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1 Main Text

The fraction of time spent in the looped configuration is controlled by several
competing effects. For example, suppose that a repressor tetramer is bound to
the stronger operator. Shortening the interoperator spacing reduces the volume
over which the other operator wanders relative to the second binding site on the
repressor, increases the apparent local “concentration” of free operator in the
neighborhood of that binding site, and hence enhances looping. But decreasing
the interoperator spacing also has the opposite effect of discouraging looping,
due to the larger elastic energy cost of forming a shorter loop. Moreover, a
shorter overall DNA construct increases the entropic force exerted by bead–wall
avoidance, again discouraging looping [1]. To see what our measurement of this
looping equilibrium tells us, we therefore needed to calculate in some detail
the expected local concentration of operator (the “looping J factor”) based
on a particular mathematical model of DNA elasticity. We chose a harmonic-
elasticity model (a generalization of the traditional wormlike chain model), to
see if it could adequately explain our results, or if, on the contrary, some non-
harmonic model (for example the one proposed in [6, 7]) might be indicated.

To perform the required calculation, we modified the Gaussian sampling
method previously used in [1, 2, 3] (see supplement). Our code generated many
simulated DNA chains, applied steric constraints [1], and reported what fraction
of accepted chain/bead configurations had the two operator sites separated by
7 nm, the distance between operator centers as seen in PDB structure 1LBG
[4]. The standard elastic model as an isotropic rod is inadequate for the de-
scription of DNA loops only a few helical repeats in length (see for instance
[3]), so we modified the elasticity to account for bend anisotropy and bend–roll
coupling. We did not account for sequence dependence, however, so we can only
make comparisons to our experimental results with random-sequence DNA. We
adjusted the overall magnitude of our DNA elasticity matrix to yield a value
of overall persistence length ξ = 45 nm appropriate for our experiment’s buffer
conditions [5]. The chain generation accounted for bead–wall, bead–chain, and
wall–chain avoidance, but not chain–chain; nor did we consider any interactions
involving the repressor tetramer other than binding.

The result of the simulation was that the looping J factor for short loops
was less than 0.015 times as great for the constructs with interoperator spacing
around 100 bp as for those with spacing around 300 bp; this ratio was about a
hundred times smaller than the experimentally determined ratio of 1.7 at opti-
mum helical phasing. The discrepancy between these results indicates that the
hypotheses of harmonic elasticity, plus a rigid V-shaped protein coupler, cannot
explain the experimental results.1 One possible explanation for this discrep-

1Our choice of persistence ξ = 45nm was conservative; assuming a large ξ in the simulation
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ancy, for which other support has been growing, is the alternate hypothesis of
DNA elastic breakdown at high curvature [6, 7].

2 Supplement

Our mathematical model built on our previous work [1, 2], which showed that
a Gaussian-sampling simulation could accurately model the experimentally ob-
served relation between DNA tether length and TPM bead motion by including
an effective entropic stretching force from bead–wall repulsion. This technique is
essentially a Monte Carlo evaluation of the partition function of a chain; instead
of a Metropolis implementation, we simply generated many discretized chains
using Gaussian distributions for each link’s bending and twisting angles, then
discarded any such chains that violated the global steric constraints. For the
present work, we modified our previous code to monitor the distance between
operator centers in the generated chains.

We wished to assess the ability of harmonic elasticity theory (linear elas-
ticity) to explain our experimental results. Because we wished to study tight
loops, where it’s not adequate to average the elasticity over a helical repeat, we
introduced a more detailed elastic model than the usual isotropic-rod model,
following a simplified version of the approach of [3]. (Several authors have cal-
culated looping J factors in the isotropic-rod model; see for example [9] and
references therein.) We idealized the DNA to be homogeneous, i.e. we ne-
glected sequence effects; also, we did not allow strains in the shift variables
(shift, slide, and rise). Thus we needed four elastic constants: three diag-
onals representing roll, tilt, and twist stiffnesses, and a cross-term for roll–
twist coupling. (The remaining entries in the symmetric elastic matrix cor-
respond to couplings forbidden by symmetries, namely tilt–roll and tilt–twist
[8].) We inverted the averaged covariance matrix for dimer steps in protein-
DNA complexes (http://rutchem.rutgers.edu/∼olson/cov matrix.html),
observed that the “forbidden” entries were indeed much smaller than the oth-
ers, then set them exactly to zero. We then multiplied by an overall factor
chosen to yield the persistence length 45 nm [5]. This procedure resulted in the
elastic deformation free energy per basepair as 1

2
kBT∆θtF∆θ, where ∆θ is a

vector containing the tilt, roll, and twist angles for a basepair step and

F =





0.0601 0 0
0 0.0334 0.0116
0 0.0116 0.0335



 (1)

(Each entry has the units degrees−2.)
We then generated sequences of random rotation generators, each one close

to the zero matrix, in a Gaussian distribution determined by equipartition with
the above energy function. Each generator was then exponentiated to give a
rotation matrix close to the identity. (To speed evaluation, we actually defined

results in an even greater ratio between short- and long-loop J factors.
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an equivalent model to Eq. 1 discretized not at the single-basepair level, but in
segments of length ℓ = 10.5 bp/5.) Each such sequence yielded a sequence of
segment orientations by successive matrix multiplications; the resulting orien-
tation in turn yielded a chain by following each successive 3-axis a distance ℓ.
After a chain was generated, it was checked for steric clashes, and if it survived
this check the 3-space distance between operator centers was found.

We now wish to evaluate the concentration of the weaker operator near the
free binding site of LacR tetramer bound to the stronger operator (the “loop-
ing J factor”). To do this we drew a set of nested spherical shells around the
stronger operator and found the fraction of time the weaker operator spent in
various shells. The fraction of time spent in the shell at distance 7 nm, divided
by this shell’s volume, yielded the required concentration. This procedure does
not account for the additional requirement that each operator have a speci-
fied orientation relative to the LacR tetramer (a similar requirement applies to
cyclization [3]). But implementing this condition can only reduce further the
predicted J factor for short loops relative to long ones, and our goal in the main
text was simply to establish a lower bound on this ratio.
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