
Calibration of TPM: Theory
From: Lin Han et al, to appear

1 Main Text

To gain more confidence in our understanding of the apparatus and analysis, we
compared our experimental calibration curve to one we generated from a math-
ematical model of the system, following [1, 2]. The root-mean-square excursion
of the projected bead location away from its tether point is controlled by various
competing effects: (i) In the absence of any bead or wall, the chain’s endpoint
would execute 3D Brownian motion subject to a restoring force from the tether.
(ii) But the bead’s rotatory Brownian motion implies that its center, which is
what we observe, lies a considerable distance away from the chain endpoint.
(iii) The bead–wall exclusion pushes the bead upward, reducing its transverse
excursions.

To account for all these effects, we modified the Gaussian sampling Monte
Carlo technique previously used in [1, 2, 3] (see supplement). Our code gen-
erated many simulated DNA chains and bead orientations, applied the steric
constraints [1], and reported the RMS deviation of the bead center from the
attachment point. We applied a correction to this theoretical result, to account
for the bead’s motion during the rather long shutter time (about 31 msec, see
supplement). Fig. 1 shows that an a priori calculation of the expected motion
matches the data fairly well. The remaining discrepancy with our data may re-
flect unremoved instrumental drift, for example high-frequency motion that our
Butterworth filter cannot distinguish from true Brownian motion. The variance
of such noise would add in quadrature with the true Brownian motion.
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Figure 1: Dots: Experimental values for RMS motion of bead center for the three different
bead sizes described in Table 1. Each dot represents the average of approximately 20–200
different observed beads with the given tether length. Curves: Theoretically predicted RMS
motion, corrected for the blurring effect of our long shutter time. The solid curves assume
ξ = 50 nm; the dashed curve assumes ξ = 47nm. There are no other fit parameters; the
theoretical model uses values for bead diameter given by the manufacturer’s specification
(Table 1).

2 Supplement

Here we describe the correction to the theoretical calibration curve in Fig. 1
to account for bead motion during a single frame exposure. The image of a
static bead is a 2D distribution of intensity, Is(r− r0), where r is the projected
position in the focal plane. It reflects the “actual” bead image, the miscroscope
pointspread function, uncertainties from finite pixel size, etc.

Finite shutter time blurs the image of a diffusing particle. As an extreme
example, suppose the shutter were open for a time much longer than the bead’s
time to diffuse through its range of motion; then we would observe a blurred
image centered on zero, and larger than the static image of the bead. In fact,
some TPM implementations study this enlarged apparent bead image [4]. The
bead-tracking method, which we use, discards the apparent image size and in-
stead studies the apparent bead center position as a function of time. We now
ask, how is this apparent bead center related to the true instantaneous bead
position?

If we leave the shutter open only for a very short time, say 1 msec out
of the total video frame time, then we may expect there would be very little
blurring [2]. But in the present work, the shutter is open for almost the entire
video frame; we need a correction to account for this fact. We first outline a
simplified form of the correction, then a more accurate one.

Suppose we knew that at some time t the bead’s true position is r0. This
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is the quantity we want but can’t observe directly. At a later time t + τ , we
only know the probability distribution function (pdf) of the bead’s possible
positions: It’s centered on a new point rτ . For tethered 2D Brownian motion,
and infinitesimal τ , the new distribution P (r; τ) is a Gaussian of width

√
2Dτ

centered on rτ = r0 + (f/ζ)τ where f is the restoring force of the tether, ζ =
kBT/D = 6πη is the Stokes drag constant, and η is the viscosity of water. We
can estimate the force by the Gaussian chain approximation, f = −kBTr0/(Lξ)
where ξ is the persistence length. The average expected image at time t + τ is
then the convolution of the static image Is with P . This intensity distribution
is centered at rτ .

We can find the average blurred image by dividing the finite shutter time δt
into small slices τ , finding the expected average image at each τ , and adding
them all together. The average blurred image will be stretched relative to the
static image, and its center will just be the average of the various rτ . This
center will be shifted radially inward relative to the initial r0, so call it S(ρ0)r0,
where ρ0 = |r0|. S(ρ0) < 1 is a scale factor function that we wish to find.

In the framework of the above approximations, the center ρτ obeys

dρ

dτ
= v(ρ) = − 1

6πηRb

kBT

Lξ
ρ (1)

Let T = 6πηRbLξ/kBT . So ρ(τ) = ρ0e
−τ/T . The average of this center position

over a finite shutter time δt is S(ρ0)ρ0 where

S(ρ0) =
T

δt
[1 − e−δt/T ] (2)

Notice S is actually independent of ρ0. For very small δt we get S → 1− 1

2
(δt/T ).

For large δt, we have S → 0.
We conclude that every report of r is systematically too small by a factor

of S, which depends on the shutter time δt = 31 msec and the tether length L
(and other fixed quantities). If we want to predict the experimental data we
should take the theoretical prediction, e.g. for

√

〈ρ2〉, and correct it, here by a
factor of S. This correction is trivial to apply (comes out of the averaging sign),
because S is independent of ρ0.

The preceding discussion made some poor approximations. For example
the drag constant is much bigger than the Stokes-law formula used above, due
to wall effects. Nor is the tether end-end distance equal to ρ (there is also
the distance from bead attachment to bead center, plus foreshortening due to
projection to xy plane). Nor is the tether’s entropic elasticity well represented
by the Gaussian-chain formula. For all these reasons, we replaced Eqs. 1–2 by
a phenomenological formula obtained from our data. We computed the average
shift in the apparent position, from r on video frame N to r

′ on frame N + 2,
separated by ∆t = 65 msec. We noted that r

′ was a radially symmetric function,
that is, 〈r′〉 points parallel to r with a reduced magnitude shown in Fig. 2 [5, 6].
To model this effect, we replaced Eq. 2 by the phenomenological form

dρ

dτ
= −V∗

L
ρ(1 − αρ) (3)
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Figure 2: Dots: mean apparent radial bead displacement in a single time step, for DNA
with L = 901 bp. The chosen time step is two video frames, or ∆t = 65.2msec. Curve:

Phenomenological function for this displacement (see text).

As before, we then solved this equation to describe the migration of the centroid
of positions that any given bead location will migrate to at a later time. If the
true position at time 0 is ρ, then call the centroid of true positions later (at
t 6= 0) ρ̂(ρ, t). The solution is determined by integrating Eq. 3, obtaining

ρ̂

ρ

1 + αρ

1 + αρ̂
= e−V∗t/L

which we then solve for ρ̂.
To select appropriate values of V∗ and α in Eq. 3, we examined the data in

Fig. 2. During an exposure of duration δt, the apparent position is the average
of ρ̂ over the interval (0, δt), which we call the corrected ρcorr(ρ). The point-shift
data of Fig. 2 give us ρcorr(ρ0) and ρcorr(ρ

′) for various unobserved values of ρ0,
where ρ′ = ρ̂(ρ0, ∆t). The curve in Fig. 2 is a scatterplot of such pairs, taking
V∗ = 1.95 nm/msec and α = 0.0029/nm.

We applied the correction by modifying the Monte Carlo code to tabulate
ρcorr, not ρ. The RMS excursions of ρcorr are shown in Fig. 1
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