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1 Plane parallel flows

1.1 Introduction

We analyze the linear stability of a plane parallel floiv= U (y)ex. The usual nomenclature is:

T main flow direction streamwise
y || between the bounding plateégross-channel
z spanwise

Plane parallel flows are easy to formulate, since they are incompressitibastyuction and the nonlinear
term in the Navier-Stokes vanishes.

(U-V)U = (U(y)ex - V)U(y)ex =U(y)9:U(y)ex =0 (1)
V-Ulyex = 0,U(y)=0

The remaining equation that must satisfy is:

) —0, P+ £U"(y)
0=-VP+ AU =3¢ —9,P )
—9.P

Sinced, P depends only oy andd, P = 0, thend, P must be a constant, which we will callG. For
inviscid (ideal) fluids,R = oo and then all function/ (y) are allowed. For viscous fluids, we must solve

1
0 = G+ -U"
+t 3 (y)

GR
Ul = —7y2+ay+b (3)

1.2 Poiseuille and Couette flow
Two well-known examples are Poiseuille and Couette flow in a channel ledung-1 < y < +1. For
Poiseuille flow, the boundaries are stationary, sothat1) = 0, leading to

_GR

Uly) = —-(1—y") (4)

In Couette flow, the pressure gradiénis zero and the flow is driven by the motion of the boundaries at
different speeds. We can always go into a moving frame suclithat) = +1, leading to:

Uly) =y (5)
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Figure 1: Plane Poiseuille flow (left) and plane Couette flow (right).

Poiseuille and Couette flow, as well as the analogous problem of predi$uea pipe low U(z) =
1 — r2) all display the same behavior: they undergo a sudden transition to thmessional turbulence.
Yet, at the Reynolds numbers at which this transition takes place, all threedle linearly stable.

1.3 Reduction to two variables

We now study the behavior of perturbations= (u,v,w) to a plane parallel flow. The nonlinear term
linearized about such a flow is:

(U-Viu = (U(y)ex - V)u="U(y)0zu
(u-V)U = (u-V)U(y)ex = UU,(y)ex (6)

The linearized Navier-Stokes equations become:

1
ou+Ud,u+vU'ex = —Vp—i—EAu (7)

V-u = 0 8)

We wish to reduce this system of four equations in four variablesv{ w, p) to two equations in
two variables, which will be the velocity and vorticityn in the y direction. We begin by taking the
divergence ofi{[7) so as to eliminate the pressure:

V- 0u+ V- (Udu)+ V- (vl'ex) =V (—Vp) + V- @Au) (9)

Calculating the individual terms df}(9) and using (8)

V:-diu = oV-u=0
V- (Udyu) = UV-(9zu)+ (VU) - 0,u=Ud,V-u+U'0v=0U0v
V-(wU'ex) = 0,(0U")=U'0v
V.- (=Vp) = -Ap
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leads to

2U'0,v = —Ap (20)
We now take the Laplacian of thecomponent ofi{[7):
1
Adw + A(Udv) = —Adyp + EA% (11)

We expand the terms in the middle bf{11):
A(UOw) = UAv+2U Opyv + U" 00
—Adyp = 0,(2U'0yv) = 2U'dyyv + 2U" 00
to arrive at our first equation, which contains only

(0 + UOp)Av = U"0v + %A% (12)
The second equation is obtained by takinggteomponent of the curl of{7):
ey -V Xx (8tu +Ud,u+ vU’ex) =ey, -V x (—Vp + ;Au> (13)
We define
n=ey -Vxu=d,u—dyw (14)

and calculate the terms ¢f (13):
ey, -Vxdmu = 0
ey - Vx (Udyu) = 0.(U0yu) — 0,(Udyw) = UOpu — UOpzw = U0y
ey Vx(wex) = 0.(0U")=U'dv
ey, -Vx(=Vp) = 0

1 1
ey . V X (RAU> = EAT]
This gives us a second equation, which couplesdv:
1
(0y +Udy)n +U' 0,0 = EA?? (15)

Equations[(1R2) and (15) require boundary conditions. We assumedjeeioundary conditions im and

z. Iny, equation[(IR) is of** order inv and thus requires 4 boundary conditionsigrvhile equation
(@9) is of 2" order inn, requiring 2 boundary conditions op These boundary conditions are applied
aty = y+, wherey can be finite or infinite. We have

v=0aty =ys (16)

We transform the boundary conditions= w = 0 aty = y. to conditions orv andn as follows:
Oyu = 0,w =10 = 0yv =0 a7)
O,u =0, w=0 = n=0 (18)



1.4 Orr-Somerfeld and Squire equations

The linear systeni (12), (15) with boundary conditidns (16)-(18pimogeneous z, z, t; that is, neither
the equations nor the boundary conditions distinguish between diffeaturs/ofz, z, t. In contrast,
the system is not homogeneousyinboth beause the plane parallel fléy) whose stability is being
studied depends aomand also because the boundary conditions distingh between diffetaaswafy:
we can be closer or farther from the boundaries. Linear systems wig¢toenogeneous in some of their
independent variables have as their solutions functions which are exfinor trigonometric in these
variables:

v(z,y,z,t) = o(y)el@@me o) (19)
0z, y,z,t) = fy)el@@=cbe) (20)

We seek solutions which are boundedrinz, in which case the wavenumbers 3 are real. In contrast,
we do not specify whether is real, imaginary, or complex. This is precisely what will distinguish
between flowdJ which are stable or unstable. The convention in this field is to write the time depead
asexp(—iact). With « real, this convention means thatis thegrowth rate perturbations, n grow if

¢; > 0, decay ifc; < 0, and are neutral if; = 0. The value of,. gives thephase speeda peak moves
at speed;.

By substituting [[ZP)E(20) into equatiors{12) addl(15), and defidng d/dy andk? = o? + 32, we
obtain:

(—ice + Uia)(D* — k)0 = Uit + %(DQ — k%)% (21)
—iach + Uian + U'ifo = %(D2 — k%)n (22)
Dividing by ia:
(U—-c)(D?*=kHo = U"o+ %(W — k%25 (23)
(U = )i + U’gﬁ = %(D2 — k5 (24)

Equations[(ZB)E(24) witH (16]-(18) consitute an eigenvalue problemeigthnvalues and eigenvectors
0, 7. Equation[(ZB) for is called theOrr-Sommerfeld equatiofi} 2] and equatior (24) couplingand
7 is calledSquire’s equatioffid].

For inviscid fluids @ = ~0), the coefficients in[(23)-(24) are all real. This implies that the eigenval-
uesc are either real (a neutral perturbation, which neither grows nor dgcay complex conjugates
(one growing and one decaying perturbation). This is a property ofdiavfiuids and of conservative
problems in general: since volumes must be conserved, growth in ondéairetust be compensated
by decay in another. In conservative systems, most perturbationganeln possibly oscillating, but

5



neither growing nor decaying. Such systems become unstable when tival re@genvalues merge at
zero to become a growing/decaying pair. In contrast, in non-consex\&tstems, most perturbations
decay, and instability arises when one or more eigenvalues cross zesocaimé growing perturbations.
1
0 U2 (U—c) = gig(D* = k?) ] [

_ | Los O ] [ 0 ]
= ) 25
[ B Lsq | |1 (@3)
This system is upper triangular. Its eigenvalues and eigenvectors ddinided into two families, the
Orr-Sommerfeld modeand theSqire modes

Losd =0, 940 $=0
A [N Modes SQ : ) .
Lsqn = —Bb Q Lsgn=0,1#0

The Sqgire modes are always neutral for inviscid fluiss£ o), and damped for viscous fluids. We
show this by writing:

1
= e —— (D~ k) )
0 <U ¢ Ria( ))77
_ A~k o _L 2 1.2 ~
0 = /dyn (U c Ria(D k’))n

. . 1 kD k2 .
= /dyU!n\Q—C/ dy\nIQ—Rm/dyn D277+Rm/dyl77!2 (27)

Integration by parts yields:

+1 1 +1
/ oyt = DAl - / -~ ay D (28)

The system[(23)-(24) can be written in matrix form as:
[0} B [[(U—c)—}éa(DQ—kQ)](DQ—k‘A’)—U" 0

S S

Modes OS : (26)

where the surface term disappears because of the boundary comflitioh) = 0. The imaginary part
of (21) is thus:

1 k>
| dyli)P=—— [ d D“z—/d j2 <0 29
i [y iiP =~ [ v ipal - oo [y i < (29
To seek linear instabilities, we therefore study the Orr-Sommerfeld equattbitsseigenmodes.

1.5 Squire’s Transformation

A very well-known result about the Orr-Sommerfeld is caliglire’s Theoren]. We define

& = o+ 52 (30)
B =0 (32)
R = Ro/a (32)
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and substitute into equation (23):

1
(U —=¢)(D? = &*)o=U"0+ =—(D* — &% (33)
Ria
We see that[(23) is also an Orr-Sommerfeld equation, with an increaseshwaber inz, a zero
wavenumber irx (the perturbation is independentf a decreased Reynolds number, and an unchanged
c andd.

In the case of a viscous fluid, we assume that there is no instability for lomdRisy number. With
fixed o, 8 we increaseR until one of thec; becomes positive, meaniid has become unstable. Squire’s
Theorem states that the wavenumb@rsa? = 0 lead to instability forR, which is less tharik. To find

the lowest Reynolds number for whidh {23) becomes unstable, it is thergfifficient to consider two-
dimensional cases, with = 0. In the case of an inviscid fluid, Squire’s Theorem states that the problem
with , 8 > 0 is identical to that withi, 3 = 0, and hence, again, we can get= 0.

The problem of the stability of plane parallel flows has been greatly simplifladsection[1.B, we
reduced the Navier-Stokes equations (four equations coupling fads fiev, w, p) to two equations

in v, n. In section 1.4, by choosing wavenumbersand 5 and wavespeed, we reduced the partial
differential equations i, y, z, t first to a pair of ordinary differential equations in and then to the
Orr-Sommerfeld equation alone. Finally, here in secfioh 1.5, we eliminatedfahe aavenumbers,
leading to a single equation relatimgo R andk. Because of these successive simplifications, it has
been possible to prove rigourously that Poiseuille and Couette flow areljirstable in the Reynolds
numbers range in which transition to turbulence occurs, both experimemallyiamerically.

At this time, there is no definite resolution to this dilemma, but we will address sossip@approaches
in sectior 8.

2 Classical theory of ideal fluids

2.1 Rayleigh Equation

In the framework of ideal (inviscid) fluids, the Orr-Sommerfeld equatioraledthe Rayleigh equation
[4,15].
(U—e)(D*-k*)-U"]5=0 (34)

We will now demonstrate several classical propertied of (34). Thei$iRayleigh’s inflection point
theorem(1880), which states that # 0, thenU (y) has an inflection point. This means thaliify) does
nothave an inflection point, therp = 0 and saU is stable. We show this as follows. Starting frdml(34),
we divide by— (U — ¢) (since(U — ¢) # 0 if ¢; # 0); we multiply by o*, the complex conjugate af,



>

Figure 2: Three velocity profiles. Left: this profile does not have andtifia pointU” (ys) = 0, and
is therefore stable according to Rayleigh’s criterion. Middle: this profile dra inflection point and
thus could be unstable according to Fjortoft’s criterion. Right: this profifedmainflection point which
implies a stable flow according to Fjortoft's criterion.

and we integrate over1, 1]:

0= /H dy o [(—DQ + k%) + (35)

U//
F
—1

U-c

We rewrite [[35) using integration by parts as we didin (28):
+1 U//
0 = / dy [\D@P + k2|02 + fﬂ
—1 U —C

+1 " _ +1 "
-/ @[WW+HWMI”UWmﬂ+m/'dy P @)
-1 —1

U —cf? U —cf?

For the imaginary part of the right-hand-side bf](36) to be zero, the ialtegultiplying ¢; must be
zero (since; # 0). For this to happerl/” must change sign ovér-1, +1], and thusV must have an
inflection pointys whereU” (ys) = 0.

Fjortoft's Theoren 6] refines the inflection point criterion: i; # 0, thenU” (y)(U(y) — U(ys)) must
be negative over a portion of the interyall, +1]. Let us rewrite the real part df (B6):

+1 U// U — e +1 . .
/ dy 7( 5 )|v|2 = —/ dy [|Dv!2 + k2|v\2] <0 (37)
-1 U — | -1

We defineUs = U(ys) and multiply the imaginary part of (86) Ky, — Ug)/¢;:

—+1 U”(CT _ US) 12
We add [(3¥) and (38):
+1 i _ _ +1
1 - -1



We therefore have:

o U(U - Us)
dy ————>2]0]* < 0 40
/_1 Y ‘U - 0‘2 ’U‘ ( )

which requires that/” (y)(U — Ug) be negative over a portion of the interval. Note that the Rayleigh
and Fjortoft criteria apply only to inviscid fluids and can only demonstratelgyadind not instability.

Howard’s semicircle theorelfiY] states that the unstable eigenvalues of the Rayleigh equation obey:

1 2 1
(CT - i(Umax + Umin)> + 012 < i(UmaX - Umin)2 (41)

In other words, they are located inside the circle whose diameter is the line selgeteeen/ ..., and
Umin. We will not prove this theorem.

2.2 Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability arises from a velocity gradient. Let us firgtlaRayleigh’'s equation

to the Kelvin-Helmholtz instability. To do so, we will study the stability of piecewieastant profiles

on the domain-oco < y < oco. For this case, we must specify jump conditions at each discontinuity of
U. The first condition is:

D
U-c

where] means the difference in the quantity evaluated on either side of the discontifhigycondition
insures that the interface between the two sides remains well-definededtwdscondition is:

—0 (42)

(U=¢)D-U")%] =0 (43)
This condition insures the continuity of the normal stress (the pressurkisinow consider the simplest
profile:
| Uy poury >0
U= { U_ poury < 0 (44)

In each of the two domains, Rayleigh’s equation (34) has the form
(D? — k¥ =0 (45)
Given the boundary conditioris= 0 aty = +o0, the solution is

—ky
QA}:{Ae fory >0 (46)

BekY fory < 0



We apply the jump conditions gt= 0:
0 0] A B

0 = 0") — 07) = — 47
U—c( ) U—c( ) Up—c U_-c (47)
0 = (U-¢)D-U"Y%(0") - ((U—-¢e)D -U")9(07)
Uy —¢)(=kA) — (U- — ¢)kB (48)
or 1 —1
0 — Uy—c U_—c A (49)
0 (Uy—c) (U-—c) || B
A non-trivial solution exists if the determinant is zero:
0 — U_—c U;-—c
- Up—-c¢ U_-c
0 = (U-—¢)?+Usp—e)=22-2(Up +U_)c+ U2 +U?
1 U Uv_ 1
¢ = [ U VO AT U+ D)) = % LU T
= Uiz‘AQ—U (50)

The perturbation described dy {46) ahd](19) propagates with a phaed efc,., which is the averagé
of the two speeds, while it is amplified or damped at a caef AU /2, the half-difference between the
two speeds. Since is always positive, the piecewise-constant profilé (44) is unstable.

This simplified version of the Kelvin-Helmholtz instability yieldg &hich is independent of the wavenum-
ber k: the profile [44) is unstable to perturbations wétlh wavenumberg:, which all propagate at the
same speed. This unrealistic property is a consequence of the piecansant profile. We now use a
slightly more realistic model of the interface, in which the derivative of thearglgrofile, but not the
profile itself, is discontinuous at = +4§. The profile and the solution are described in the three regions

by:

y > +0 . U=Uy U=0 o=0,=A.e ™ Dy = —kA e™™
—S<y<+d : U=U+5%y U =5Y o=19=Ape ™™ + Bye" Dty = —kAge ™™ + kByetv
y < —0 . U=U_ U=0 0=10_=DB_e" Dto_ = kB_eM
(51)

WhenU is continuous, the conditiof (#2) implies thais also. The conditions which the solution must
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Figure 3:c, andc; for the Kelvin-Helmholtz instability in the case of a piecewise-constant profile.

Figure 4: Left: a piecewise-constant profile. Middle: a piecewise-lipeafile. Right: a piecewise-linear
profile is unstable to perturbations whose wavelengéxceedd0 6.
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satisfy are:

= 00(8) — 04(6) = Age ™ 4 ByeM® — A e™H (52)
= Do(—0) — 0_(=08) = Age®® + Bye " — B_e (53)
= [(U—¢)D —U"g(6) — [(U = ¢)D = U'J04.(9)

U = ¢)[Dio(6) — Doy (6)] = [(U"04)(8) = (U'd0)(9)]

[
(
= Uy — c)[—kAoe_k5 + kBged — (—kA+e_k6)] + AQCIS](Aoe_k‘S + Boek6) (54)
[
(
(

0 = [(U=¢)D—U"9(=6) = [(U—c)D —U'lHo_(-9)
= (U —¢)[Dig(=6) — Di—(=0)] = [(U"d-)(=0) — (U"d0)(—0)]
= (U_ = ¢)[~kAge® + kBoe ™ — (kB_e %)) + %(Aoe’“s + Boe %) (55)
Using (52) and[(53) to eliminatd ;, andB_ in (64) and[(55) yields
0 = (Uy—c)2kBoe® + %(Aoe_ké + Bye?) (56)
0 = (U_—c¢)(—2k)Agek + %(Aoe’“ + Boe %) (57)
or AU ks AU ks
= B AU kS (T = C)ﬁgyf?cj %) o (58)
0 (U= =c)2k+ S5 )e S5 By
which has a solution if and only if:
_ gy AU _ 2 _ p—4ks
c=U= 1S (1 —-2k6)? —e (59)

Now, ¢ depends ork and can be real (a neutral perturbation) or complex (growing or dampete
boundary between these two regimes is found by solving numerically thé@gua

2k —1)2 = ¢ 2 (60)
which yieldsk = 0.64. The unstable perturbations are characterized by:

ké < 0.64

2mwd
—_— .64
iy < 0.6

2T
A>—0~104 61
~ 0.64 (61)
The piecewise-linear profil€ (b1) is unstable to perturbations whoselevegth is more than 10 times
the widths of the interface. We can verify that, whérends to zero, we recover the previous res$ult (50)

of the discontinuous profile.
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— //—_ AU/2 < 5
[ | -AU/2 __/ |

o c
I
[
o

Figure 5:¢, andc; for the Kelvin-Helmholtz instability in the case of a piecewise-linear profile.

3 Beyond eigenvalues

We return to Poiseuille and Couette flow. Poiseuille flow becomes linearly uastel = R; = 5772
[8], whereas experiments and simulations show transition to turbulenBe=atk; ~ 1000. Couette
flow is linearly stable for all Reynolds numbers, whereas experiment9]%arid simulations [11, 23]
show a transition to turbulence Bt= Ry ~ 300. Circular Poiseuille flow, or pipe flow, is also linearly
stable at allR but undergoes transition to turbulencelat= Ry ~ 2000. For these last two flows, we
can say thakz;, = oc.

Flow RT RL
plane Poiseuille| 1000 | 5772
plane Couette|| 300 | oo
pipe Poiseuille(| 2000 | oo

In addition, turbulence is three-dimensional, unlike the two-dimensighal (), i.e. independent of the
transverse or spanwise directiohperturbations shown by Squire’s Theorem to be the most unstable.
Many ideas have been proposed to liberate hydrodynamic stability theopemite tyranny of Squire’s
Theorem and eigenvalues. In this section, we will discuss a few of theses.idMany articles are
published each year in this very active field.

3.1 Energy theory

The equation governing the evolution of the energy density is obtained mgttte scalar product of
the Navier-Stokes equation willi, leading to

01 oU 1
530 U=U-—-=-U-[(U-V)U -U-VP+ ZU-AU (62)
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We then integratd (62) over a volume which is either periodic or with zero iglthcough the bound-
aries. The nonlinear term is conservative, i.e. leads to zero contributif@®}jo This is seen by first
writing
U? U?
U~[(U-V)U]=V-<U2)—2V-U (63)

The second term of the right-hand-side [ofl(63) is zero for an incorsilesfluid. The first term is
integrated over the volume and then transformed by Gauss's theoremeduigng surface integral is
zero because of the boundary conditions.

/dVU-[(U-V)U]:/dVV~(UU22):/dAﬁ-UU;:O (64)

We can also calculate an analogous calculation omtimidinearequations which govern the growth of a
non-infinitesimal perturbation of the steady flowU.

1
u'atu+u-(u-V)U—i—u-(U-V)u—I—u-(u-V)u:—u-Vp—i—Eu-Au (65)
We substitute
2
u-du = 8t<u2|>
_ [l _ [l
u[(uV)u}—V<u2 —2Vu
2 2
u-[(U-V)u] = V'<U|u2’>—|u2V-U
—u-Vp = -V-(pu)+pV-u
2
u-Au = V-V(‘“J)—Wuﬁ

and integrate over a volume. As previously, we use Gauss's theoremmjinessibility, and the boundary
conditions (1 is either zero on the boundaries, or periodic) to eliminate all the terms abdee ate
divergences. What remains is called Beynolds-Orr equatian

jt/ av (|u22> :/ dv u- [(u-V)U];/ dV |Vul? (66)
t

D(u)/R is the energy lost by to viscous dissipation How ia supplied with energy? The base flow
U is maintained (for example, by providing the pressure gradient for Atbésélaw or by moving the
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bounding plates for Couette flow). The teff{u) measures the energy exchanged between the base
flow U and the perturbation. The evolution of the energy af comes from terms which are linear in
u: viscous dissipation and the nonlinear term linearized abbuiVe see that

1 dE(u
E(u) dt

~—

(67)

is independent of the amplitude af which is a consequence of the fact that the evolution of the energy
of u comes from terms which are linearin

Joseph([12] defined an critical energy Reynolds nunibeisuch that
—ForR < Rg, E(u) < 0 for all u. _
— ForR > Rpg, there exists a perturbatiansuch thatZ'(u) > 0.

Significantly, the maximum ir_(68) is realized for perturbatienwith non-zero spanwise wavenumber
(. These values are shown in the table below [13].

It is possible to show that

Flow Rg | B
plane Poiseuille| 49.7 | 2.05
plane Couette|| 20.7 | 1.56

3.2 Transient growth

In order to explairtransient growth [14,[15] we consider the model problem:

d[ v ~1/R 0 v

el — 69

iln ] = e 1) 8
Since the matrix is upper triangular, we can easily see that its eigenvaluesl Afeet —2/ R, both
negative. The corresponding eigenvectors are:

1 1 2 0
)\1:—E2 |:R:| )\2:_§: |:1:| (70)

The variables evolve as

[ Y } = g [ ; ] e R 4 (no — voR) [ (1) } e 2t/R (71)
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Expand[(71L) for small:

N = moe 2R 4 Rog(e t/ — o~2/R)
t 2t
— “2/R L Ruo(l— — 4 — 14+ 2= — .0
noe + Ruo( 7t + 5 )
_ noe—zt/R + vt (72)

Equation [[7R) shows that the difference between tleareasingexponentials can lead to algebraic
growth over short times, a phenomenon calteahsient growth just as is seen in Jordan blocks. We
see that matri{_(89) increasingly resembles a Jordan bloék as co. This tendency can also be seen
by examining the scalar product between the eigenvectors:

{;}-[?}:R:\/l—kchosqb (73)
whereg is the angle between the two eigenvectors. Equalioh (73) shows that) and therefore that
the eigenvectors become parallelias— .

Even though the search for the largest (positive or least negative)\wailyes as a function @ can be
limited to 8 = 0, this is not the case for eigenvectors showing the largest transientrgrReturning to
hydrodynamic flows, we can define:
max E(t)
G= L == 74
avﬁatvv(]ano (O> ( )

where the maximum is taken over all wavenumbers3, all timest¢, and all initial conditionsoy(y),
7o(y). The results are given in the table belowl[14,[15, 16]

Flow G Tmax Omax /Bmax

plane Poiseuille [ 0.20 B2 x 1073 |0.076 R| 0 | 2.04

plane Couette 118 R? x 1073 | 0.117 R | 35/R | 1.6
pipe Poiseuille 0.07R?x 1073 [ 0.048 R| 0 1

Blasius boundary layef 1.18 R? x 1072 | 0.778 R| 0 | 0.65

The amplification factoiG can be very large. For examplé&; = 200 for plane Poiseuille flow at
R = 1000, andG = 100 for plane Couette flow akR = 300, near where transition to turbulence
occurs in these flows. In addition, the perturbation which maximizdsasa = 0 or a — 0. The
value of3 is, in the case of plane Couette flow, closerit2, giving a half wavelength of /3 ~ 2, the
distance between the two plates. Indeed, the perturbations with largesettagrowth (called optimal
perturbations) consist of longitudinal vortices, like convective rollspsenaxes are in the direction of the
base flow, i.e. along. Such structures have been observed experimentally [17, 18, 19juamerically
[20,21].

Although these results are suggestive, the relationship between tragisiesih and transition to turbu-
lence has not been demonstrated.
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Streaks

advection of instability of
meuan shear Uly.z)
Streamwise exp(iOlx)
Rolls mode

R

nonlinear
self-interuction

Fabian Waletfe, Physics of Fluids, 9, 1997
Figure 6: Self-Sustaining Process (SSP) proposed by Waleffe 32242.

3.3 Self-Sustaining Process

From observations of numerical simulations of turbulence at low Reynaiabars, Waleffe [22, 23, 24]
proposed atheory for transitional turbulence, described in http://www.mathedis~waleffe/ECS/SSP.html
as follows:

This nonlinear, three-dimensional Self-Sustaining Process appeass aogeneric mechanism in shear
flows. The mechanism has three main elements as depicted in the figues abo

—Streamwise rolls sustain “streaks” (i.e. spanwigg hodulation of the streamwise velocity), by redis-
tributing the mean momentum in cross-planes,

—the streaks suffer a wake-like instability due to the spanwise inflections tdg te the onset of a
streamwise ondulation,

—the nonlinear self-interaction of that streamwise ondulation directly regeeg the streamwise rolls.

This process leads to self-sustained 3D traveling waves that consistgysweaaks flanked by staggered,
counter-rotating, quasi-streamwise vortices in both plane Poiseuille flalyptane Couette flow with no-
slip as well as free-slip boundary conditions.

The self-sustaining process is considered to be a key ingredient iitivaakshear-flow turbulence.
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wallnormal

Figure 7: Three unstable steady states of plane Couette fldw at 400, computed by Gibson and
Cvitanovic. http://chaosbook.org/tutorials and http://www.channelflow.org

3.4 Unstable steady states and travelling waves

Until fairly recently, the only solutions known for plane Poiseuille and Couite and for pipe flow
were the basic laminar solution and, in the case of plane Poiseuille flow, théitmemsional Tollmien-
Schlichting waves that bifurcate &e; = 5772. However, starting in 1990, large numbers of unstable
solutions solutions of wall-bounded shear flows, such as plane Couett§2B)(26,/ 27/ 28] and pipe
Poiseuille [29] 30, 31, 32] flow have been discovered computationallis Hypothesized that weak
turbulence can be understood as chaotic trajectories that visit in turn thigiggof the various unstable
branches [33, 34, 35, B6]. In order to explain weak turbulence inlwalhded shear flows, researchers
focus on the unstable manifolds and time-dependent trajectories whickatdhe branches. The non-
trivial solutions mostly consist of wavy longitudinal vortices, 3 # 0) and are created via saddle-
node bifurcations. The Reynolds-number threshold for weak turbalenwall-bounded shear flows is
sometimes thought to be related to the lowest of these saddle-nodes.
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