Boulder School for Condensed Matter and Materials Physics

Laurette Tuckerman PMMH-ESPCI-CNRS laurette@pmmh.espci.fr

Hydrodynamic Instabilities: A Zoo of Instabilities

Taylor-Couette flow

R. Tagg

T.T. Lim

$$\underbrace{ \left\{ \begin{array}{l} -\frac{1}{r}U_{\theta}^{2}=-\frac{1}{\rho}\frac{dP}{dr} \\ 0=\nu\frac{d}{dr}\left(\frac{1}{r}\frac{d}{dr}\left(rU_{\theta}\right)\right) \right\} } \end{array} \right\}$$

Laminar Couette profile: $U_{ heta} = Ar + rac{B}{r}$

Rayleigh criterion: laminar Couette profile stable if

$$rac{d}{dr}(rU_ heta)^2>0$$

e.g. if outer cylinder rotates and inner cylinder is stationary

Viscometer (Couette) \Leftrightarrow Pattern formationstable $\Omega_2 \uparrow$ unstable $\Omega_1 \uparrow$

Taylor-Couette flow

for $\Omega_2 = 0$, increasing Ω_1

Laminar CouetteTaylor VortexWavy VortexWavy Vortex $U_C(r)$ $U_{TV}(r, z)$ $U_{WV}(r, \theta, z, t)$ $U_{MWV}(r, \theta, z, t)$

First success of linear stability analysis

Taylor, 1923

Sir Geoffrey Ingram Taylor

Andereck, Liu, Swinney, 1985

Re₂

wavy vortices

twists

spiral turbulence

Marangoni-Bénard Convection

Rayleigh was mistaken about cause of Bénard's observations Hexagons require breaking of up-down symmetry

Cylinder wake: Bénard-von Kármán

with downstream recirculation

von Kármán vortex street ($\text{Re} \geq 46$)

Laboratory experiment (Taneda, 1982)

Off Chilean coast past Juan Fernandez islands

von Kárman vortex street: $Re = U_\infty d/ u \geq 46$

spatially: two-dimensional (x, y)(homogeneous in z)

temporally: periodic, $St=fd/U_\infty$ appears spontaneously

 $\mathrm{U}_{2D}(x,y,t mod T)$

Stability analysis of von Kármán vortex street

2D limit cycle $U_{2D}(x, y, t \mod T)$ obeys:

$$\partial_t \mathrm{U}_{2D} = -(\mathrm{U}_{2D}\cdot
abla)\mathrm{U}_{2D} -
abla P_{2D} + rac{1}{Re}\Delta \mathrm{U}_{2D}$$

Perturbation obeys:

$$\partial_t \mathbf{u}_{3D} = -(\mathbf{U}_{2D}(t) \cdot \nabla) \mathbf{u}_{3D} - (\mathbf{u}_{3D} \cdot \nabla) \mathbf{U}_{2D}(t) - \nabla p_{3D} + \frac{1}{Re} \Delta \mathbf{u}_{3D}$$

Equation homogeneous in z, periodic in $t \Longrightarrow$

$$\mathrm{u_{3D}}(x,y,z,t)\sim e^{ieta z}e^{\lambda_eta t}\mathrm{f}_eta(x,y,t mod T)$$

Fix β , calculate largest $\mu = e^{\lambda_{\beta}T}$ via linearized Navier-Stokes

From Barkley & Henderson, J. Fluid Mech. (1996)

mode A: $\operatorname{Re}_{c} = 188.5$ mode B: $\operatorname{Re}_{c} = 259$ $\beta_{c} = 1.585 \Longrightarrow \lambda_{c} \approx 4$ $\beta_{c} = 7.64 \Longrightarrow \lambda_{c} \approx 1$

Temporally: $\mu = 1 \Longrightarrow$ steady bifurcation to limit cycle with same periodicity as U_{2D}

Spatially: circle pitchfork (any phase in z)

mode B at Re = 250

From M.C. Thompson, Monash University, Australia (http://mec-mail.eng.monash.edu.au/~mct/docs/cylinder.html)

Faraday instability

Faraday (1831): Vertical vibration of fluid layer \implies stripes, squares, hexagons In 1990s: first fluid-dynamical quasicrystals:

Edwards & Fauve J. Fluid Mech. (1994)

Kudrolli, Pier & Gollub Physica D (1998)

Hexagonal patterns in Faraday instability

From Périnet, Juric & Tuckerman, J. Fluid Mech. (2009)

Oscillating frame of reference \implies **"oscillating gravity"**

$$G(t) = g (1 - a \cos(\omega t))$$
(1)

$$G(t) = g (1 - a [\cos(m\omega t) + \delta \cos(n\omega t + \phi_0)])$$
(2)

Flat surface becomes linearly unstable for sufficiently high a

Consider domain to be horizontally infinite (homogeneous) \implies solutions exponential/trigonometric in x = (x, y)Seek bounded solutions \implies trigonometric: $\exp(i\mathbf{k} \cdot \mathbf{x})$

Height
$$\zeta(x,y,t) = \sum_{ ext{k}} e^{i ext{k}\cdot ext{x}} \hat{\zeta}_k(t)$$

Oscillating gravity \Longrightarrow temporal Floquet problem, $T=2\pi/\omega$

$$\hat{\zeta}_k(t) = \sum_j e^{\lambda_k^j t} f_k^j(t)$$

Height
$$\zeta(x,y,t) = \sum_{\mathrm{k}} e^{i\mathrm{k}\cdot\mathrm{x}}\hat{\zeta}_k(t)$$

Ideal fluids (no viscosity), sinusoidal forcing \Longrightarrow Mathieu eq. $\partial_t^2 \hat{\zeta}_k + \omega_0^2 \left[1 - a\cos(\omega t)\right] \hat{\zeta}_k = 0$

 ω_0^2 combines g, densities, surface tension, wavenumber k

$$\hat{\zeta}_k(t) = \sum_{j=1}^2 e^{\lambda_k^j t} f_k^j(t)$$

 $\operatorname{Re}(\lambda_k^j) > 1 \text{ for some } j, k \Longrightarrow \hat{\zeta}_k \nearrow \Longrightarrow \text{ flat surface unstable} \\ \Longrightarrow \text{Faraday waves with wavelength } 2\pi/k$

$\operatorname{Im}(\lambda_k^j)$	$e^{\lambda T}$	waves	period
0	1	harmonic	same as forcing
π/ω	-1	subharmonic	twice forcing period

Floquet functions

From Périnet, Juric & Tuckerman, J. Fluid Mech. (2009)