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I.

The homogeneous, isotropic elastic rod model of DNA may be good for random-sequence

DNAs that are much longer than a helical repeat. For shorter DNAs, however,

. Each basepair step type (bi → bi+1 where bi =A,C,G, or T) may have its own preferred

orientation of bi relative to bi+1, and its own elastic constants for deviations from preferred.

. More generically, each cross-sectional plane of the DNA helix is quite anisotropic. This

anisotropy may average away on length scales much larger than 10bp, but for short DNA

cannot be ignored.

. Another kind of anisotropy, also modulated by the helix repeat, is twist–bend (or “twist–

roll”) coupling.

How are we going to get values for all these parameters? W. Olson has been working on this

for a long time. Her strategy is to examine crystal structures of lots of DNA oligomers, and of

DNA–protein complexes. She assumes that on average, each basepair is subjected to random

external forces (e.g. crystal forces), the same for every type of basepair junction, analogous

to the thermal forces in thermal equilibrium but of an unknown overall magnitude. Then the

observed deformations of basepairs in this imagined random external force tell us about the

elastic constants for deformation of each basepair type, and the covariances of deformations

give the off-diagonal terms.

That’s a strong set of assumptions. However, even if we don’t accept them, it’s clear on

more general grounds that a helical elastic body must have an elastic matrix with the general

form given below (Marko and Siggia, 1994). And we will set the overall magnitude of the elastic

matrix using the very well measured persistence length of DNA. So hopefully the precise details

won’t be too critical.

II. “CAMBRIDGE” CONVENTION

See Fig. 1. These conventions are equivalent to but slightly different from those of (Marko

and Siggia, 1994).
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FIG. 1 Similar to a figure in (Marko and Siggia, 1994). The hatched rectangle is a basepair. The black

dots are the phosphate backbones. The circle is the outer envelope of the helix, 2nm in diameter. We set

up an orthonormal frame where E3 is out of the page, E1 points to the major groove are as shown, and

E2 completes the triad. “Positive roll” is then defined as a positive rotation about E2 as we pass from this

basepair to the one on top of it (=“bend into the major groove”). Similarly “positive tilt” is positive rotation

about E1, and “twist” is excess rotation about E3 (in addition to the natural ω0 = 2π/10.5bp). See also

http://rutchem.rutgers.edu/∼olson/step par.gif

III. ELASTIC MODEL OF CZAPLA ET AL.

Let ℓ0 = 0.34 nm. (Czapla et al., 2006) define a vector ∆θ consisting of the tilt, roll, and twist

per basepair. For the continuum limit, let Ωi = ∆θi/ℓ0 be the corresponding rates (per unit

length). Czapla et al define the elastic deformation free energy per basepair as 1
2kBT∆θtF∆θ.

Thus F is dimensionless.

I define the elastic deformation free energy per length as 1
2kBTΩtQΩ, so Q has units of

length; in the simplest model it’s diagonal, with the bend and twist persistence lengths on the

diagonal. Thus Q = ℓ0F .

Czapla et al discuss the effect of roll–twist coupling on their page 692. This section proposes

a simplified model for DNA elasticity. Instead of the full sequence dependence, the model posits

interspersed “X-” and “Z-”tracts. The elastic matrix for “Z-”tracts is taken to be

F =







(4.84◦)−2 0 0

0 (4.84◦)−2 (5.41◦)−2

0 (5.41◦)−2 (4.09◦)−2






(1)

(Here the units are degrees−2.) The elastic matrix for “X-”tracts is the same without the

offdiagonal terms.

IV. PERSISTENCE

Let’s work out the persistence length of a polymer with elasticity in the form given above.

We decouple strain modes by finding an orthogonal matrix T with TFT t = D =diagonal and

defining Ψ = T∆θ. Then the elastic free energy per basepair is 1
2ΨtDΨ, and so 〈(Ψ1)

2〉 = 1/D11
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etc. And

〈(∆θ1)
2〉 =

∑

j

(Tj1)
2/Djj

Now connect these expressions to persistence length ξ. By definition,

〈t̂i · t̂i+1〉 = e−ℓ/ξ

If we choose coordinates for which t̂i = ẑ, and θi are the angles relating basepair i + 1 to i,

then

t̂i+1 =







θ1

θ2

1 − ((θ1)
2 + (θ2)

2)/2 + · · · )






; 〈t̂i · t̂i+1〉 = 1 − 1

2〈(θ1)
2 + (θ2)

2)〉

Since in the small ℓ limit this must equal 1− (ℓ/ξ)+ · · · , we get a formula for ξ in terms of the

matrices T and D.

We can check that result by generating a lot of random matrices from the Gaussian distri-

bution specified by D, working out the corresponding chains, and evaluating numerically the

desired correlator. Let êi, i = 1, 2, 3 be the three unit vectors fixed in space. Then each elastic

rod segment has an orientation specified by the orthogonal matrix hia = Ea · êi. If we take

such an orientation and rotate {Ea} by a small angle ǫ about E3 (a twist rotation), we find a

new orientation specified by

h′

ia = [h(1 + ǫJ (3))]ia, where J (3) =







0 −1

1 0

0







Similarly for the other two rotations; the J (i) are mathematically the spin-one rotation gener-

ators from quantum mechanics. Define R0 = exp[ω0J
(3)].

To generate random rotation matrices, we now draw Ψ vectors from three Gaussians defined

by the entries of D. For each such vector we form ∆θ = T tΨ, combine with the J ’s, exponentiate

to get a rotation matrix, and left multiply by R0.
1 Build up successive segment orientations

from products of these small rotations, then evaluate 〈t̂i · t̂i+k〉. I carried out these steps and

confirmed that the correlator had exponential falloff.

To test the procedure I started with the usual, simple choice of elasticity matrix (diagonal

and isotropic), and found the expected value of the persistence length by the above procedure.

Then I repeated with more realistic forms.

V. PROPOSED ELASTIC MATRIX

Czapla et al. offered the matrix Eq. 1 merely as an example. To get something a bit more

based on crystallographic data, but still neglecting sequence (as well as shift, slide, and ∆rise),

1 This trick amounts to defining a Gaussian on a curved manifold (the rotation group) by the exponential of a
Gaussian on a linear space (its Lie algebra). Alternatively we could add ω0T

(3) prior to exponentiating. In
the continuum limit this procedure is equivalent to the one indicated in the text; for finite steps the latter
method works slightly better (gives persistence close to the continuum value).
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I took Olson’s published covariance matrices for the θi of various basepair steps and just

averaged them. See http://rutchem.rutgers.edu/∼olson/cov matrix.html. The elastic

matrix should be an unknown overall constant times the inverse of the averaged covariance

matrix.

It’s encouraging that the entries of the elastic matrix that are forbidden by the (approximate)

symmetry of DNA (Marko and Siggia, 1994) are indeed much smaller than the (11), (22), (23),

and (33) entries. I set these exactly to zero, proceeded as above, and finally set the overall

constant to get ξ = 45 nm, appropriate for DNA in the salt conditions of experiments we study.

This gave

F =







0.0601 0 0

0 0.0334 0.0116

0 0.0116 0.0335






(2)

(Again the units are degrees−2.)
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