- Talk 1.Quasi-particle charge and heat currentsin *d*-wave superconductor
- Talk 2. The Nernst effect in vortex liquid state of cuprates
- Talk 3. Magnetization of vortex liquid state
 - N. P. Ong, Princeton University

http://www.princeton.edu/~npo/

Supported by NSF-MRSEC, ONR

Boulder, July 7-11, 2008

Talk 1

Quasi-particle charge and heat currents in *d*-wave superconductor

- 1. Introduction : Charge and heat currents Hall effect, Nernst effect, Thermal Hall effect
- 2. The Hall effect in cuprates
- 3. Quasiparticles and Thermal Hall conductivity

N. P. Ong, Princeton University

Collaborators: Lu Li, Joe Checkelsky, Yayu Wang, Kapeel Krishana, Wei Li Lee, Yuexing Zhang, Jeff M. Harris, Y.F. Yan, P.W. Anderson

Supported by NSF-MRSEC, ONR

Boulder, July 7-11, 2008

The Hall effect

$$J_{x} = \sigma_{xx} E_{x} + \sigma_{xy} E_{y}$$
$$J_{y} = \sigma_{yx} E_{x} + \sigma_{yy} E_{y}$$
$$\mathbf{E} = \vec{\rho} \cdot \mathbf{J}$$

$$J = \sigma E + \alpha (-\partial_x T)$$
$$S = \left(\frac{E}{\nabla T}\right)_{J=0} = \frac{\alpha}{\sigma} \quad \begin{array}{c} \text{Seebeck} \\ \text{coef.} \end{array}$$

Boltzmann-equation expressions for currents

$$\frac{\partial f_{k}}{\partial \mathbf{k}} \cdot \dot{\mathbf{k}} + \frac{\partial f_{k}}{\partial \mathbf{x}} \cdot \mathbf{v}_{\mathbf{k}} = -\frac{g_{\mathbf{k}}}{\tau} \qquad f_{\mathbf{k}} - f_{\mathbf{k}}^{0} = g_{\mathbf{k}}$$
charge $\mathbf{J} = 2e \sum_{k} g_{\mathbf{k}} \mathbf{v}_{\mathbf{k}} \qquad \text{heat} \qquad \mathbf{J}^{h} = 2 \sum_{k} (\varepsilon_{\mathbf{k}} - \mu) g_{\mathbf{k}} \mathbf{v}_{\mathbf{k}}$

$$\boxed{\mathbf{Charge current} \quad \mathbf{J} = \sigma \mathbf{E}} \qquad g_{\mathbf{k}} = -\frac{\partial f_{\mathbf{k}}^{0}}{\partial \varepsilon} e \mathbf{E} \cdot \vec{\ell}_{\mathbf{k}} \qquad \frac{\partial f_{k}}{\partial \mathbf{x}} = \frac{\partial f_{\mathbf{k}}^{0}}{\partial \varepsilon} \hbar \mathbf{v}_{\mathbf{k}}$$

$$\boxed{\mathbf{conductivity}} \qquad \sigma = 2e^{2} \sum_{k} \left(-\frac{\partial f_{\mathbf{k}}^{0}}{\partial \varepsilon} \right) \mathbf{v}_{\mathbf{k}} \ell_{\mathbf{k}} \cos^{2} \vartheta_{\mathbf{k}}$$

Presence of temp. gradient

Thermoelectric current
$$\mathbf{J} = \alpha (-\nabla T)$$
 $g_{\mathbf{k}} = -\frac{\partial f_{\mathbf{k}}^{0}}{\partial \varepsilon} \frac{(\varepsilon_{\mathbf{k}} - \mu)}{T} \vec{\ell}_{\mathbf{k}} \cdot (-\nabla T)$

Thermoelectric cond.

$$\alpha = 2e \sum_{k} \left(-\frac{\partial f_{\mathbf{k}}^{0}}{\partial \varepsilon} \right) \frac{(\varepsilon_{\mathbf{k}} - \mu)}{T} \mathbf{v}_{\mathbf{k}} \ell_{\mathbf{k}} \cos^{2} \vartheta_{\mathbf{k}}$$

Quasi-particle excitations in normal state of Fermi liquid

 $h_{k\uparrow}^{+} = c_{-k\downarrow}$

A spin-down vacancy at –k translates to a spin-up hole excitation at k

Charge and heat currents in the "excitation" representation

 $\mathbf{J} = \boldsymbol{\sigma} \mathbf{E}$

Mass currents nearly cancel. Difference is the Peltier heat current

 $\mathbf{J}^{h} = \widetilde{\boldsymbol{\alpha}} \mathbf{E}$

Charge currents nearly cancel. Difference is the Peltier charge current

 $\mathbf{J}^{h} = \kappa_{e}(-\nabla T)$

$$\mathbf{J} = \alpha(-\nabla T)$$

The Nernst effect (quasiparticles) War

Wang et al. PRB '01

$$\mathbf{J} = \vec{\sigma} \cdot \mathbf{E} + \vec{\alpha} \cdot (-\nabla T)$$

Open boundaries, so set $\mathbf{J} = 0$.

$$\mathbf{E} = -\vec{\rho} \cdot \vec{\alpha} \cdot (-\nabla T)$$
$$E_{y} = -(\rho \alpha_{yx} + \rho_{yx} \alpha)(-\partial_{x} T)$$

Off-diag. Peltier cond.

$$\alpha_{xy} = 2e^2 \sum_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}}^0}{\partial \varepsilon} \right) \frac{\varepsilon_{\mathbf{k}} - \mu}{T} \ell_y \, \mathbf{v} \times \mathbf{B} \cdot \frac{\partial}{\partial \mathbf{k}} (\ell_x)$$

Measured Nernst signal

$$e_N \equiv \frac{E_y}{|\nabla T|} = \frac{\pi^2}{3} \frac{k_B^2 T}{e} \frac{\partial \theta}{\partial \varepsilon}$$

Generally, very small because of cancellation between α_{xy} and σ_{xy}

NPO, PRB (1991)

The 2D Hall conductivity σ_{xy}

$$\begin{split} &\frac{\partial f_{\mathbf{k}}}{\partial \mathbf{k}} \cdot \dot{\mathbf{k}} = -\frac{g_{\mathbf{k}}}{\tau} & f_{\mathbf{k}} - f_{\mathbf{k}}^{0} = g_{\mathbf{k}} & \text{Boltzmann Eq.} \\ &g_{\mathbf{k}} = -\tau \frac{\partial f_{\mathbf{k}}}{\partial \mathbf{k}} \cdot (e \, \mathbf{E} + \mathbf{v} \times \mathbf{B}) & \text{Eq. of motion} \\ &J_{y} = e \sum_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}}^{0}}{\partial \varepsilon} \right) e \, \mathbf{v} \times \mathbf{B} \cdot \frac{\partial}{\partial \mathbf{k}} (e E \cdot \vec{\ell}) \, \mathbf{v}_{y} \tau & \text{Hall current in 2^{nd} order} \\ &\sigma_{xy} = e^{3} B \sum_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}}^{0}}{\partial \varepsilon} \right) \, \hat{\mathbf{t}} \cdot \nabla_{\mathbf{k}} (\ell_{x}) \, \ell_{y} & \text{Gauss mapping to } \dots \\ &\sigma_{xy} = e^{3} B \frac{1}{2} \quad \oint d \vec{\ell} \times \vec{\ell} & \text{Area swept out in ell-space!} \end{split}$$

The 2D Hall conductivity σ_{xy}

$$\sigma_{xy} = 2(e^3/\hbar)B\sum_{\mathbf{k}} \left[\frac{-\partial f_{\mathbf{k}}}{\partial \varepsilon}\right] (v_y \tau_{\mathbf{k}}) \left[v_y \left[\frac{\partial}{\partial k_x}\right] - v_x \left[\frac{\partial}{\partial k_y}\right]\right] (v_x \tau_{\mathbf{k}}),$$

 $\sigma_{xy} = (e^3/2\pi^2\hbar) \int dk_t |\mathbf{v}|^{-1} [v_y \tau_{\mathbf{k}}(\mathbf{v} \times \mathbf{B}) \cdot \nabla (v_x \tau_{\mathbf{k}})] ,$

 σ_{xy} is the area swept out by mfp (for *arb.* anisotropy)

Temp. dependences of Hall coef. and Hall angle in YBCO

Harris, Yan, NPO, PRB '92

Similar T dependence of $R_{\rm H}$ seen in LaSrCuO

Hwang Batlogg et al., PRL '94

Ono, Komiya, Ando, PRB '07

LETTERS

Evolution of the pseudogap from Fermi arcs to the nodal liquid Kanigel, Campuz

Kanigel, Campuzano et al. Nature Phys. 2007

Fits to T dependence of $R_{\rm H}$ in YBCO

Fits to $\cot\theta$ and resistivity ρ

Vortex motion in type II superconductor

J_S F_M

Applied supercurrent J_s exerts magnus force on vortex core

 $\mathbf{F}_{M} = \mathbf{J}_{s} \times \vec{\Phi}_{0}$

Velocity gives *induced E*-field in core (Faraday effect) Current enters core and dissipates (damping viscosity)

Motion of vortices generates *observed*
E-field
$$\mathbf{E} = \mathbf{B} \mathbf{x} \mathbf{v} \qquad \rho_{xx} = \rho_N \frac{H}{H_{c2}} = B \Phi_0 / \eta$$

Consequence of Josephson equation

Tilt angle of velocity gives negative vortex Hall effect

In clean limit, vortex v is || - J_s

(Bardeen Stephen, Nozieres Vinen)

Vortex Hall current

Vortex Hall σ_{xy} is *negative.* Appearance is abrupt

Invert matrix

$$\sigma_{xy} = \frac{\rho_{yx}}{\rho_{xx}^2 + \rho_{yx}^2}$$

Quasiparticle and vortex Hall conductivities are *additive*

Thermal Hall conductivity of quasi-particles in cuprates

K. Krishana, Yuexing Zhang, J. M. Harris, NPO

Problem: Separate the QP current from vortex currents?

Monitor thermal currents.

 κ_{xx} vs. *T* in 90-K YBCO (twinned and untwinned)

Is peak from QP or phonons?

Excitations of an s-wave superconductor

QP's cost energy, but *increase* entropy S (lower free energy F)

Heat transport in low- T_c superconductors

$$\mathbf{J}_{Q} = \kappa_{tot} (\neg \nabla T)$$

$$\mathbf{K}_{tot} = \kappa_{el} + \kappa_{ph}$$

$$\mathbf{M}_{tot} = \kappa_{el} + \kappa_{ph}$$

$$\mathbf{M}_{tot} = \kappa_{el} + \kappa_{ph}$$

Condensate does not carry heat (zero entropy)

 $T > T_c$, κ_{tot} mostly electronic Below T_c , QPs carry heat $T << T_c$, QP population $\rightarrow 0$ Phonons are long-lived

Dirac-like spectrum of QP at nodes

Quasiparticle dispersion *E* vs. k is linear.

Quasiparticles in a *d*-wave superconductor

Heat current in normal and superconducting states

Separating electronic and phonon κ in 93-K YBa₂Cu₃O₇

Quasiparticles in the CuO₂ plane

Hall thermal current from asymmetric scattering of QP by vortex

of QP by vortex

scattering of phonons: no asymmetry

Doppler shift

QP excitations

$$\mathbf{J} = \mathbf{J}_{s} + \mathbf{J}_{qp} \qquad (\mathbf{J}_{s} \parallel - \mathbf{J}_{qp})$$

In a supercurrent \mathbf{v}_{s} , energy of counter-moving QP's lowered.

Origin of QP Hall current

Doppler shift lowers energy of counter-moving QPs

Thermal Hall Conductivity κ_{xy} in high-purity YBCO₇ (normal state)

Thermal Hall Conductivity κ_{xy} In high-purity YBCO₇

- 1) Hall signal much larger below Tc
- 2) Giant increase in initial slope 85 to 40 K
- 3) Strongly non-linear in H

Thermal Hall Conductivity κ_{xy} in highpurity YBCO₇

(12.5 to 35 K)

Plot initial slope $\lim_{B \to 0} \kappa_{xy}/B$ vs. T.

Initial slope increases by 1000 between 85 and 30 K

Steep increase in QP mean-free-path ~ 120

Increases by 120 from 85 to 30 K

Abrupt increase at Tc (coherence effect?)

Calculated fits to K_{xx} and K_{xy} (Adam Durst, Ashvin Vishwanath, P.A. Lee, 2003)

Durst, Vishwanath, Lee

$$\kappa_{xx} = c_e v_F l \sim T^2 T^{-1}$$

$$\kappa_{xy} = \kappa_{xx} \tan \theta = \kappa_{xx} n_V \sigma_H l$$

$$\sim T^2 T^{-1} \cdot H \cdot T H^{-1/2} \cdot T^{-1} \sim (TH)^{1/2}$$

Explains observation

 $\kappa_{xy} = C_0 (TH)^{1/2}$

Summary

Below T_c , we observe

- . 1000-fold increase in κ_{xy} (weak field)
- 200-fold increase in *QP* mfp *l*.
 (80 Angstrom to 2 microns)
- . Giant anomaly in κ_{tot} is entirely from QP.
- . Steep increase in mfp starts just below T_c (conflicts with ARPES)
- . Intriguing scaling behavior in κ_{xy} (Simon-Lee)
- . No evidence (yet) for Landau quantization

References for Lect. 1 (website http://www.princeton.edu/~npo/)

1. N. P. Ong, Phys. Rev. B 43, 193 (1991). 2. J.M. Harris, Y.F. Yan, and N.P. Ong, Phys. Rev. B 46, 14293 (1992). 3. J.M. Harris, Y.F. Yan, O.K.C. Tsui, Y. Matsuda and N.P. Ong, Phys. Rev. Lett. 73, 1711 (1994). 4. J. M. Harris, N. P. Ong, P. Matl, R. Gagnon, L. Taillefer, T. Kimura and K. Kitazawa, Phys. Rev. B 51, 12053 (1995). 5. K. Krishana, J. M. Harris, and N. P. Ong, Phys. Rev. Lett. 75, 3529 (1995). 6. Y. Zhang, N.P. Ong, Z.A. Xu, K. Krishana, R. Gagnon, and L. Taillefer, Phys. Rev. Lett. 84, 2219 (2000). 7. Y. Zhang, N.P. Ong, P. W. Anderson, D. A. Bonn, R. X. Liang, and W. N. Hardy, Phys. Rev. Lett. 86, 890 (2001). 8. Adam C. Durst, Ashvin Vishwanath, and Patrick A. Lee, Phys. Rev. Lett. 90, 187002 (2003).

Vortices in cuprates CuO₂ planes 2D vortex pancake ξ

Cheap, fast vortices

$$H^* = \frac{\phi_0}{2\pi\xi^{*2}}$$

Is *H*^{*} determined by close-packing of fat vortices?

