

2

∞∑
n=1

An(N)
(nπ

L

)2

sin
(nπ

L
x
)

. (8.47)

Now we once again use the trick of multiplying both sides of this equation with
sin(mπx/L) and integrating from 0 to L. Employing the orthogonality property
this time yields a differential equation for the coefficient Am(N):

∂Am(N)
∂N

= −a2

2

(mπ

L

)2

Am(N) . (8.48)

The solution to this equation is an exponential function,

Am(N) = Am(0) exp
(
−
(mπ

L

)2 a2

2
N

)
, (8.49)

where the coefficient Am(0) was determined above (eqn.8.46) from the initial
condition.

Finally, the solution to eqn.8.40 that satisfies the initial condition that all
walkers start at x0 and the absorbing boundary conditions at the box bound-
aries, is

G(x;N) =
∞∑

n=1

2
L

sin
(nπ

L
x0

)
sin
(nπ

L
x
)

exp
(
−
(nπ

L

)2 a2

2
N

)
. (8.50)

To turn this quantity into the sought out probability distribution for the end-
to-end distance of a polymer confined in a box, we make use of eqn.8.41, to yield

P (x;N) =
1
L

∑∞
n=1 sin

(
nπ
L x0

)
sin
(

nπ
L x
)
exp

(
−
(

nπ
L

)2 a2

2 N
)

∑∞
n=1 sin

(
nπ
L x0

)
1

nπ (1− cos(nπ)) exp
(
−
(

nπ
L

)2 a2

2 N
) . (8.51)

This probability distribution is plotted in fig. 8.15a for DNA (a = 100nm)
confined to a box 2µm in length, for DNA lengths ranging from 0.5µm to 10µm.
Note that for the shortest chain the confining box has no effect and the end-
to-end distance distribution is a simple Gaussian function, eqn.8.39. For the
intermediate chain length, Na = 2µm, the effect of the box is to skew the dis-
tribution owing to the fact that the tethering point, x0 = 0.75µm, was chosen
closer to the left box boundary. Finally, for very long DNA lengths the distri-
bution is once again symmetric, with all memory of the tethering point lost.
This provides us with the quantitative intuition that allows us to conclude that
the observed distribution of average positions of markers along the C.crescentus
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Figure 8.15: A. The distribution of distances to the fluorescent marker for the
one-dimensional chromosome model for different contour lengths of the chro-
matin fiber between the tethering point (at x0 = 0.75µm) and the fluorescent
marker. The cell size is L = 2µm, and the packing density and Kuhn length are
that of bare DNA. (B) Same as in A, for a 1µm long chromatin fiber confined
to cells of different size and tethered in the middle of the cell.

chromosome is inconsistent with a model of a polymer confined to the cell inte-
rior which is only tethered at the pole of the bacterium. In other words, further
constraints need to be imposed on the chromosome to establish the observed
chromosome geography.

In fig. 8.15b we plot once again the end-to-end distance distribution using
eqn.8.51, but this time for a Na = 1µm long DNA molecule (a = 100nm) teth-
ered at the center of the confining box, for box sizes ranging from 1µm to 3µm.
We note that the effect of confinement sets in rather rapidly: there is little
evidence for it in the largest box size, while for the smallest one the distribu-
tion is practically that of a very long polymer confined to a small box. This
provides an explanation of the difference in the observed distance distributions
in the x and y direction for the fluorescent markers placed on the V.cholerae
chromosome. We can check this assertion quantitatively by fitting the measured
x-distribution to the derived formula. This gives two parameters, the position
of the assumed tether x0 and the size of the chain characterized by the quantity
Na2. With the quantity Na2 in hand and assuming the y position of the tether
to be at y = 0 (turns out this has little effect given the strong confinement in the
y-direction, which, as remarked above, erases the effect of the tether position)
we can simply plot the expected y-distribution and ask whether it matches the
data. This comparison is shown in fig.8.13. A better match to the data can be
achieved by taking the cell to be a cylinder and further taking into account the
fact that the y measurement is the projection of the radial distance onto the
plane of the cover-slip on which the cells rest.JK: replace the data fits for

Vibrio with the 1d result so
that it matches what we do in
the chapter. Make the cylin-
der case a homework

• The Math Behind the Models: Expanding in Sines and Cosines.
Throughout the book we are often invited to consider functions that are
defined on the interval between 0 and L. A useful property of such func-
tions that we employ over and over again is that they can be expanded
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into a Fourier series:

f(x) =
a0

2
+

∞∑
n=1

an cos
(

2πn

L
x

)
+ bn sin

(
2πn

L
x

)
. (8.52)

Here an and bn are Fourier coefficients, numbers that need to be computed
for a given function f . The above equality is true for all points on the
interval with the possible exception for x = 0 and x = L. Namely, since
all the functions appearing in the sum on the right hand side take on the
same value at 0 and L, we would have to conclude that f(0) = f(L) is
also true. If this if not the case, it can be shown that the Fourier series
representation of f(x) takes on the value (f(0)+f(L))/2 at the boundaries
of the interval.

Computing the Fourier coefficients relies on the orthogonality property of
sine and cosine functions. Namely, the integral of the product of two such
functions is non-zero only in the case when both functions are sines, or
both are cosines, and they have the same period; the period of sin

(
2πn
L

)
is L/n. Mathematically stated

∫ L

0

sin
(

2πn

L
x

)
cos
(

2πm

L
x

)
dx = 0∫ L

0

sin
(

2πn

L
x

)
sin
(

2πm

L
x

)
dx = δn,m

L

2∫ L

0

cos
(

2πn

L
x

)
cos
(

2πm

L
x

)
dx = δn,m

L

2
(8.53)

where the Kronecker symbol, δn,m, is one for n = m and zero otherwise.
With these identities in hand, we can compute the Fourier coefficients of
the function f(x) by multiplying it with sines and cosines with different
periods, and integrating over the interval between 0 and L. Looking at
the right hand side of eqn. 8.52 and taking into account the orthogonality
identities above, we see that the only surviving term on the right hand
side will be the sine or cosine term with the same period. Therefore, we
have the following identities

∫ L

0

f(x)dx =
a0

2∫ L

0

f(x) cos
(

2πn

L
x

)
dx = an

L

2∫ L

0

f(x) sin
(

2πn

L
x

)
dx = bn

L

2
(8.54)
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from which we can compute the Fourier coefficients

a0 =
2
L

∫ L

0

f(x)dx

an =
2
L

∫ L

0

f(x) cos
(

2πn

L
x

)
dx

bn =
2
L

∫ L

0

f(x) sin
(

2πn

L
x

)
dx . (8.55)

Its important to note that the Fourier series representation of the function
f(x) on the interval zero to L obtained in this way is not unique. The
representation developed above corresponds to a function F (x) that is
periodic on the whole x axis, with period L. and is obtained from f(x)
by simply repeating it on intervals (L, 2L), (2L, 3L), etc. and (−L, 0),
(−2L, L), and so on. Of course, this is not the only way of obtaining a
periodic function in x from a function f(x) defined on (0, L). One can for
instance take −f(−x) on the interval (−L, 0) and then repeat this new
function, now defined on the interval (−L,L), over all interval of length
2L that cover the x axis. Unlike the previous procedure such a function
would be 2L periodic, but would still give a faithful representation of f(x)
on the interval of interest, (0, L). Which representation one ends up using
is often a matter of convenience.

To illustrate the procedure of expanding a function into a Fourier series,
lets consider the simple example given by the function f(x), which is equal
to 1 for 0 < x < L/2 and equal to zero for L/2 < x < L. Extending this
function to the whole x axis gives a square wave. Fourier coefficients are
computed using eqn. 8.55, and we find a0 = 2/L, an = 0, bn = 0 for n
even and bn = 2/(πn) for n odd. How the function f(x) emerges from
the Fourier series as more and more terms are kept in the sum is shown
in fig. 8.16.

8.2.4 DNA Looping: From Chromosomes to Gene Regu-
lation

The organization of genomes occurs at many different scales. A shorter scale
phenomenon of widespread significance is the formation of loops of various kinds
in both genomic DNA and RNAs as well. These looping events can be fruitfully
examined from the random-walk perspective. Fig. 8.17 shows how nucleic acids
form “loops” in a wide variety of different settings. For example, as shown in
the previous chapter and illustrated in fig. 8.17(A), melting of DNA results in
bubbles of single stranded fragments and the meandering of the single-stranded
fragments can be evalulated as a problem in random walks. Similar ideas are
relevant in evaluating the propensity of RNA to form hairpin loops. Another
favorite example involves the formation of DNA loops by transcription factors as
part of the process of gene regulation. Yet another example shown in fig. 8.17(D)
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Figure 8.16: Fourier series representation of a square wave. Different graphs
correspond to the Fourier series representation of the square wave function where
the first N terms have been retained in the sum on the right hand side of
eqn. 8.52.

involves genetic recombination in which distant parts of chromosomal DNA find
one another as a precursor to the recombination event itself. These events are
important in situations ranging from mating type switching in yeast to V(D)J
recombination in B cells to the stochastic decision making that attends olfactory
receptor selection.
The Lac Repressor Molecule Acts Mechanistically By Forming a Se-
questered Loop in DNA

In fig. 4.13 (pg. 182) and section 4.4.3 (pg. 184), we introduced the lac
operon as a particularly notable example of gene regulation. One part of the lac
operon story is how the genes of this operon are repressed by the Lac repressor
molecule as shown in fig. 8.18. Thus far, our description of Lac repressor has
been largely schematic without particular reference to the mechanical actions
responsible for repression. The actual story of the action of Lac repressor is
more complicated than that illustrated in fig. 4.16 (pg. 187). In fact, there are
several other operator sites (O2 and O3) in addition to the primary operator
site (O1) described there where the repressor can bind resulting in a DNA loop
like that shown in fig. 8.18. The effectiveness of repression is highest when the
Lac repressor tetramer (built up from four copies of the lacI gene) binds to two
operators simultaneously.
Looping of Large DNA Fragments Is Dictated by the Difficulty of the
Distant Ends to Find Each Other

In order for a protein molecule such as the Lac repressor to spontaneously
form a loop in the DNA, the DNA and protein must together suffer a fluctuation
that brings all of the pieces into physical proximity. As will be shown in chap. 10,
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Figure 8.17: Examples of looping. (A) bubble formation in a double-stranded
DNA helix, (B) Hairpin loop in RNA secondary structure, (C) DNA looping
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Figure 8.18: Model for DNA loop formation by the Lac repressor. The interface
between the protein and the DNA was determined by x-ray crystallography, but
the overall position and shape of the DNA in the loop is an artist’s rendition.
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for the DNA to bend in this way costs elastic energy. However, there is also
a contribution to the free energy of looping from entropy since when the DNA
is looped, there are fewer conformations available to the system and hence a
reduction in the entropy. As a warm-up exercise to evaluate the entropic cost of
loop formation we consider a one-dimensional model and examine the fraction of
conformations which close on themselves. The probability, p◦, of loop formation
is the probability that the one-dimensional random walker returns to the origin.
Using eqn. 8.10, we conclude

p◦ =
number of looped configs.
total number of configs.

=

N !

(N
2 )!(N

2 )!
2N

(8.56)

where N is the number of Kuhn segments. Here we are interested in the long
chain limit, which corresponds to N � 1. This is also the limit in which
the random walk model can be applied to DNA conformations, as discussed
previously. To further simplify eqn. 8.56 we make use of our trusty Stirling
formula, N ! ≈ (N/e)N

√
2πN , which for N � 1 implies

p◦ ≈
√

2
πN

. (8.57)

The interesting prediction of the model is that the cyclization probability of
long DNA strands will decay with polymer length to the power −1/2.

This result for the probability that the two ends will be within some small
distance of each other can also be obtained using the Gaussian approximation to
the end-to-end distribution derived earlier in the chapter. To use the continuous
distribution, we need the probability that the two ends of the chain are within
some critical distance of one another, namely, δ �

√
Na2. In this case the

end-to-end distribution of eqn. 8.16 can be approximated by

P (R;N) ≈ 1√
2πNa2

(8.58)

where we have made the substitution exp(−R2/2Na2) ≈ 1, valid for −δ < R <
δ. The cyclization probability is obtained by integrating over all the distances
of near contact in the form

p◦ =
∫ δ

−δ

1√
2πNa2

dR =

√
2

πN

δ

a
(8.59)

which is identical to eqn. 8.57 for δ = a.
Unlike the scaling of the polymer size with its length which we found to

be independent of the dimensionality of space, the effect of dimensionality on
cyclization is quite significant. In particular, the cyclization probability has a
different form depending upon whether we evaluate this quantity for one-, two-
or three-dimensional random walks. To see this, consider the 3-dimensional
random walker of N steps. The probability of returning to the origin can be
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written as the ratio of the number of walks that return to the origin to the total
number of walks in much the same way as we did above (the precise details of
this calculation in the discrete language is left to the problems at the end of the
chapter). However, a more immediate route to the result can be obtained by
exploiting the continuous distribution.

To see this, consider the end-to-end distribution of a three-dimensional ran-
dom walk. In particular, the probability that the two ends of the chain are at
distance δ or smaller, is given by the integral

p◦ =
∫ δ

0

4πR2P (R;N)dR =
∫ δ

0

4πR2

(
3

2πNa2

) 3
2

e−
3R2

2Na2 dR . (8.60)

Since we are interested in cyclization we can assume that the distance δ is much
smaller than the polymer size, N1/2b. In this case the exponential function in
the integrand can be approximated by one, and the resulting integral is

p◦ =
∫ δ

0

4πR2

(
3

2πNa2

) 3
2

dR =
(

6
πN3

) 1
2
(

δ

a

)3

. (8.61)

The main conclusion that follows from this calculation is that the cyclization
probability decays as the number of Kuhn segments of the chain to the power
−3/2. In section 10.3 (pg. 463), we will finish these arguments by showing how
to link the entropic and energetic description of DNA looping. These ideas will
then be applied to compute the probability of gene expression in section 19.2.5
(pg. 873).

8.2.5 PCR, DNA Melting and DNA Bubbles

So far we examined biological processes associated with DNA loops where the
double stranded molecule stays intact. During DNA processing by various poly-
merases loops of single stranded DNA are formed by local melting of the double
helix. This melting process is also at the heart of the polymerase chain reaction,
which is one of the key tools of modern molecular biology. Here we use random
walk models of DNA to consider how complementary base pairing competes
with the melted state in which the bases are no longer linked in pairs.
DNA Melting Is the Result of Competition Between the Energy Cost
and the Entropy Gain of Separating the Two Complementary Strands

DNA melting is the process by which two strands of the double stranded he-
lix come apart. This is one of the main steps in the polymerase chain reaction
(PCR) and it plays a crucial role in transcription and replication since dsDNA
needs to be “melted” locally so as to allow RNA or DNA polymerase to initiate
transcription or replication. The melting process is a competition between en-
tropy which favors the melted state and energy which is minimized when all the
bases are paired up and hydrogen bonds are formed between them. As a result,
melting can be induced by an increase in temperature, which changes the rela-
tive weights of entropy and energy in the DNA free energy, or, for example, by
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changing salt concentrations which change the energetics of hydrogen bonding.
When a cell needs to melt its DNA helix, it doesn’t change the temperature
or salt concentration, but rather uses an energy-consuming enzyme called a
helicase to pay the energetic penalty of separating the two DNA strands.

The polymerase chain reaction (PCR) has been a revolution within the rev-
olution of molecular biology. PCR permits the amplification of DNA fragments
so that these fragments can be used for processes such as cloning genes for ex-
pressing insulin in bacteria, finding rare mutations in a population, identifying
the origin of a blood sample at a crime scene and comparing the sequence of
human vs neanderthal. The basic idea is shown schematically in fig. 8.19. The
goal of the PCR reaction is to take some fragment of a DNA molecule and make
a huge number of copies of it. In fig. 8.19, it is seen that the reaction consists
of the template DNA (the piece to be copied), “primers” which are small (≈
20bp) DNA fragments that are complementary to sites on the DNA adjacent to
the region of interest, DNA polymerase which is the molecular xerox machine
that makes the copies and a host of nucleotides (the As, Gs, Ts and Cs) that
are the raw material for constructing new DNA molecules.

The way that a typical PCR reaction goes is based on a series of cycles in
which the temperature is alternately raised and lowered. The point of raising
the temperature is to melt the DNA. Once the DNA has been melted into
single strands, there is an annealing step during which the primers bind to
their target sites. After this, there is an elongation stage where the polymerase
molecules add the appropriate nucleotides to the nascent DNA double helix.
Once this cycle is finished, the whole thing is repeated, but now there are
more template molecules to use to build new DNA molecules. As a result, the
overall concentration of reaction product increases exponentially. Our aim in
this section is to perform a simple estimate of one part of the overall PCR
reaction, namely, DNA melting. The goal of this estimate is to illustrate some
important ideas rather than to shed any deep light on DNA melting or PCR
themselves.
DNA Melting Temperatures Can Be Estimated Using a Random
Walk Model

A simple model of DNA melting is based on a two-state internal-variable
model, like the ones introduced in chapter 7. In this model the base pairs are
either in the double-helical state or the melted state. A number of consecutive
base-pairs in the melted state are said to form a ”bubble”. A bubble costs an
energy due to the breaking of the favorable hydrogen bonds but is favored by
entropy since the single stranded DNA that makes up the bubble is considerably
more flexible than its double stranded counterpart and can therefore assume
many more configurations. The melting transition is therefore the result of the
contest between the energy and the entropy of bubble formation.

To examine this competition quantitatively we consider a simplified version
of the so-called Poland-Scheraga model where we allow the formation of only one
bubble as shown in fig. 8.20. This is a reasonable assumption for a DNA strand
of moderate length (100− 1000bp) as the energy penalty for initiating a bubble
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is considerably larger than for elongating the bubble. For short strands the
entropy gained by having more than one bubble will not be enough to overcome
this energy penalty for bubble initiation.

(A)

(B)

Figure 8.20: One-bubble Poland-Scheraga model. The possible states of a DNA
strand of length N base pairs are labelled by the length of the single bubble,
1 ≤ n ≤ N . (A) Schematic of a single bubble in the DNA. (B) One-dimensional
random walk picture of the DNA with a bubble. The significance of the lengths
of the cylinders is to characterize the difference in persistence length between
the dsDNA (stiff) and the much more flexible ssDNA. .

The quantity of interest for the one-bubble model is the equilibrium prob-
ability that the bubble is of length n base pairs. Statistical mechanics tells us
that this probability is given by

p1(n) =
e−∆G1(n)/kBT

Z
(8.62)

where ∆G1(n) is the free energy of formation for a bubble of length n and

Z =
N∑

n=1

e−∆G1(n)/kBT (8.63)

is the partition function of the one-bubble model. The free energy of formation
can be written as

∆G1(n) = Ein + nEel − kBT ln (Ω◦(n)(N − n)) (8.64)

where Ein and Eel are the energies for initiating and for elongating a bubble
by one base pair, respectively, while Ω◦(n) is the number of ways of making
a bubble of two strands of ssDNA each n nucleotides long. The factor N − n
accounts for the number of ways of choosing the position along the DNA chain
at which the bubble is located. The precise form of the bubble entropy will
depend on the polymer model one adopts for the ssDNA. Here, in the name of
simplicity, we adopt the one-dimensional random walk model of a polymer. In
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this case we can write the number of configurations of the part of the DNA that
is single stranded

Ω◦(n) = 22np◦(2n) (8.65)

which is nothing but the number of random walks of total 2n steps that return
to the origin, introduced in eqn. 8.56. This reduces to

Ω◦(n) =
22n

√
πn

. (8.66)

for n � 1, where we have made use of eqn. 8.57 for the cyclization probability
p◦(2n).

The (reduced) free energy of our one-bubble model of DNA melting is there-
fore

∆G1(n)
kBT

= (εel − 2 ln 2)n +
1
2

lnn− ln(N − n) , (8.67)

where the energy parameter is given by εel ≡ Eel/kBT , and we have dropped
the initiation energy which is the same for all one-bubble states, and another
unimportant, n-independent constant.

In order to tease out quantitative intuition provided by this model, we ex-
amine how the bubble length n∗ at which the free energy is minimum (which
is also the most likely bubble length in thermal equilibrium) depends on the
temperature, or equivalently, the dimensionless elongation energy εel. Setting
the first derivative of the free energy with respect to n to zero, leads to the
equation

(εel − 2 ln 2) +
1
2n

+
1

N − n
= 0 (8.68)

whose solutions are

n∗± = N
1 + ∆ε±

√
1 + 6∆ε + ∆ε2

∆ε
(8.69)

where we have introduced a new variable

∆ε ≡ 2(εel − 2 ln 2) . (8.70)

Consider first the situation when ∆ε > 0. In this case both solutions, n∗± are
not of interest as they do not correspond to bubbles whole length is positive and
smaller than N . This means, that on the interval 0 < n ≤ N the free energy is
monotonically increasing and therefore we expect that the state with no bubble
wins out as one with the lowest free energy (this is not 100% guaranteed because
the Stirling approximation gets worse as n becomes smaller). Going back to the
original parameters in the models this means that for temperatures low enough,
so that Eel/kBT > 2 ln 2, the no-bubble state wins out. At higher temperatures,
when ∆ε > 0, the situation is very different. In this case both solutions n∗± are
of interest as they are both positive and less than N . One of the solutions is
typically small compared to N and is a local maximum while the other is close
in value to N and is a local minimum. In fig. 8.21 we show plots of the reduced
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Figure 8.21: Free energy of the one-bubble model as a function of the bubble
size. As the temperature is increased ε becomes smaller and smaller. At high
temperatures the most likely bubble size is close to the DNA length (ie. the chain
is completely melted), while for small temperatures it is zero. At intermediate
temperatures, the model predicts strong fluctuations of the bubble size.

free energy as given in eqn. 8.67 (ie.without the Stirling approximation) for
values of εel close to 2 ln 2 ≈ 1.39 which explicitly demonstrate this behavior.
It is interesting to note that for Eel/kBT < 2 ln 2 even though the no-bubble
configuration has the lowest free energy one should observe fluctuations into the
one-bubble states with a typical bubble size that will depend on temperature.
Also, close to the critical value of temperature the free energy as a function
of bubble size becomes relatively flat so one should observe bubbles of varying
sizes appear simply due to thermal fluctuations.

8.3 The New World of Single Molecule Mechan-
ics

Models such as the random walk model described here have extraordinary reach.
Yet another interesting application of these ideas is to the recent development
of single-molecule techniques for measuring the response of macromolecules to
external forcing.
Single Molecule Measurement Techniques Lead to Force Spectroscopy

There are a number of different ways of applying forces to individual macro-
molecules. Several of these techniques are represented in schematic form in
fig. 8.22. One such technique shown in fig. 8.22(A) involves the use of micron-
sized cantilevers which are attached to a macromolecule which is, in turn, teth-
ered to a surface. Through control of the height of the surface to which the
molecule is tethered, for example, the cantilever will suffer a deflection which can
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be measured using reflected laser light. A second example shown in fig. 8.22(B)
is optical tweezers which permit the application of forces of order 1-50 pN on
macromolecules of interest. In this case, the key idea is that by attaching a
macromolecule to a micron-sized bead, it is possible to pull on the bead (and
hence the molecule) by shining laser light on the bead and using the resulting
radiation pressure from the laser light to manipulate the bead. The same con-
cept is similarly played out in the context of the magnetic tweezers shown in
fig. 8.22(C) where the bead is manipulated by magnetic fields rather than laser
light. One of the interesting variations on the forcing scheme provided by the
magnetic tweezer is the opportunity to apply torsional forces which examine
the response of molecules to twist. The final example shown in fig. 8.22(D) is
the use of a pipette-controlled force apparatus in which the strengths of ligand
receptor interactions as well as the mechanical response of lipid bilayer vesi-
cles can be examined. Our main point in this discussion is to alert the reader
to the emergence of single-molecule techniques that complement the tools of
traditional solution biochemistry and permit the measurement of not only the
average properties of the various macromolecules of biological interest, but also
the fluctuations about this average response.

8.3.1 Force-Extension Curves: A New Spectroscopy

Different Macromolecules Have Different Force Signatures When Sub-
jected to Loading

The techniques introduced above permit the explicit measurement of the
force-extension characteristics of a range of different molecules. Fig. 8.23 shows
the force-extension properties of several characteristic examples ranging from
DNA to proteins. In particular, fig. 8.23(A) shows the force-extension charac-
teristics of a single DNA molecule subjected to loading. Note that the same
characteristic force-extension signature will be found for a given DNA molecule
regardless of which of the various techniques is used to measure it, and fur-
ther, that this curve provides a unique fingerprint which serves as the basis of
force spectroscopy of macromolecules. Fig. 8.23(B) shows a plot of the force-
extension properties of a particular RNA molecule. Note that the character of
the secondary structure associated with a given RNA molecule is translated, in
turn, into the character of the force-extension curve, illustrating the idea that
the force-extension curve provides a spectroscopic fingerprint of different macro-
molecules. Fig. 8.23(C) shows yet a third example of the intriguing diversity
of force-extension curves associated with different macromolecules, this time re-
vealing how the multidomain protein titin unfolds in the presence of force. One
immediate statement that can be made in this example is that the number of
load drops in the curve corresponds to the number of domains in the protein.
We emphasize that these three examples are but a tiny representation of the
broad class of measurements that have been made on polysaccharides, lipids,
proteins and nucleic acids as well as their assemblies.
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8.3.2 Random Walk Models for Force-Extension Curves

Given that different macromolecules exhibit different force-extension signatures,
it is of interest to see if we can compute some characteristics of these curves
using what we know about random walks. Indeed, the calculation of these force-
extension curves gives us the opportunity to further explore entropic forces.
The Low-Force Regime in Force-Extension Curves Can Be Under-
stood Using the Random Walk Model

One of the simplest models that can be written to capture the relation be-
tween force and extension in polymers is based on a strictly entropic interpreta-
tion of the free energy. In particular, by remembering that as the chain molecule
is stretched to lengths approaching its overall contour length, the overall number
of configurations available to the molecule goes down, and with it so too does
the entropy. This reduction in entropy corresponds to an increase in the free
energy. To the extent that the pulling experiment is done sufficiently slowly, we
can think of the force as being given by

force = −∂G

∂L
, (8.71)

where G is the free energy and L is the length.
We begin with a one-dimensional rendition of the freely-jointed chain model.

We imagine a polymer of overall length Ltot = Na, where N is the number of
monomers and a is the length of each monomeric segment. The basic thrust
of our argument will be to construct the free energy G(L) as a function of the
length L = (nr−nl)a from which the force necessary to arrive at that extension
is given by eqn. 8.71. As before, we use the notation nr and nl to signify how
many of the total links are right pointing (nr) and how many are left pointing
(nl). In order to proceed, we need an explicit formula for the free energy. As
noted above, in this simplest of models we ignore any enthalpic contributions
to the free energy, with the entirety of the free energy of the molecule taking
the form,

G(L) = −kBT ln W (L;Ltot), (8.72)

where W (L;Ltot) is the number of configurations of the molecule which have
length L given that the total contour length of the molecule is Ltot.

As shown in fig. 8.24, we are interested in the equilibrium of our random
walk representation of the polymer when it is subjected to external forcing such
as can be provided by an optical tweezers setup. A particularly transparent
way to imagine this problem is to think of weights being dangled from the ends
of the polymer as shown in fig. 8.25 (this idea of representing the energy of
the loading device via weights was introduced in fig. 5.12 (pg. 240)). In this
case, the free energy of eqn. 8.72 must be supplemented with a term of the
form Uweights = −2mgL. What this term says physically is that the more the
molecule is stretched, the lower the weights will dangle with the result that their
potential energy is decreased.
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f
f

Figure 8.24: Schematic of a model one-dimensional polymer subjected to exter-
nal forcing. The cartoon is meant to suggest that our one-dimensional random
walk polymer is attached to two optical beads at its extremities and that forcing
is applied using optical tweezers.

Putting together this term with the contribution from eqn. 8.72, we have for
the total free energy of the system

G(L) = −2mgL︸ ︷︷ ︸
contribution from weights

− kBT lnW (L;Ltot)︸ ︷︷ ︸
entropic contribution of polymer conformations

.

(8.73)
To make further progress with this result, and in particular, to obtain the free
energy minimizing length as a function of the applied force, we must first find
a concrete expression for W (L;Ltot). To that end, we note that this reduces to
nothing more than the combinatoric question of how many different ways there
are of arranging N arrows, nR of which are right pointing and nL = N − nR of
which are left pointing. The result is

W (nR;N) =
N !

nR!(N − nR)!
, (8.74)

where we have found it convenient to replace our reference to L and Ltot with
reference to the number of right pointing arrows and the total number of such
arrows with the recognition that they are related by L = (nR − nL)a and
Ltot = Na.

Given the free energy, our task now is to minimize it with respect to length
(or nR). To that end, we first invoke the Stirling approximation (pg. 255), which
we remind the reader allows us to replace lnN ! by N lnN −N . In light of this
approximation, the overall free energy may be written as

G(nR) = −2MganR + kBT (nRlnnR + (N − nR)ln(N − nR)). (8.75)
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Figure 8.25: Schematic of a model one-dimensional polymer subjected to ex-
ternal forcing through the attachment of weights on the end. This scenario is
a pedagogical device to illustrate how to include the forcing in the overall free
energy budget.

Note that we have neglected all constant terms since they will not contribute
during the minimization. Differentiation of this expression with respect to nR

results in
∂G

∂nR
= −2Mga + kbT lnnR − kBT ln(N − nR) = 0 (8.76)

which may be rewritten in a more transparent fashion as

z =
〈L〉
Ltot

= tanh
mga

kBT
. (8.77)

The construct of using weights to load the molecule was a convenient peda-
gogical device to provide a concrete mechanism for seeing how the energy of the
loading device can be included in the free energy budget. More generally, the
two ends are subjected to a force f with the result that z = tanh(fa/kBT ).
This force-extension relation is shown in fig. 8.26. To gain further insight
into the quantitative aspects of the model we consider the limiting case of a
small force, i.e. fa � kBT . For a dsDNA molecule in physiological conditions
(a ≈ 100nm) this corresponds to f � 40 fN while for the much more flexible
ssDNA (a ≈ 1.5nm) the small force regime is obtained for f � 3 pN. In the
small force limit the force-extension curve is linear (as shown in the problems
at the end of the chapter),

〈L〉 =
Ltota

kBT
f , (8.78)

ie. in this regime the polymer behaves like an ideal Hookean spring with a
stiffness constant k = kBT/Ltotb. The fact that the stiffness of this spring is
linearly proportional to the temperature reveals its true entropic nature. For
λ-phage dsDNA whose contour length is Ltot = 16.6 µm the effective spring
constant is k ≈ 2.3 fN/µm while for the same length ssDNA the stiffness is
given by k ≈ 160 fN/µm. Note that the larger flexibility of ssDNA, as evidenced
by its smaller persistence length, leads to a larger value for the effective spring
stiffness.

Thus far, our model of the macromolecule has been highly idealized in that
we have imagined that each monomer can only point in one of two directions.
Though that model is instructive, clearly it is of interest to expand our horizons
to the more physically realistic three-dimensional case. The generalization of our
freely-jointed chain analysis to three dimensions holds no particular surprises.
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the cartoon showing the random-walk chain.

The fundamental idea is that now instead of constraining the monomers that
make up the molecule of interest to point only right or left, we give them full
three-dimensional motion. The simplest variant of this model is to permit each
monomer to point in one of six directions (i.e. e1, −e1, e2, −e2, e3 and −e3).
We quote the result for this model, namely,

z =
〈L〉
Ltot

=
2sinhβfa

4 + 2coshβfa
, (8.79)

and leave the details as an exercise for the reader.
The more interesting case which we work out in greater detail is that in which

each monomer can point in any direction. In this case, rather than writing out
the free energy explicitly, we compute the partition function and use it to deduce
the relevant averages, such as the average length at a given applied force. As
each link in the chain is independently fluctuating the partition function for
N = Ltot/a links is ZN = ZN

1 with

Z1 =
∫ 2π

0

dφ

∫ π

0

efa cos θ/kBT sin θdθ. (8.80)

This equation instructs us to compute the Boltzmann factor for every orientation
of the monomer (characterized by the angles φ and θ. The integral over the unit
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sphere can be evaluated with the change of variables x = cos θ, to give

Z1 = 4π
kBT

fa
sinh

fa

kBT
. (8.81)

Now the free energy G(f) = −kBT lnZN is a function of the applied force f
and we differentiate it with respect to f to obtain an expression for its thermo-
dynamic conjugate, the average polymer length,

〈L〉 = −∂G

∂f
= Na

(
coth

fa

kBT
− kBT

fa

)
. (8.82)

The small force limit, fa/kBT � 1 in this case gives the same Hookean
expression, f = k〈L〉 as the one-dimensional freely jointed chain, except the
effective spring constant is three times as large, k = 3kBT/Ltota. The same
result follows from eqn. 8.79. Not surprisingly, the two-dimensional version of
the model, whether it be defined on a lattice or not, gives k = 2kBT/Ltota.

8.4 Proteins as Random Walks

So far, we have shown how the random walk model can be applied to nucleic
acids. Similar ideas have proven useful for thinking about proteins as well.
Globular proteins in their native state form compact structures. One of the
key ideas driving research in structural biology, which seeks to describe protein
structure in atomic detail, is that protein function follows from its structure.
Proteins are polymers comprised of amino acids. Therefore, a natural question
to ask is what, if any, aspects of protein structure can be understood from
simple coarse-grained models of polymers, such as the various random walks
introduced in this chapter.

In this section we examine a lattice model of proteins, the compact polymer
model. Usually when representing the polymer by a random walk on a lattice,
the sites not occupied by the monomers are thought of as representing the
solvent. Random walks described in the previous sections are open structures
with the monomer sites typically surrounded by solvent sites. This is inadequate
for describing protein conformations which are compact with solvent typically
making contact only with amino-acids at the surface of the protein. To mimic
this property of proteins we invoke compact random walks (also referred to as
Hamitonian walks) which are self-avoiding random walks that visit every site of
the lattice, usually taken to be cubic; see fig. 8.27. By virtue of covering all the
lattice sites by monomers, all the solvent sites are pushed to the surface. These
compact random walks, are a very coarse grained model of proteins and, as with
all coarse-grained models, one is limited in scope and precision of the questions
that the model is equipped to address. The rewards on the other hand come
in the form of simplicity and generality of the answers obtained. Furthermore,
as any good model does, compact random walks also reveal new questions and
sharpen old ones, about the structure of naturally occurring proteins.
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Figure 8.27: Compact polymer configuration on a 4x4x3 cubic lattice. Taken
from Dill’s Protein Science review

8.4.1 Compact Random Walks and the Size of Proteins

Random Walk Models Permit an Estimate of the Size of Proteins

Possibly the simplest property of a globular protein is its size, as measured
by its linear dimensions, or more precisely, its radius of gyration. The Protein
Data Bank reveals a systematic dependence of the protein size on its mass.
Namely, for globular proteins, the radius of gyration scales roughly with the
cube root of the mass. The relation between the physical size of proteins and
their sequence size is shown in fig. 8.28. This is a property of compact polymers
as witnessed by the configuration shown in fig. 8.27. As a compact polymer
completely fills the lattice, its linear size will scale with the linear dimension
of the lattice or with the cube root of the number of lattice sites, given that
we have in mind a three-dimensional lattice. If we attach a single residue with
each site, and take these to be of roughly equal mass, we arrive at the scaling
law observed for real proteins. Compactness implies that all the space occupied
by proteins is filled, with no holes present. Therefore, the volume occupied by
the protein, which necessarily scales as the cube root of its linear dimension, is
proportional to the mass. For proteins in the unfolded state the structures are
better described as random walks. The size of a random walk polymer, unlike
compact polymers, scales as the 1/2 power of the mass. If one were to examine
random self-avoiding walks, an argument due to Flory predicts scaling of the
linear size with mass to the 3/5 power, indicating a structure which is even more
expanded that that of a simple random walk.
Compact Polymers Exhibit Secondary Structure Motifs Similar to
Proteins

When examining the structure of globular proteins one of their most striking
features is the preponderance of symmetric motifs such as helices and sheets,
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Figure 8.28: Scaling of protein size as a function of the number of amino acid
residues.

which are referred to as the secondary structure. These are precisely the fea-
tures of protein structure accentuated by ribbon diagrams. What gives rise to
secondary structure? One idea is that secondary structure motifs are a con-
sequence of the compact state of the protein which in turn is affected by the
hydrophobicity of amino-acid residues. If indeed compactness alone drives sec-
ondary structure formation then compact polymers should also exhibit a rather
large tendency towards secondary structure motifs. This hypothesis is readily
testable in the lattice model.

First we need to define secondary structure motifs on the lattice. There is
a certain amount of arbitrariness to this and we must be careful in interpreting
the results. One possible definition, for the case of two dimensional compact
polymers is given in fig. 8.29(A). These results are calculated by taking the
ensemble of all possible compact random walks, and for each such structure the
percentage of residues taking part in secondary structure motifs, such as helices,
sheets and turns, is computed. For small structures this combinatorial problem
can be done by hand, but on larger lattices a computer needs to be employed.
The distribution of the percent of residues participating in secondary structure
over the ensemble of compact polymers, for different polymer sizes, obtained in
this way is shown in fig. 8.29(B).

From fig. 8.29(B) we see that the percentage of monomers participating
in secondary structure approaches 70% as the size of the compact polymer
increases. Of course this number will vary depending on the precise definition
of secondary structures on the lattice. Nonetheless, the lattice model predicts
that compactness alone can lead to secondary structure. These observations
have lead to more detailed computer studies using compact polymer models
that are no longer restricted to lattice sites. These have shown that compactness
can aid in the formation of secondary structures but that specific interactions
between residues in close proximity of each other are also required to produce
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Figure 8.29: “Secondary structure” in lattice models of proteins. (A) Monomers
shaded dark participate in secondary structure motifs: helices, parallel and
anti-parallel sheets, and turns. (B) Histogram of the fraction of monomers
participating in secondary structure motifs for compact polymers on a 20× 20
square lattice (total 400 monomers).

the observed secondary structure motifs.
One of the challenges brought in on the heels of the successes of the great

genomic sequencing initiatives is that of figuring out the structural and func-
tional implications of these vast libraries of genes. One step in unraveling the
meaning of all of this genomic data is to figure out how to go from a particular
protein sequence to the corresponding structure. The problem is that when
confronted with some new genome sequence, one would like to be able to state
what proteins are implied by the various sequences and what structures these
proteins have. Like for the analysis of protein-ligand binding in chap. 7, here
too we will find that the use of internal-state variables to characterize the amino
acid identity of a given residue is extremely powerful.

The process by which a chain of amino acids assumes the specific three-
dimensional native structure of a protein is often not understood in enough
detail to allow for a prediction of the structure based on the known sequence.
The complexity of the problem is illustrated in part by the observation that
the number of possible three-dimensional conformations of a protein is so large
that a random search in structure space would never uncover the native state.
Though nature is clever enough to wiggle its way out of this problem, sometimes
we are not. Even if we are to model structures using a highly simplified and
contracted scheme in which a given structure is viewed as random walks on a
cubic lattice as introduced above, the number of structures for a 100-monomer
chain is 6100 or 6.5 × 1077. The way we obtain this estimate is based on the
idea that the link connecting every successive set of residues can point in one of
the 6 directions along the three Cartesian axes. If we imagine doing a random
search among these structures at a (very optimistic) rate of one structure per



406CHAPTER 8. RANDOM WALKS AND THE STRUCTURE OF MACROMOLECULES

femtosecond (10−15 seconds), it would take roughly 2× 1055 years to complete
the search. This is about 1045 times the age of the Universe!

8.4.2 Hydrophobic and Polar Residues: The HP Model

The above estimate tells us that the folding of a protein into its native structure
is most certainly not a random process. The hydrophobic interaction between
amino-acid residues and the water molecules that surround them leads to a
collapse of the chain as was illustrated in fig. 5.8 (pg. 236). As a result the
hydrophobic residues are sequestered to the interior of the protein, while the
surface is populated by polar residues. Thus hydrophobicity is one force that
can steer the protein to a folded state avoiding a random search of configuration
space. Indeed, the spirit of the class of models introduced here is that collapse
induced by hydrophobic effects drives the formation of secondary structure as
opposed to an alternative view in which the formation of the hydrogen bonds
that define secondary structure lead to collapse.
The HP Model Divides Amino Acids Into Two Classes: Hydrophobic
and Polar

The idea that the hydrophobic force plays a prominent role in protein folding
has led to coarse-grained models of proteins where the 20 naturally occurring
amino acids are replaced with a two-letter alphabet that identifies each amino
acid as being hydrophobic (H) or polar (P). This leads to a drastic reduction
of the complexity of the sequence space as the number of possible sequences for
a 100-mer goes down from 20100 ≈ 10130 to 2100 ≈ 1030. To implement such
a model, we need to decide how to partition the 20 amino acids into the two
categories H and P. An example of such a partitioning is shown in fig. 8.30.
Indeed, as shown in fig. 8.31, there is a hierarchy of possible classifications of
the amino acids based on various properties for grouping them.

In the remainder of the book, we will use the HP model introduced here as
the basis of a variety of different discussions. Our reasoning is that classify-
ing amino acids according to just these two broad categories allows us to take
otherwise analytically intractable problems and to render them tractable. For
example, in section 18.4.1 (pg. 843), we will consider an HP model of translation
and kinetic proofreading featuring only two species of tRNA. This simplifica-
tion will allow us to carry out the analysis completely. Similarly, the entirety of
chap. 18 on bioinformatics will be based on sequence alignments using only the
HP alphabet. Though we compromise on biological realism, our sense is that
the pedagogical payoff is worth it.

8.4.3 HP Models of Protein Folding

The protein folding problem of finding the native structure given the amino acid
sequence of a protein is one of a class of problems concerning the relationship
between the sequence space and the space of three-dimensional structures. Just



8.4. PROTEINS AS RANDOM WALKS 407

Ala Val

TrpPhe

Pro LeuIle

Met

Gly

TyrCys

Gln

Asn Ser Glu

AspArg

His

Lys

Thr

HYDROPHOBIC

POLAR

Figure 8.30: Mapping of the amino acids onto an HP alphabet. The 20 amino
acids are coarsely separated into two categories, hydrophobic (H) or polar (P).
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as introducing a two letter alphabet greatly reduces the sequence space, con-
straining the space of structures to compact random walks on a lattice makes
the exploration of structure space more tractable. In particular the number
of compact polymer structures on a 3 × 3 × 3 lattice, often used in numerical
studies, is 103,346, while the number of possible sequences is 227 = 134, 217, 728.

To gain intuition about lattice HP models we investigate the toy model that
consists of 6 monomers on a 2× 3 lattice. The number of possible sequences is
26 = 64 while the number of compact structures that are unrelated by lattice
rotations, translations or reflections is only 3. These are shown in fig.8.32(A).
The final ingredient of the model is the hydrophobic energy which measures the
extent to which the H-monomers make energetically unfavorable contacts with
the solvent. A simple model of this interaction is to assign a free energy penalty
ε for every H monomer in contact with either a solvent molecule or a P monomer.
(A more refined model might distinguish the interaction energy associated with
an H-solvent and an H-P contact.) Solvent molecules are represented as lattice
sites not occupied by the monomers, while a contact is a bond between two
nearest neighbor sites not occupied by the polymer chain.

The protein folding problem within this toy model can be formulated in the
following way: Given an HP sequence which of the possible structures minimizes
the hydrophobic interaction energy? We examine two sequences in light of this
question: HPHPHP and PHPPHP. The energies for each of these two sequences
in each of the 3 possible compact configurations are given in fig.8.32(B). We see
that the first sequence has the same energy regardless of the compact confor-
mation the 6-mer assumes. This implies that independent of temperature the
probability of finding the polymer in any of the three compact conformations
is 1/3. Such a sequence is not protein-like in the sense that it does not have a
unique low energy, native state.

On the other hand the sequence PHPPHP has a unique native state, the Π
shaped conformation shown in fig.8.32(B). The probability of finding the chain
in the native conformation is proportional to the Boltzmann factor associated
with its energy,

pfold =
e−2βε

e−2βε + 2e−4βε
; (8.83)

the denominator is nothing but the partition function for the three possible
conformations. The probability of this toy protein to be in the folded state as
a function of temperature is shown in fig.8.33. Note the sigmoidal character of
the plot which is characteristic of many real proteins.

Another interesting question we can pose in the context of this toy model
of folding is: What sequences are protein like? Such questions are practically
impossible to address in more realistic models of proteins given the astronomi-
cally large (literally!) number of sequences and conformations. The hope is that
by asking these types of questions in simple lattice models one might uncover
patterns that are also present in real proteins.

In the context of our toy model we can address this question systematically
if we notice that a necessary condition for a sequence to have a unique native



8.4. PROTEINS AS RANDOM WALKS 409

1

2

3

6

5

4

1

4

5

2

3

6

3

4

5

2

1

6
(A)

(B)

7eenergy 7e 7e

2eenergy 4e 4e

e-b2e e-b4e e-b4eweights

Figure 8.32: Lattice models of protein folding in the HP model. (A) Possible
compact conformations of an HP 6-mer in a toy model of protein folding. (B)
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Figure 8.33: Probability of finding the PHPPHP polymer in its native state.

conformation is for there to be at least one HH contact, like the one between the
two H monomers in the native state of the PHPPHP sequence in fig.8.32(B).
Then we can construct for each of the 3 possible compact structures all the
sequences that have that particular structure as its unique native state. One
strategy is to begin by choosing two residues that are in contact in the chosen
conformation and not in any other; for example this is the case for residue 2
and 5 in the Π structure. We make both these residues an H and then we assign
an H or a P to all the others so that no contacts are made in any of the other
compact conformations. The outcome of implementing this algorithm is shown
in fig.8.34.

An interesting feature of this model is that it predicts the Π structure to
be the most designable one. Namely, this structure has 9 sequences of total
64 which fold into it. The least designable structure has only 3 sequences that
fold into it. This observation suggests a question whether observed protein
structures in Nature are highly designable or not.

The HP model of proteins suggests an interesting strategy for protein design.
The idea is to use the degeneracy of the genetic code to create a library of amino-
acid sequences which are identical when translated into HP language. For any
particular sequence the amino acids are chosen randomly from the pool of H or
P residues. For example, a four-helix bundle has been designed by following the
pattern: HPPHHPPHPPHHPPH... which ensures that there is a hydrophobic
residue every three or four amino acids in the sequence; see fig. 8.35. This is
consistent with the structural repeat of 3.6 amino-acids per turn of an alpha-
helix. It has been shown experimentally that these sequences not only properly
fold into helices but also have enzymatic activity. Identical design principles
have been used to make β-sheets which can aggregate into structures akin to
amyloid fibers.
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Figure 8.34: Protein-like sequence fold into a unique compact conformation.
The number of protein-like sequences varies from compact structure to com-
pact structure. The structures with a particularly large number of protein-like
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Figure 8.35: The four-helix bundle designed by using an HP sequence strategy.
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8.5 Summary and Conclusions

The random-walk model is useful in many different scientific settings. One
powerful application of these ideas is to the structure and properties of polymers,
including many of the “giant molecules” of life. In this chapter, we have shown
how simple ideas from the physics of random walks can be used to explore the
size and distribution of DNA, the force-extension properties of polymers and
the emergence of entropic elasticity and as a toy model that captures some of
the features of protein folding.
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8.7 Problems

How Big is a Genome?
(a) In the text, we claimed that the

radius of gyration of a polymer can be
written in the form√

〈R2
G〉 =

√
Lξp

3
. (8.84)

In this part of the problem, deduce this
relation.

(a) Compute the entropic size of
the DNA associated with a human chro-
mosome if it is not associated with any
proteins.
Entropic Cost of DNA Packing.
Work out the free energy cost associ-
ated with packing the E. coli genome
inside of the bacterium assuming that
the entirety of this free energy cost is
entropic. (RP: be careful about the
Flory-Huggins version of this story that
Ken likes to talk about). RP: also do
the problem for the virus.
30 nm Fiber and Packing

Use the numbers for packing den-
sity (ν) and persistence length of 30
nm fiber to estimate the RG of each
chromosome and compare to the 10 nm
case.

End-to-end distribution
(a) Complete the algebra leading

up to eqn. 8.15, for the probability dis-
tribution of the end-to-end distance of
a one-dimensional freely jointed chain.
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(b) Compute the average end-to-
end distance 〈R〉, and 〈R2〉 using the
same continuous Gaussian distribution.
Compare your results to those obtained
using the binomial distribution.
Cyclization in 3D

(a) Do the discrete calculation as a
ratio to get the cyclization probability.

Force-Extension in the Freely Jointed
Chain.

Work out the force extension prop-
erties of the three dimensional freely
jointed chain, both for discrete and con-
tinuous allowed orientations. Key point:
show the linearized version leads to Hooke’s
law.




