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1 Plane parallel flows

1.1 Introduction

We analyze the linear stability of a plane parallel flowU = U(y)ex. The usual nomenclature is:

x main flow direction streamwise
y between the bounding platescross-channel
z spanwise

Plane parallel flows are easy to formulate, since they are incompressible byconstruction and the nonlinear
term in the Navier-Stokes vanishes.

(U · ∇)U = (U(y)ex · ∇)U(y)ex = U(y)∂xU(y)ex = 0 (1)

∇ · U(y)ex = ∂xU(y) = 0

The remaining equation thatU must satisfy is:

0 = −∇P +
1

R
∆U =







−∂xP + 1
RU

′′(y)
−∂yP
−∂zP

(2)

Since∂xP depends only ony and∂yP = 0, then∂xP must be a constant, which we will call−G. For
inviscid (ideal) fluids,R = ∞ and then all functionsU(y) are allowed. For viscous fluids, we must solve

0 = G+
1

R
U ′′(y)

U(y) = −
GR

2
y2 + ay + b (3)

1.2 Poiseuille and Couette flow

Two well-known examples are Poiseuille and Couette flow in a channel bounded by−1 ≤ y ≤ +1. For
Poiseuille flow, the boundaries are stationary, so thatU(±1) = 0, leading to

U(y) =
GR

2
(1− y2) (4)

In Couette flow, the pressure gradientG is zero and the flow is driven by the motion of the boundaries at
different speeds. We can always go into a moving frame such thatU(±1) = ±1, leading to:

U(y) = y (5)
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Figure 1: Plane Poiseuille flow (left) and plane Couette flow (right).

Poiseuille and Couette flow, as well as the analogous problem of pressure-driven pipe low (U(z) =
1− r2) all display the same behavior: they undergo a sudden transition to three-dimensional turbulence.
Yet, at the Reynolds numbers at which this transition takes place, all three flows are linearly stable.

1.3 Reduction to two variables

We now study the behavior of perturbationsu = (u, v, w) to a plane parallel flow. The nonlinear term
linearized about such a flow is:

(U · ∇)u = (U(y)ex · ∇)u = U(y)∂xu

(u · ∇)U = (u · ∇)U(y)ex = vU ′(y)ex (6)

The linearized Navier-Stokes equations become:

∂tu+ U∂xu+ vU ′
ex = −∇p+

1

R
∆u (7)

∇ · u = 0 (8)

We wish to reduce this system of four equations in four variables (u, v, w, p) to two equations in
two variables, which will be the velocityv and vorticityη in the y direction. We begin by taking the
divergence of (7) so as to eliminate the pressure:

∇ · ∂tu+∇ · (U∂xu) +∇ · (vU ′
ex) = ∇ · (−∇p) +∇ ·

(
1

R
∆u

)

(9)

Calculating the individual terms of (9) and using (8)

∇ · ∂tu = ∂t∇ · u = 0

∇ · (U∂xu) = U∇ · (∂xu) + (∇U) · ∂xu = U∂x∇ · u+ U ′∂xv = U ′∂xv

∇ · (vU ′
ex) = ∂x(vU

′) = U ′∂xv

∇ · (−∇p) = −∆p

∇ ·

(
1

R
∆u

)

=
1

R
∆∇ · u = 0
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leads to
2U ′∂xv = −∆p (10)

We now take the Laplacian of they component of (7):

∆∂tv +∆(U∂xv) = −∆∂yp+
1

R
∆2v (11)

We expand the terms in the middle of (11):

∆(U∂xv) = U∆∂xv + 2U ′∂xyv + U ′′∂xv

−∆∂yp = ∂y(2U
′∂xv) = 2U ′∂xyv + 2U ′′∂xv

to arrive at our first equation, which contains onlyv:

(∂t + U∂x)∆v = U ′′∂xv +
1

R
∆2v (12)

The second equation is obtained by taking they component of the curl of (7):

ey · ∇ ×
(
∂tu+ U∂xu+ vU ′

ex

)
= ey · ∇ ×

(

−∇p+
1

R
∆u

)

(13)

We define
η ≡ ey · ∇ × u = ∂zu− ∂xw (14)

and calculate the terms of (13):

ey · ∇ × ∂tu = ∂tη

ey · ∇ × (U∂xu) = ∂z(U∂xu)− ∂x(U∂xw) = U∂xzu− U∂xxw = U∂xη

ey · ∇ × (vU ′
ex) = ∂z(vU

′) = U ′∂zv

ey · ∇ × (−∇p) = 0

ey · ∇ ×

(
1

R
∆u

)

=
1

R
∆η

This gives us a second equation, which couplesη andv:

(∂t + U∂x)η + U ′∂zv =
1

R
∆η (15)

Equations (12) and (15) require boundary conditions. We assume periodic boundary conditions inx and
z. In y, equation (12) is of4th order inv and thus requires 4 boundary conditions onv, while equation
(15) is of2nd order inη, requiring 2 boundary conditions onη. These boundary conditions are applied
aty = y±, wherey± can be finite or infinite. We have

v = 0 aty = y± (16)

We transform the boundary conditionsu = w = 0 aty = y± to conditions onv andη as follows:

∂xu = ∂zw = 0 =⇒ ∂yv = 0 (17)

∂zu = ∂xw = 0 =⇒ η = 0 (18)
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1.4 Orr-Somerfeld and Squire equations

The linear system (12), (15) with boundary conditions (16)-(18) ishomogeneousin x, z, t; that is, neither
the equations nor the boundary conditions distinguish between different values ofx, z, t. In contrast,
the system is not homogeneous iny, both beause the plane parallel flowU(y) whose stability is being
studied depends ony and also because the boundary conditions distingh between different values ofy:
we can be closer or farther from the boundaries. Linear systems which are homogeneous in some of their
independent variables have as their solutions functions which are exponential or trigonometric in these
variables:

v(x, y, z, t) = v̂(y)ei(α(x−ct)+βz) (19)

η(x, y, z, t) = η̂(y)ei(α(x−ct)+βz) (20)

We seek solutions which are bounded inx, z, in which case the wavenumbersα, β are real. In contrast,
we do not specify whetherc is real, imaginary, or complex. This is precisely what will distinguish
between flowsU which are stable or unstable. The convention in this field is to write the time dependence
asexp(−iαct). With α real, this convention means thatci is thegrowth rate: perturbationsv, η grow if
ci > 0, decay ifci < 0, and are neutral ifci = 0. The value ofcr gives thephase speed: a peak moves
at speedcr.

By substituting (19)-(20) into equations (12) and (15), and definingD ≡ d/dy andk2 ≡ α2 + β2, we
obtain:

(−iαc+ Uiα)(D2 − k2)v̂ = U ′′iαv̂ +
1

R
(D2 − k2)2v̂ (21)

−iαcη̂ + Uiαη̂ + U ′iβv̂ =
1

R
(D2 − k2)η̂ (22)

Dividing by iα:

(U − c)(D2 − k2)v̂ = U ′′v̂ +
1

Riα
(D2 − k2)2v̂ (23)

(U − c)η̂ + U ′
β

α
v̂ =

1

Riα
(D2 − k2)η̂ (24)

Equations (23)-(24) with (16)-(18) consitute an eigenvalue problem witheigenvaluesc and eigenvectors
v̂, η̂. Equation (23) for̂v is called theOrr-Sommerfeld equation[1, 2] and equation (24) couplinĝv and
η̂ is calledSquire’s equation[3].

For inviscid fluids (R = ∞), the coefficients in (23)-(24) are all real. This implies that the eigenval-
uesc are either real (a neutral perturbation, which neither grows nor decays), or complex conjugates
(one growing and one decaying perturbation). This is a property of inviscid fluids and of conservative
problems in general: since volumes must be conserved, growth in one direction must be compensated
by decay in another. In conservative systems, most perturbations are neutral, possibly oscillating, but
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neither growing nor decaying. Such systems become unstable when two neutral eigenvalues merge at
zero to become a growing/decaying pair. In contrast, in non-conservative systems, most perturbations
decay, and instability arises when one or more eigenvalues cross zero to become growing perturbations.

The system (23)-(24) can be written in matrix form as:
[
0
0

]

=

[ [
(U − c)− 1

Riα(D
2 − k2)

]
(D2 − k2)− U ′′ 0

U ′ β
α (U − c)− 1

Riα(D
2 − k2)

] [
v̂
η̂

]

≡

[
LOS 0
B LSQ

] [
v̂
η̂

]

(25)

This system is upper triangular. Its eigenvalues and eigenvectors can bedivided into two families, the
Orr-Sommerfeld modesand theSqire modes:

Modes OS :
LOS v̂ = 0, v̂ 6= 0
LSQη̂ = −Bv̂

Modes SQ :
v̂ = 0
LSQη̂ = 0, η̂ 6= 0

(26)

The Sqire modes are always neutral for inviscid fluids (R = ∞), and damped for viscous fluids. We
show this by writing:

0 =

(

U − c−
1

Riα
(D2 − k2)

)

η̂

0 =

∫

dy η̂∗
(

U − c−
1

Riα
(D2 − k2)

)

η̂

=

∫

dy U |η̂|2 − c

∫

dy |η̂|2 −
1

Riα

∫

dy η̂∗D2η̂ +
k2

Riα

∫

dy |η̂|2 (27)

Integration by parts yields:
∫ +1

−1
dy η̂∗D2η̂ = η̂∗Dη̂]+1

−1 −

∫ +1

−1
dy |Dη̂|2 (28)

where the surface term disappears because of the boundary conditions η̂(±1) = 0. The imaginary part
of (27) is thus:

ci

∫

dy |η̂|2 = −
1

Rα

∫

dy |Dη̂|2 −
k2

Rα

∫

dy |η̂|2 ≤ 0 (29)

To seek linear instabilities, we therefore study the Orr-Sommerfeld equation and its eigenmodes.

1.5 Squire’s Transformation

A very well-known result about the Orr-Sommerfeld is calledSquire’s Theorem[3]. We define

α̃2 ≡ α2 + β2 (30)

β̃ ≡ 0 (31)

R̃ ≡ Rα/α̃ (32)
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and substitute into equation (23):

(U − c)(D2 − α̃2)v̂ = U ′′v̂ +
1

R̃iα̃
(D2 − α̃2)2v̂ (33)

We see that (23) is also an Orr-Sommerfeld equation, with an increased wavenumber inx, a zero
wavenumber inz (the perturbation is independent ofz), a decreased Reynolds number, and an unchanged
c andv̂.

In the case of a viscous fluid, we assume that there is no instability for low Reynolds number. With
fixedα, β we increaseR until one of theci becomes positive, meaningU has become unstable. Squire’s
Theorem states that the wavenumbersα̃, β̃ = 0 lead to instability forR̃, which is less thanR. To find
the lowest Reynolds number for which (23) becomes unstable, it is therefore sufficient to consider two-
dimensional cases, withβ = 0. In the case of an inviscid fluid, Squire’s Theorem states that the problem
with α, β > 0 is identical to that with̃α, β̃ = 0, and hence, again, we can setβ = 0.

The problem of the stability of plane parallel flows has been greatly simplified.In section 1.3, we
reduced the Navier-Stokes equations (four equations coupling four fields u, v, w, p) to two equations
in v, η. In section 1.4, by choosing wavenumbersα andβ and wavespeedc, we reduced the partial
differential equations inx, y, z, t first to a pair of ordinary differential equations iny, and then to the
Orr-Sommerfeld equation alone. Finally, here in section 1.5, we eliminated one of the wavenumbers,
leading to a single equation relatingc to R andk. Because of these successive simplifications, it has
been possible to prove rigourously that Poiseuille and Couette flow are linearly stable in the Reynolds
numbers range in which transition to turbulence occurs, both experimentally and numerically.

At this time, there is no definite resolution to this dilemma, but we will address some possible approaches
in section 3.

2 Classical theory of ideal fluids

2.1 Rayleigh Equation

In the framework of ideal (inviscid) fluids, the Orr-Sommerfeld equation is calledthe Rayleigh equation
[4, 5].

[
(U − c)(D2 − k2)− U ′′

]
v̂ = 0 (34)

We will now demonstrate several classical properties of (34). The firstis Rayleigh’s inflection point
theorem(1880), which states thatci 6= 0, thenU(y) has an inflection point. This means that ifU(y) does
nothave an inflection point, thenci = 0 and soU is stable. We show this as follows. Starting from (34),
we divide by−(U − c) (since(U − c) 6= 0 if ci 6= 0); we multiply by v̂∗, the complex conjugate of̂v,
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Figure 2: Three velocity profiles. Left: this profile does not have an inflection pointU ′′(yS) = 0, and
is therefore stable according to Rayleigh’s criterion. Middle: this profile has an inflection point and
thus could be unstable according to Fjortoft’s criterion. Right: this profile has an inflection point which
implies a stable flow according to Fjortoft’s criterion.

and we integrate over[−1, 1]:

0 =

∫ +1

−1
dy v̂∗

[

(−D2 + k2) +
U ′′

U − c

]

v̂ (35)

We rewrite (35) using integration by parts as we did in (28):

0 =

∫ +1

−1
dy

[

|Dv̂|2 + k2|v̂|2 +
U ′′

U − c
|v̂|2

]

=

∫ +1

−1
dy

[

|Dv̂|2 + k2|v̂|2 +
U ′′(U − cr)

|U − c|2
|v̂|2

]

+ ici

∫ +1

−1
dy

U ′′

|U − c|2
|v̂|2 (36)

For the imaginary part of the right-hand-side of (36) to be zero, the integral multiplying ci must be
zero (sinceci 6= 0). For this to happen,U ′′ must change sign over[−1,+1], and thusU must have an
inflection pointyS whereU ′′(yS) = 0.

Fjortoft’s Theorem[6] refines the inflection point criterion: ifci 6= 0, thenU ′′(y)(U(y) − U(yS)) must
be negative over a portion of the interval[−1,+1]. Let us rewrite the real part of (36):

∫ +1

−1
dy

U ′′(U − cr)

|U − c|2
|v̂|2 = −

∫ +1

−1
dy

[
|Dv̂|2 + k2|v̂|2

]
< 0 (37)

We defineUS ≡ U(yS) and multiply the imaginary part of (36) by(cr − US)/ci:

∫ +1

−1
dy

U ′′(cr − US)

|U − c|2
|v̂|2 = 0 (38)

We add (37) and (38):

∫ +1

−1
dy

U ′′(U − cr + cr − US)

|U − c|2
|v̂|2 = −

∫ +1

−1
dy

[
|Dv̂|2 + k2|v̂|2

]
< 0 (39)
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We therefore have: ∫ +1

−1
dy

U ′′(U − US)

|U − c|2
|v̂|2 < 0 (40)

which requires thatU ′′(y)(U − US) be negative over a portion of the interval. Note that the Rayleigh
and Fjortoft criteria apply only to inviscid fluids and can only demonstrate stability and not instability.

Howard’s semicircle theorem[7] states that the unstable eigenvalues of the Rayleigh equation obey:

(

cr −
1

2
(Umax + Umin)

)2

+ c2i ≤
1

2
(Umax − Umin)

2 (41)

In other words, they are located inside the circle whose diameter is the line segment betweenUmax and
Umin. We will not prove this theorem.

2.2 Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability arises from a velocity gradient. Let us first apply Rayleigh’s equation
to the Kelvin-Helmholtz instability. To do so, we will study the stability of piecewise-constant profiles
on the domain−∞ < y < ∞. For this case, we must specify jump conditions at each discontinuity of
U . The first condition is:

v̂

U − c

]

= 0 (42)

where] means the difference in the quantity evaluated on either side of the discontinuity. This condition
insures that the interface between the two sides remains well-defined. The second condition is:

((U − c)D − U ′)v̂
]
= 0 (43)

This condition insures the continuity of the normal stress (the pressure). Let us now consider the simplest
profile:

U =

{
U+ poury > 0
U− poury < 0

(44)

In each of the two domains, Rayleigh’s equation (34) has the form

(D2 − k2)v̂ = 0 (45)

Given the boundary conditionŝv = 0 aty = ±∞, the solution is

v̂ =

{
Ae−ky for y > 0
Beky for y < 0

(46)
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We apply the jump conditions aty = 0:

0 =
v̂

U − c
(0+)−

v̂

U − c
(0−) =

A

U+ − c
−

B

U− − c
(47)

0 = ((U − c)D − U ′)v̂(0+)− ((U − c)D − U ′)v̂(0−)

= (U+ − c)(−kA)− (U− − c)kB (48)

or [
0
0

]

=

[ 1
U+−c

−1
U
−
−c

(U+ − c) (U− − c)

] [
A
B

]

(49)

A non-trivial solution exists if the determinant is zero:

0 =
U− − c

U+ − c
+

U+ − c

U− − c

0 = (U− − c)2 + (U+ − c)2 = 2c2 − 2(U+ + U−)c+ U2
+ + U2

−

c =
1

2

[

U+ + U− ±
√

(U+ + U−)2 − 2(U+ + U2)
]

=
U+ + U−

2
±

1

2

√

−(U+ − U−)2

≡ Ū ± i
∆U

2
(50)

The perturbation described by (46) and (19) propagates with a phase speed ofcr, which is the averagēU
of the two speeds, while it is amplified or damped at a rateci of ∆U/2, the half-difference between the
two speeds. Sinceci is always positive, the piecewise-constant profile (44) is unstable.

This simplified version of the Kelvin-Helmholtz instability yields acwhich is independent of the wavenum-
berk: the profile (44) is unstable to perturbations withall wavenumbersk, which all propagate at the
same speed. This unrealistic property is a consequence of the piecewise-constant profile. We now use a
slightly more realistic model of the interface, in which the derivative of the velocity profile, but not the
profile itself, is discontinuous aty = ±δ. The profile and the solution are described in the three regions
by:

y > +δ : U = U+ U ′ = 0 v̂ = v̂+ ≡ A+e
−ky Dv̂+ = −kA+e

−ky

−δ < y < +δ : U = Ū + ∆U
2δ y U ′ = ∆U

2δ v̂ = v̂0 ≡ A0e
−ky +B0e

ky Dv̂0 = −kA0e
−ky + kB0e

ky

y < −δ : U = U− U ′ = 0 v̂ = v̂− ≡ B−e
ky Dv̂− = kB−e

ky

(51)
WhenU is continuous, the condition (42) implies thatv̂ is also. The conditions which the solution must
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0 0

Figure 3:cr andci for the Kelvin-Helmholtz instability in the case of a piecewise-constant profile.

Figure 4: Left: a piecewise-constant profile. Middle: a piecewise-linearprofile. Right: a piecewise-linear
profile is unstable to perturbations whose wavelengthλ exceeds10 δ.
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satisfy are:

0 = v̂0(δ)− v̂+(δ) = A0e
−kδ +B0e

kδ −A+e
−kδ (52)

0 = v̂0(−δ)− v̂−(−δ) = A0e
kδ +B0e

−kδ −B−e
−kδ (53)

0 = [(U − c)D − U ′]v̂0(δ)− [(U − c)D − U ′]v̂+(δ)

= (U − c)[Dv̂0(δ)−Dv̂+(δ)]− [(U ′v̂+)(δ)− (U ′v̂0)(δ)]

= (U+ − c)[−kA0e
−kδ + kB0e

kδ − (−kA+e
−kδ)] +

∆U

2δ
(A0e

−kδ +B0e
kδ) (54)

0 = [(U − c)D − U ′]v̂0(−δ)− [(U − c)D − U ′]v̂−(−δ)

= (U − c)[Dv̂0(−δ)−Dv̂−(−δ)]− [(U ′v̂−)(−δ)− (U ′v̂0)(−δ)]

= (U− − c)[−kA0e
kδ + kB0e

−kδ − (kB−e
−kδ)] +

∆U

2δ
(A0e

kδ +B0e
−kδ) (55)

Using (52) and (53) to eliminateA+ andB− in (54) and (55) yields

0 = (U+ − c)2kB0e
kδ +

∆U

2δ
(A0e

−kδ +B0e
kδ) (56)

0 = (U− − c)(−2k)A0e
kδ +

∆U

2δ
(A0e

kδ +B0e
−kδ) (57)

or [
0
0

]

=

[
∆U
2δ e−kδ ((U+ − c)(−2k) + ∆U

2δ )ekδ

((U− − c)2k + ∆U
2δ )ekδ ∆U

2δ e−kδ

] [
A0

B0

]

(58)

which has a solution if and only if:

c = Ū ±
∆U

4kδ

√

(1− 2kδ)2 − e−4kδ (59)

Now, c depends onk and can be real (a neutral perturbation) or complex (growing or damped). The
boundary between these two regimes is found by solving numerically the equation

(2k̂ − 1)2 = e−2k̂ (60)

which yieldsk̂ = 0.64. The unstable perturbations are characterized by:

kδ < 0.64
2πδ

λ
< 0.64

λ >
2π

0.64
δ ≈ 10 δ (61)

The piecewise-linear profile (51) is unstable to perturbations whose wavelength is more than 10 times
the widthδ of the interface. We can verify that, whenδ tends to zero, we recover the previous result (50)
of the discontinuous profile.

12



0.64

0

0.64

0

Figure 5:cr andci for the Kelvin-Helmholtz instability in the case of a piecewise-linear profile.

3 Beyond eigenvalues

We return to Poiseuille and Couette flow. Poiseuille flow becomes linearly unstable atR = RL = 5772
[8], whereas experiments and simulations show transition to turbulence atR = RT ≈ 1000. Couette
flow is linearly stable for all Reynolds numbers, whereas experiments [9, 10] and simulations [11, 23]
show a transition to turbulence atR = RT ≈ 300. Circular Poiseuille flow, or pipe flow, is also linearly
stable at allR but undergoes transition to turbulence atR = RT ≈ 2000. For these last two flows, we
can say thatRL = ∞.

Flow RT RL

plane Poiseuille 1000 5772
plane Couette 300 ∞
pipe Poiseuille 2000 ∞

In addition, turbulence is three-dimensional, unlike the two-dimensional (β = 0, i.e. independent of the
transverse or spanwise directionz) perturbations shown by Squire’s Theorem to be the most unstable.
Many ideas have been proposed to liberate hydrodynamic stability theorem from the tyranny of Squire’s
Theorem and eigenvalues. In this section, we will discuss a few of these ideas. Many articles are
published each year in this very active field.

3.1 Energy theory

The equation governing the evolution of the energy density is obtained by taking the scalar product of
the Navier-Stokes equation withU, leading to

∂

∂t

1

2
U ·U = U ·

∂U

∂t
= −U · [(U · ∇)U]−U · ∇P +

1

R
U ·∆U (62)
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We then integrate (62) over a volume which is either periodic or with zero velocity through the bound-
aries. The nonlinear term is conservative, i.e. leads to zero contribution to(62). This is seen by first
writing

U · [(U · ∇)U] = ∇ ·

(

U
U2

2

)

−
U2

2
∇ ·U (63)

The second term of the right-hand-side of (63) is zero for an incompressible fluid. The first term is
integrated over the volume and then transformed by Gauss’s theorem. The resulting surface integral is
zero because of the boundary conditions.

∫

dV U · [(U · ∇)U] =

∫

dV ∇ ·

(

U
U2

2

)

=

∫

dA n̂ ·U
U2

2
= 0 (64)

We can also calculate an analogous calculation on thenonlinearequations which govern the growth of a
non-infinitesimal perturbationu of the steady flowU.

u · ∂tu+ u · (u · ∇)U+ u · (U · ∇)u+ u · (u · ∇)u = −u · ∇p+
1

R
u ·∆u (65)

We substitute

u · ∂tu = ∂t

(
|u|2

2

)

u · [(u · ∇)u] = ∇ ·

(

u
|u|2

2

)

−
|u|2

2
∇ · u

u · [(U · ∇)u] = ∇ ·

(

U
|u|2

2

)

−
|u|2

2
∇ ·U

−u · ∇p = −∇ · (p u) + p ∇ · u

u ·∆u = ∇ · ∇

(
|u|2

2

)

− |∇u|2

and integrate over a volume. As previously, we use Gauss’s theorem, incompressibility, and the boundary
conditions (u is either zero on the boundaries, or periodic) to eliminate all the terms above which are
divergences. What remains is called theReynolds-Orr equation:

d

dt

∫

dV

(
|u|2

2

)

=

︸ ︷︷ ︸

dE(u)

dt
=

−

∫

dV u · [(u · ∇)U]

︸ ︷︷ ︸

P(u)

−
1

R

∫

dV |∇u|2

︸ ︷︷ ︸

−
1

R
D(u)

(66)

D(u)/R is the energy lost byu to viscous dissipation How isu supplied with energy? The base flow
U is maintained (for example, by providing the pressure gradient for Poiseuille flow or by moving the
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bounding plates for Couette flow). The termP(u) measures the energy exchanged between the base
flow U and the perturbationu. The evolution of the energy ofu comes from terms which are linear in
u: viscous dissipation and the nonlinear term linearized aboutU. We see that

1

E(u)

dE(u)

dt
(67)

is independent of the amplitude ofu, which is a consequence of the fact that the evolution of the energy
of u comes from terms which are linear inu.

Joseph [12] defined an critical energy Reynolds numberRE such that
– ForR < RE , Ė(u) < 0 for all u.
– ForR > RE , there exists a perturbationu such that ˙E(u) > 0.

It is possible to show that
1

RE
=

max
u

(

−
P(u)

D(u)

)

(68)

Significantly, the maximum in (68) is realized for perturbationsu with non-zero spanwise wavenumber
β. These values are shown in the table below [13].

Flow RE β

plane Poiseuille 49.7 2.05
plane Couette 20.7 1.56

3.2 Transient growth

In order to explaintransient growth. [14, 15] we consider the model problem:

d

dt

[
v
η

]

=

[
−1/R 0

1 −2/R

] [
v
η

]

(69)

Since the matrix is upper triangular, we can easily see that its eigenvalues are−1/R et −2/R, both
negative. The corresponding eigenvectors are:

λ1 = −
1

R
:

[
1
R

]

λ2 = −
2

R
:

[
0
1

]

(70)

The variables evolve as
[
v
η

]

= v0

[
1
R

]

e−t/R + (η0 − v0R)

[
0
1

]

e−2t/R (71)
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Expand (71) fort small:

η = η0e
−2t/R +Rv0(e

−t/R − e−2t/R)

= η0e
−2t/R +Rv0(1−

t

R
+ · · · − 1 +

2t

R
− · · · )

= η0e
−2t/R + v0t (72)

Equation (72) shows that the difference between twodecreasingexponentials can lead to algebraic
growth over short times, a phenomenon calledtransient growth, just as is seen in Jordan blocks. We
see that matrix (69) increasingly resembles a Jordan block asR → ∞. This tendency can also be seen
by examining the scalar product between the eigenvectors:

[
1
R

]

·

[
0
1

]

= R =
√

1 +R2 cosφ (73)

whereφ is the angle between the two eigenvectors. Equation (73) shows thatφ → 0 and therefore that
the eigenvectors become parallel asR → ∞.

Even though the search for the largest (positive or least negative) eigenvalues as a function ofR can be
limited toβ = 0, this is not the case for eigenvectors showing the largest transient growth. Returning to
hydrodynamic flows, we can define:

G ≡
max

α, β, t, v̂0, η̂0

E(t)

E(0)
(74)

where the maximum is taken over all wavenumbersα, β, all timest, and all initial conditionŝv0(y),
η̂0(y). The results are given in the table below [14, 15, 16]

Flow G tmax αmax βmax

plane Poiseuille 0.20 R2 × 10−3 0.076 R 0 2.04
plane Couette 1.18 R2 × 10−3 0.117 R 35/R 1.6
pipe Poiseuille 0.07 R2 × 10−3 0.048 R 0 1

Blasius boundary layer 1.18 R2 × 10−3 0.778 R 0 0.65

The amplification factorG can be very large. For example,G = 200 for plane Poiseuille flow at
R = 1000, andG = 100 for plane Couette flow atR = 300, near where transition to turbulence
occurs in these flows. In addition, the perturbation which maximizesG hasα = 0 or α → 0. The
value ofβ is, in the case of plane Couette flow, close toπ/2, giving a half wavelength ofπ/β ≈ 2, the
distance between the two plates. Indeed, the perturbations with largest transient growth (called optimal
perturbations) consist of longitudinal vortices, like convective rolls, whose axes are in the direction of the
base flow, i.e. alongx. Such structures have been observed experimentally [17, 18, 19] andnumerically
[20, 21].

Although these results are suggestive, the relationship between transientgrowth and transition to turbu-
lence has not been demonstrated.
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Figure 6: Self-Sustaining Process (SSP) proposed by Waleffe [22, 23, 24].

3.3 Self-Sustaining Process

From observations of numerical simulations of turbulence at low Reynolds numbers, Waleffe [22, 23, 24]
proposed a theory for transitional turbulence, described in http://www.math.wisc.edu/∼waleffe/ECS/SSP.html
as follows:

This nonlinear, three-dimensional Self-Sustaining Process appears to be a generic mechanism in shear
flows. The mechanism has three main elements as depicted in the figure above:

–Streamwise rolls sustain “streaks” (i.e. spanwise (z) modulation of the streamwise velocity), by redis-
tributing the mean momentum in cross-planes,
–the streaks suffer a wake-like instability due to the spanwise inflections that leads to the onset of a
streamwise ondulation,
–the nonlinear self-interaction of that streamwise ondulation directly regenerates the streamwise rolls.

This process leads to self-sustained 3D traveling waves that consists of wavy streaks flanked by staggered,
counter-rotating, quasi-streamwise vortices in both plane Poiseuille flow and plane Couette flow with no-
slip as well as free-slip boundary conditions.

The self-sustaining process is considered to be a key ingredient in transitional shear-flow turbulence.
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Figure 7: Three unstable steady states of plane Couette flow atR = 400, computed by Gibson and
Cvitanovic. http://chaosbook.org/tutorials and http://www.channelflow.org

3.4 Unstable steady states and travelling waves

Until fairly recently, the only solutions known for plane Poiseuille and Couetteflow and for pipe flow
were the basic laminar solution and, in the case of plane Poiseuille flow, the two-dimensional Tollmien-
Schlichting waves that bifurcate atReL = 5772. However, starting in 1990, large numbers of unstable
solutions solutions of wall-bounded shear flows, such as plane Couette flow [25, 26, 27, 28] and pipe
Poiseuille [29, 30, 31, 32] flow have been discovered computationally. Itis hypothesized that weak
turbulence can be understood as chaotic trajectories that visit in turn the vicinities of the various unstable
branches [33, 34, 35, 36]. In order to explain weak turbulence in wall-bounded shear flows, researchers
focus on the unstable manifolds and time-dependent trajectories which connect the branches. The non-
trivial solutions mostly consist of wavy longitudinal vortices (α, β 6= 0) and are created via saddle-
node bifurcations. The Reynolds-number threshold for weak turbulence in wall-bounded shear flows is
sometimes thought to be related to the lowest of these saddle-nodes.
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