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It is now possible to put a billion transistors on a
single chip operating with a clock period of a
billionth of a second. Most probably, the trend in
reducing dimensions and times will continue in the
next decade. But as the number and density of gates

and memory elements increase, the energy of signals also
has to be reduced to keep the power dissipation
sufficiently low.

Surprisingly, even though the size of a typical transistor
in a microcomputer chip is now just a few hundred nanome-
ters, its functioning remains essentially classical: quantum
mechanics only enters in the explanation of the values of the
physical parameters of materials, like the band-gap of a
semiconductor. Otherwise, the discreetness of matter and
the wave-like properties of electrons can be largely ignored
in the understanding of the behaviour of electrical signals in
today’s integrated circuits.

But as devices get smaller, faster and more densely packed,
quantum effects will have increasingly to be taken into
account. Even well before we reach the ultimate limit where
transistors are reduced to the size of an atom or a molecule,
we encounter four limits. Quantum phenomena become 
significant when (1) signal energy, (2) signal charge, (3)
device dimension, and (4) device size tolerance approach,
respectively, the energy of one photon, the charge of one 
electron, the electron wavelength, and the size of one atom.

Much research has been devoted to assess if quantum
effects arising from these conditions will force the adoption
of new physical principles or if they can simply be tamed by
better control of the chip structure at the atomic level. To our
knowledge, there is no general consensus on the answer to
this question.

Another research direction has been to exploit quantum
effects arising in devices of nanometer scale to implement a
function that cannot be performed by present devices. In
some applications, which operate at limits (1) or (2) or both,
it is not only inevitable but also desirable. In astronomy, for
instance, it is important to extract as much information as
possible from a single photon5. Recent advances in quantum
information theory6 indicate that scalable switching 
elements that behave fully as quantum systems would not

simply make calculations with minimal energy, they could
in addition perform tasks that would be impossible with
conventional computers. In a quantum computer, usual bits
are replaced by quantum bits or ‘qubits’ which can be 
‘entangled’ with each other, thereby carrying a new type of
information that is useful in solving highly parallel tasks.
New types of devices are needed to read-out such qubits,
that is, to amplify their associated single-quantum signals.

In the realm of atomic physics and quantum optics, the
detection of individual microscopic particles travelling in
vacuum, such as photons and electrons, is now performed
routinely with almost unity efficiency by instruments
derived from the photomultiplier. However, the measure-
ment of electrical signals resulting from the motion of a 
single electron in a circuit involves an amplifier having not
only a good energy sensitivity, but also electrical characteris-
tics that are adapted to this circuit.

A particularly simple and spectacular example of such a
device is the single-electron transistor (SET)1–3, which exploits
the quantum phenomenon of tunnelling to control and 
measure the movement of single electrons inside a solid-state
circuit. SETs are extremely precise solid-state electrometers4,7,
already out-performing state-of-the-art conventional transis-
tors8 by three orders of magnitude. Their charge sensitivity has
been shown to be as low as a few 1015e/ÏHwzw, which means that
a charge variation of 1015 e can be detected in a measurement
time of 1 s (the precision improves as the square root of the 
measurement time). This result is only an order of magnitude
away from the theoretical limit of 1016 e /ÏHwzw. SETs have 
applications in metrology9 and single-photon detection10,11.
Furthermore, it has been realized in the past few years that SETs
can perform a measurement on a single quantum two-state 
system (qubit)12,13, perturbing its quantum evolution in a mini-
mal way. That is, the SET is a charge amplifier operating in the
vicinity of the quantum limit. It would be a practical read-out
device for several solid-state implementations of qubits14. In
this article we review these latest developments. 

Conventional transistors
Before discussing the performance of SETs, it is useful to recall
the operating principle of  the most common transistor, 
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the metal-oxide semiconductor field-effect transistor (MOSFET). 
Figure 1 depicts schematically the layout of the device and its operating
principle (we restrict ourselves here to the nMOSFET, in which the
majority charge carriers are electrons). Two conducting electrodes,
called the source and drain, are connected by a channel made of a 
material in which the number of conduction electrons can be varied, in
practice a semiconductor (Fig. 1a). A voltage is applied to the ‘gate’, a
third conducting electrode that is separated from the channel by a thin
insulating layer. When the gate–source voltage is zero, there are no 
conduction electrons in the channel as the effective potential they
would experience there is larger than in the leads (Fig. 1b). The channel
is therefore in an insulating state. But when the gate voltage is increased
with respect to the source, the potential experienced by the electrons in
the channel decreases and they populate the channel just under the gate
(Fig. 1c). The channel becomes conducting. The larger the gate voltage,
the larger will be the channel electron population that can participate
in the current. Eventually, all the electron states in the energy window
set by the source–drain voltage can propagate through the channel and
the current no longer depends on the gate voltage. This saturation
regime is depicted in Fig. 1d.

This field effect provides an amplification mechanism since an
increase in gate voltage, bringing a modest current to the gate 
electrode, can switch on a larger current through the channel (Fig. 2).
The source–drain current is determined by the conductance of the
channel, which in turn depends on two factors: the density of its 
conduction electrons and their mobility. The electron density is 
controlled directly by the gate voltage. The electron mobility is set by
the collisions of electrons with static irregularities of the crystal as
well as with its dynamic deformations due to thermal agitation.
When thermal agitation is the predominant factor, electron mobility
is, to a large extent, independent of the gate voltage. However, at low
temperatures, mobility can also increase when the density increases,
reinforcing the influence of the gate voltage on the source–drain 
current.

Note that so far we have made no reference to the wave-like 
properties of electrons nor to the fact that the channel is made from
individual atoms. The only quantum property that has had a role in
our explanation is the Pauli principle, which dictates that each possi-
ble state for an electron in the channel can be occupied at most by
only one electron. This means that only a certain number of electrons
can accumulate in the channel, setting a limit on the current flow.

However, the quantum properties of electrons and atoms will be
increasingly important as FETs are made smaller. For example, the
wave nature of electrons will influence the way they travel through
the channel. When the transverse dimension of the channel becomes
comparable to the wavelength of electrons (around 100 nm), 
electron propagation becomes more sensitive to the atomic disorder
in the device, which is inherent in the present fabrication process.
The disorder makes the channel remain insulating even when the
density of electrons is increased. Effects of this kind, which result
from reaching the limit to device dimension (limit (3) above), pose a
major problem if the reduction of size is not accompanied by an
improvement in the atomic structure of the fabricated devices.

If, however, the atomic structure of the FET could be made 
defect-free, a recent analysis15 shows it would continue to function in
the regime where the electron propagation in the channel is wave-
like. It would thus ‘break’ limit (3) and could be further scaled down
until a channel length of about 8 nm is reached, a stage at which limit
(4) seems to severely affect the performance of the FET.

In an ideal situation, we might want electrons to be scattered only
by the gate-dependent potential, with other scattering mechanisms
always being detrimental to amplification. But the confinement of
electrons in the channel by tunnel barriers, in the source–drain 
direction, can also lead to a new kind of amplification principle. This
is the basis of the SET. As we shall see, this new principle circumvents
the problem of the FET that the gate capacitance, which is an impor-
tant factor in determining charge sensitivity, is tied to the size of the

channel. Until the technology for reliably fabricating FETs with 
channels of nanometre-scale dimensions has been developed, the
SET is the best device in terms of charge sensitivity.

Operating principle of SETs
Unlike the FET, whose principle does not require the motion of elec-
trons to be quantum-mechanical, the SET is based on an intrinsically
quantum phenomenon: the tunnel effect through a metal–
insulator–metal junction. When two metallic electrodes are separated
by an insulating barrier whose thickness is only ~1 nm, electrons at the
Fermi energy can traverse the insulator even though their energy is too
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Figure 1 Principle of a metal-oxide semiconductor field-effect transistor (MOSFET). 
a, The device consists of two conducting electrodes (source and drain) connected by a
semiconducting channel. The channel is influenced electrostatically by the gate, a
conducting electrode separated from the channel by thin insulating layer. b, When the
voltage applied between the gate and the source is zero, the Fermi energy of the source
and drain lies in the gap of the semiconductor. Here, we sketch the potential (red curve)
seen by conduction electrons when they travel from source to drain along a line in the
channel just under the gate. There are no filled electron states (green lines) in the
channel, which as a result remains insulating. c, When the gate voltage is increased,
the potential seen by conduction electrons is lowered. There are now filled states in the
channel at the Fermi energy of the source and drain. The device conducts. d, When the
gate voltage is increased further, the current finally saturates when all the states in the
bias window are filled.
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low to overcome, in a classical motion, the large potential barrier of the
insulating region. The tunnel effect manifests itself by a finite 
resistance RT of the insulating barrier. This resistance depends both on
the transmission coefficient 7 of the barrier to electron waves (which
is an exponentially decreasing function of its thickness) and on the
number M of independent electron wave modes impinging on 
the barrier (this number is equal to the area of the junction divided 
by the square of the electron wavelength). The SET uses a key property
of the tunnel effect in a many-electron system: for barriers such that
7M ! 1, the charge Q transferred through the barrier becomes 
quantized with Q = Ne, where N is an integer16. In other words, for N
not to be subject to quantum fluctuations, the resistance of the junc-
tion must be large compared with the resistance quantum RT @ h/e 2 =
RK = 25.8 kV (refs 17,18).

The SET consists of two such tunnel junctions placed in series
(Fig. 3a,b). An ‘island’ is thus formed between the two junctions. A
gate electrode is coupled electrostatically to the island. The SET can
thus be described as a FET in which the semiconducting channel has
been replaced by a metallic island sandwiched between two tunnel
barriers. The island has a total capacitance C/, which the sum of the
gate and junction capacitances C/ = Cg&CJ1&CJ2.

If the dimensions of the island are sufficiently small, the charging
energy EC = e2/(2C/) of one extra electron in the island will become
larger than the energy of thermal fluctuations: EC @ kBT, where kB is
the Boltzmann constant and T is temperature. In practice, for devices
fabricated by standard electron-beam lithography, C/ is of the order
of a femtofarad and the charging energy is of order 1 K, necessitating
temperatures below 300 mK to satisfy the above charging energy 
criterion. Over the past few years, however, experiments have 
shown that with advanced fabrication methods, room temperature
operation is possible19–21.

Because electrons interact strongly via the Coulomb interaction
when they pass through the island, the analysis of the SET differs 
fundamentally from that of the FET. In the FET, electrons go from
source to drain independently, and in such numbers that one can
consider that the potential seen by one is an average which does not
depend on the configuration adopted by all of the others. Electrical
transport results from a simple addition of the motion of each 
electron. In the SET, by contrast, transport results from transitions
between collective charge states of the system. These charge states are
described by the two numbers N1 and N2 of electrons having traversed
the junctions (Fig. 3b).

The behaviour of the device is governed by the global electrostatic

energy16 Eel = EC[N21N11(CgVg/e)1(C2Vds/e)&q0]
21eN2Vds,

which includes the energy stored in the junction and gate capaci-
tances, as well as the work done by the voltage sources. Here, Vg and
Vds are the voltages applied between gate and source, and drain and
source, respectively. The so-called offset gate charge q0 is a phenome-
nological quantity describing the fact that electric fields in the 
capacitances of the system are non-zero even when the island is 
neutral and when no voltage is applied. It takes a randomly different,
non-integer value for each device and cool-down. It also fluctuates
slowly in time with a 1/f spectral density22. We will discuss its effect in
more detail below. But as far as the amplification mechanism of the
SET is concerned, we can treat it as a constant.

According to the so-called ‘global rules’, also known as ‘orthodox
theory’, tunnel events will take place independently on each junction
at a rate governed by the global energy, provided that the junction
resistances satisfy RT1, RT2 @ RK and that the voltage sources Vg and Vds

have negligible internal impedance, on the scale of the resistance
quantum, around the Coulomb frequency EC/ù (ref. 17).

In this regime, each tunnel event creates one electron–hole pair,
the electron and the hole being on opposite sides of the junction. The
succession of tunnel events constitutes a Poisson process. More
specifically, a tunnel event will take place on junction i with a rate
given by Gi = [1/(RTie

2)][DEi/(11exp(1DEi/kBT))] where DEi =
Eel{Ni

before, Nj}1Eel{Ni
after, Nj}.

At zero temperature, tunnel events take place only if they are ener-
getically allowed, that is, DEi > 0. For a drain–source voltage below the
Coulomb gap voltage e/C/, the current therefore depends critically
on the value of the gate voltage. If the gate voltage is such that 
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Figure 2 Variation of the source–drain current in a MOSFET as a function of the gate
voltage. When the gate voltage is increased from zero, the source–drain current is
turned on. This device can be used both in digital electronics and as an amplifier for
analog signals.
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Figure 3 The single-electron tunnelling transistor (SET). a, Simplified three-
dimensional structure of the SET. The channel of the FET is replaced here by a
sandwich consisting of a nanoscale metal electrode (island), which is connected to the
drain and the source by tunnel junctions. As in the FET, a gate electrode influences the
island electrostatically. b, Circuit diagram of the SET. The square box symbol represents
a tunnel junction, and integers N1 and N2 denote the numbers of electrons having
tunnelled through the two junctions. Each junction is characterized by its capacitance
and its tunnel resistance.
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CgVg = q0e mod e, the island has a well defined number of electrons.
Tunnel events cannot take place on the junctions because the global
energy would increase (Fig. 4a) and the current is zero. This is the
phenomenon of Coulomb blockade. But if the gate voltage is such
that there is a charge equivalent to one half electron on the gate capac-
itance, CgVg = (q0&}

1
2

})e mod e, tunnel events are energetically allowed
(Fig. 4b). A cascade of transitions between charge states occurs, and
current flows between source and drain.

Note that in practice the current cannot be turned off completely
in the Coulomb-blockaded state. Higher-order processes in which
several tunnel events occur simultaneously (co-tunnelling processes),
and whose relative importance scale as powers of RK/RT, will induce a
small leakage current not described by the orthodox theory. However,
as long as RK @ RT, the SET behaves as a charge amplifier as the pres-
ence or absence of a fraction of an electron on the gate capacitance can
control an easily measurable current (the order of magnitude is
around 109 e/s in practical cases) (Fig. 5). This gain is not the only 
factor determining the sensitivity of the device. One must take into
account the shot noise in the source–drain current, which is attribut-
able to the quantum randomness of the time intervals between tunnel
events (we work in a regime where thermal fluctuations can be
neglected). This quantum randomness, corresponding to electrons
having to ‘choose’ between the two sides of the barrier, is the process
that ultimately limits the sensitivity of the device. As we will show
below, the noise characteristics of the SET can be calculated exactly in
a simple regime, which is rich enough to yield semi-quantitative
understanding of the quantum limit of sensitivity. 

Returning to the offset gate charge, it is believed that its value is
determined in part by differences between the work functions of the
metal of the island and that of the other electrodes. Even minute 
variations in the work functions are sufficient to cause q0 to fluctuate by
numbers much greater than unity, which is the case observed in prac-
tice. Another potential source of fluctuation in offset charge is charge
motion in the substrate or even in the tunnel barrier oxide. The absence
of control over offset charges severely hinders any application of SETs
to digital electronics, where the gate thresholds must be rigorously
fixed and uniform. However, SETs can still be used as sensitive ampli-
fiers in the audio-frequency (a.f.) or radio-frequency (r.f.) domains, as
a simple additional feedback circuit can compensate for the fluctua-
tions in offset charge that occur mainly at lower frequencies.

Noise characteristics of an amplifier
Before we examine how quantum shot noise affects the ultimate 
performances of SETs, it is useful to discuss the noise properties of a
general amplifier.

A linear amplifier can be described phenomenologically as a
‘black box’ with two input leads and two output leads. We can repre-
sent the inside of the black box by effective elementary components
which accurately describe how it appears to the outside circuitry. If
we limit ourselves to the simpler case where the amplifier has no
feedback (that is, input current is independent of output voltage),
we arrive at the schematics of Fig. 6 (feedback introduces complica-
tions that are not crucial in our discussion). Three elements describe
the transformation of the signal by the amplifier: an ideal voltage
amplifier with infinite input impedance, zero output impedance
and a voltage gain G(v), and the input and output impedances,
Zin(v) and Zout(v). In these parameters, the argument v denotes the
signal angular frequency. 

In addition, the random fluctuations due to the amplifier are
described by two noise sources with very different roles. The voltage
noise source VN describes the output noise, that is, the noise added by
the amplifier to the output signal, referred to the input. The current
noise IN, on the other hand, describes the back-action of the amplifier
on the circuit at the input. The voltage and current noise are assumed
to be gaussian, and are characterized by the spectral densities SV(v)
and SI(v), which are the Fourier transforms of the autocorrelation
functions of  VN and IN, respectively. We neglect here the correlations
SVI(v), which are not essential for our discussion. These spectral 
densities, together with the input impedance, determine the ultimate
resolving power of the amplifier for small signals.

It is useful, in the discussions of this resolving power, to introduce
several combinations of these quantities. The first one is the charge
sensitivity dQ(v) = ÏSVw(vw)w/ävZin(v)ä, which we have already dis-
cussed. The second quantity is the energy sensitivity e(v) =
dQ2(v)/2Cin where Cin = Re{1/[ivZin(v)]}. Assuming that the ampli-
fier is driven by a voltage source with strictly zero internal impedance
(and hence always in the classical regime, as the zero-point voltage
fluctuations are proportional to the real part of the impedance), this
quantity tells us the smallest amount of energy dE = e/t fed by the
source into the input circuit of the amplifier which will give an output
signal that is distinguishable from zero when we accumulate it during
a time t. Even though e has the dimension of an action and is conve-
niently measured in units of ù, quantum mechanics does not impose
any restriction on the ratio e/ù, which can in principle tend to zero23.
Nevertheless, in systems studied so far, a value of e/ù of order unity
usually means that the contribution of thermal fluctuations to the
noise of the amplifier have been suppressed down below those of
quantum fluctuations.

Although the energy sensitivity seems initially to be a very 
powerful concept, it neglects the back-action of the amplifier and is
insufficient to determine how well the amplifier performs when we
use it to measure a quantum signal coming from a system with a finite
source impedance ZS. The current noise, which induces back-action
voltage fluctuations across the source impedance, and hence on the
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Figure 4 Charge levels of the SET. a, Charge levels in the full Coulomb blockade; 
b, charge levels in the lifted Coulomb blockade case. The integers N1 and N2 denote the
numbers of electrons having tunnelled through the two junctions (see Fig. 3). In a, the
only possible conduction process is co-tunnelling, that is, a weak second-order process
involving the tunnelling of two electrons on two different junctions and a virtual charge
state (dashed purple arrows). In b, the main conduction process is a cascade of tunnel
events involving the two junctions sequentially (full purple arrows).
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signal going into the amplifier, must be considered together with the
voltage noise. 

We therefore introduce the noise impedance ZN = ÏSVw/SwIw and the
noise energy EN = ÏSVwSIw. They have the following meaning: suppos-
ing that 1/Zin(v) = 0, the amplifier will add a minimal amount of
noise to the signal coming from the source when ZS = ZN (noise
matching). This minimal noise has a power per unit bandwidth given
by EN (this quantity has the dimension of an energy, hence the name
noise energy).  Quantum mechanics places a strict restriction on the
noise energy. No amplifier can have an EN smaller than ùv/2, half a
photon energy at the signal frequency v (refs 23–25). This funda-
mental limitation is a form of Heisenberg’s uncertainty principle (see
Table 1). It is worth mentioning that in the classical regime, that is, the
regime where the contribution of quantum fluctuations to the noise
of the amplifier is negligible, the noise temperature TN = EN/kB is often
used in place of the noise energy. The meaning of TN corresponds to a
well-defined procedure: imagine one connects a resistor with value
ZN at the input of the amplifier. The temperature to which one must
heat the resistor to double the noise measured at the output of the
amplifier is precisely TN.

If we now apply these concepts to FET amplifiers, we find that the
best performance in the r.f. domain 0.1–10 GHz is obtained with 
heterostructure FETs cooled to 4 K (ref. 26). At 500 MHz, their noise
temperature is around 2 K (the corresponding thermal energy is
equivalent to the energy of 40 photons at 1 GHz), their noise imped-
ance is about 50 V and their energy sensitivity is of the order 102 ù.
They are thus far from the quantum limit (at higher frequencies the
minimum noise energy improves and can be equivalent to only ten
photons). As a charge-sensing device, their best performance is
around 1012 e/ÏHwzw (ref. 8).

Although theoretically the heterostructure FET could reach 
the quantum limit of sensitivity in the form of a ballistic, two-
dimensional electron gas quantum-point contact27, it is difficult in
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this device to achieve effective electrostatic coupling of the gate 
electrode to the channel without affecting its mobility and inducing
parasitic input capacitance. In the SET, by contrast, there is more flex-
ibility in the design of the gate capacitance. The fabrication of the 
latter is to a large extent disconnected from that of the tunnel barriers,
whose quality is analogous to the mobility of the channel in the FET.
We will now examine how the operating principle of the SET brings
us close to the quantum limit. 

Ultimate sensitivity of SETs
In the framework of the orthodox theory, the tunnel events constitute
a generalized Poisson process with correlations. It is possible to calcu-
late analytically the noise characteristics of the SET at temperatures
such that kBT ! eVds (refs 7, 28). The following expressions are
obtained for the voltage and current noise, in the simple case where
the two junctions have identical parameters:
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between voltage and current noise, whose effect would be to reduce
the noise energy if an appropriate complex source impedance could
be presented to the SET.

In these noise expressions the Coulomb blockade parameter a =
(2CgVg1e)/C/Vds, which is limited here to the range 0 < a <
11Max(RK/pR/, eVds/kBT), fixes the relative values of the gate and
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Figure 6 Effective circuit elements describing the properties of a linear voltage
amplifier with no feedback. The triangle represents an ideal noiseless voltage amplifier
with infinite input impedance and zero output impedance. Its gain is denoted by G. The
boxes marked Zin and Zout correspond to the input and output impedances, respectively.
The noise sources VN and IN represent the voltage noise (noise added by the amplifier
at the output, but referred to the input) and the current noise (back-action noise of the
amplifier sent to the circuit feeding the input). These elements are eventually
dependent on the signal frequency v
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Figure 5 Variation at T = 0 of the source–drain current in a SET as a function of the
voltage between drain and source and the voltage between gate and source. We have
assumed that the two junctions have identical parameters. The sum of the junction
tunnel resistances R/ is twice the resistance quantum h/e2 and a small amount of co-
tunnelling rounds the peaks associated with the lifting of the Coulomb blockade (gate
charge corresponding to half-integers multiplied by the charge quantum). The
sensitivity of the SET is based on the rapid variation of the source–drain current as the
gate charge varies by a fraction of one electron.

Table 1 Constraints on sensitivity and back-action imposed by quantum mechanics

System Sensitivity Back-action Limiting relation Limited quantity

Heisenberg microscope Dx Dp DxDp à ù/2 Action

Electronic amplifier SV SI (SVSI)
1/2 à ùv/2 Noise energy

Qubit read-out Tm Gf TmGf à 1/2 Information

Table 1 shows different forms of Heisenberg’s uncertainty relation linking the sensitivity of a measurement of a given physical quantity and the simultaneous back-action on the conjugate quantity. The
precision with which the position of an object would be measured with a photon is related to the momentum transferred to this object by the radiation pressure of the photon (row 1). Similarly, the
voltage sensitivity with which an amplifier measures the circuit at its input is related to the back-action current noise that this amplifier produces in the circuit (row 2). Finally, the time needed to acquire
the value of a qubit is related to the rate of dephasing of the qubit induced by the back-action of the read-out (row 3). Quantities characterizing sensitivity and back-action, respectively, are given in
columns 2 and 4.
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drain–source voltage. For 11RK/(pR/) < a, co-tunnelling processes
dominate over the single tunnelling processes we consider here, and
for 11eVds/kBT < a the influence of thermal fluctuations would to
have be taken into account in the above expressions. The resistance 
R/ = RT1&RT2 is the sum of the two junction resistances. The above
expressions are valid for source–drain voltages below the Coulomb
gap VdsC//e < 1 and at frequencies v that are low on the tunnel rate
scale (eR//Vds)

11. We have taken the mean offset charge to be zero
because it appears only as a shift in Vg, but the typical value of the
expected 1/f offset charge fluctuations make our expressions valid
only above the crossover to the intrinsic device shot noise at a few 105

Hz. Note that at this level of approximation the input impedance is
simply a capacitance resulting from the series combination of the gate
and the sum CJ = CJ1&CJ2 of the two junction capacitances: Zin =
C//[ivCg(CJ1&CJ2)]. A dissipative part in the input impedance
appears only at higher orders in the dimensionless signal frequency
(evR//Vds)

11.
It is straightforward to go from these expressions to the charge

sensitivity, energy sensitivity, noise energy and noise impedance:

dQ(v) = }
C

a
J

}!}
(1§1

8§a§
4)

}§1§}
R

R§/

K

}§21§}
h§V

e
d§s}2§

e(v) = }
pù(

8

1

a
1

2

a4)
} 1}

R

R
/

K

}21}
e

V

/C
ds

/

}21}
C

C

g

J
}2

EN(v) = }
p(1

2

1

a
a2)

}!}
(1§&

2§a§
2)

}§ }
R

R
/

K

} ùv

ZN(v) = !}
1§&

8§a§a
2§

2

}§ 1}
C

C
/

g

}2
2

}
V

ev
ds}

We can find a conservative upper bound for the optimal value of
the quantities that characterize the sensitivity of the SET by minimiz-
ing the above expressions over the range of parameter values that 
correspond to our hypotheses. We therefore take a = 112RK/3R/ and
R/ = 2RK, values at which co-tunnelling remains marginal. We also
take the source–drain voltage Vds = e/(2C/) to be able to neglect ther-
mal fluctuations in practical situations. In addition, we take CJ = 1 fF
as a compromise between reaching attainable temperatures, keeping
the heating of the island by the drain–source current at a reasonable
level and achieving an acceptable output signal (in contrast with the
previous parameter choices, this last value is dictated essentially by
the current technology issues and not by the validity of our expres-
sions). We arrive at the optimal values

dQopt & 1.721016 e/ÏHwzw
eopt & 0.7ù(CJ/Cg)
ENopt & 2.2ùv
[G2EN]opt = 0.14eVds & 75 mK2kB

We have left the internal coupling ratio (CJ/Cg) of the SET in the
right-hand side of the expression for eopt as this parameter can easily
be modified by changing the lithography of the device. This ratio
determines how much of the energy fed by the gate voltage into the
SET is used to charge the island, which is the active element, rather
than the gate capacitance.

The value for EN opt shows that the SET operates in the vicinity of
the quantum limit. The product [G2EN]opt gives the SET output
noise which would ideally be higher than the added noise of the 
following amplifier, that is, a cryogenic heterostructure FET. Today,
this FET is the limiting factor in the system noise, and the best experi-
mental upper bound so far for the energy sensitivity is e 40ù(CJ/Cg)

in the r.f. domain4. The improvement of the combination of the SET
with a FET, or with a superconducting quantum interference device
(SQUID) amplifier (see below), as well as the verification of the above
predictions for the noise, is a topic for future research.

Other quantum-limited, solid-state r.f. amplifiers
According to the above analysis, the SET approaches but does not
quite reach the quantum limit. The back-action noise due to the 

insight review articles

1044 NATURE | VOL 406 | 31 AUGUST 2000 | www.nature.com

C U/2eg21

2

4

In= 0 > + In= 2 >

2

8E C
/E J

E

EC
EJ

CgU/2e

n

211
2

3
2 25

1
2

3
2 25

b

c

a

U

Cg

n

CJ ,EJ

Figure 7 The single-Cooper-pair box. a, Circuit diagram of the single-Cooper-pair box.
This simple system consists of one superconducting tunnel junction (box with cross) in
series with a voltage source U and a gate capacitance Cg. When the charging energy of
the island is less than the superconducting gap, all electrons are paired and the number
n of excess electrons is even. Cooper pairs can tunnel reversibly through the tunnel
junction. Charge states differing by one Cooper pair are coupled by the Josephson
energy EJ. b, Energy of the two lower quantum states of the Cooper-pair box (full line) as
a function of U. The dashed lines represent the electrostatic energy of the box including
the work done by the voltage source. At the avoided crossings, the two charge states
are mixed and constitute a solid-state implementation of a qubit. 
c, Quantum mechanical average of the number of electrons in the ground state of the
box, as a function of U.
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randomness of tunnel events is dominated by phase-scrambling
processes inside the island. But in the co-tunnelling regime, 
back-action noise is dominated by fluctuations of the island voltage
associated with the measurement of the gate voltage itself and should
therefore be more efficient. More work, experimental and theoreti-
cal, is needed to quantify this conjecture.

The superconducting SET can measure the charge on the gate
with fully coherent carriers, the Cooper pairs. Zorin has analysed 
theoretically a version of this device shunted by a resistor and found
that the noise energy could in this case exactly reach the quantum
limit29. However, the mode of operation seems to involve a more 
precise tuning of the device parameters than for the SET.

So far we have considered voltage amplifiers, that is, amplifiers
with an input impedance that is large compared with the resistance
quantum RK. For several years already, SQUID devices have played
the role of the SET in the realm of low-impedance amplifiers. There
is in fact a duality relationship between the d.c.-SQUID and the
SET1. Whereas the SET is based on charge quantization of a metallic
island surrounded by an insulator, the d.c.-SQUID is based on the
quantization of flux in a superconducting loop. The sub-electron
sensitivity of the SET has its analogue in the sub-flux quantum sensi-
tivity of the SQUID. Although it has been known for many years that
a SQUID could operate at the quantum limit, this has been achieved
only recently in the r.f. domain. Andre et al. have shown that a

SQUID with a microstrip input line could achieve kBTN . 5ùv at 
438 MHz (ref. 30). 

Finally, we should mention a special class of linear amplifiers: 
the mixers based on photon-assisted tunnelling in
superconductor–insulator–superconductor (SIS) junctions. 
They convert a signal at several hundred GHz into a signal at several
GHz. Even though the absolute power of the output signal is 
weaker than the power of the input signal, these devices have a 
large ‘photon number’ gain. Futhermore, their noise closely
approaches the quantum limit: EN = 0.6ùv (ref. 31). Closely related to
SIS mixers are Josephson parametric amplifiers, which have been
operated at the quantum limit32. However, these devices do not 
have the advantage of the SET and the SQUID to amplify at the 
same time both a.f. and r.f. signals, a useful feature for tuning and
trouble-shooting.

Measuring the state of a two-level system
In the past few years there has been much interest in the possibility of
realizing a quantum computer6. Although the more advanced 
experiments in this field are taking place in quantum optics 
systems33,34, several implementations of quantum bits and quantum
gates in solid-state systems have been proposed35–38. We focus here on
a charge qubit which is now well understood experimentally12,13 and
theoretically39,40: the Cooper-pair box (Fig. 7). It consists of a 
superconducting island with Coulomb energy EC connected to a
superconducting charge reservoir by means of a Josephson tunnel
junction with Josephson coupling energy EJ. The island is influenced
electrostatically through a gate capacitor Cg connected to voltage
source (Fig. 7a). If the conditions kBT ! EJ ! EC < D are realized,
where D is the energy gap of the superconductor, then the island 
will have only an even number n of excess electrons. This only degree
of freedom will be a good quantum number, except at the avoided
crossings of the charge levels (Fig. 7b,c). A recent experiment has
shown that such a solid-state qubit was able to display several Rabi
oscillations when stimulated by a microwave pulse13. However, the
measurement scheme in this experiment involved a probe tunnel
junction which observed the qubit continuously, but weakly. Such a
continuous observation dephases the qubit and prevents a 
measurement of its intrinsic decoherence time. It is therefore 
desirable to read-out the qubit only at the end of the coherent 
manipulation and evolution period (Fig. 8). An obvious 
candidate for the read-out is the SET. In a version with r.f. bias4, the
transistor can be turned on and off very quickly, the turn-on 
time being set by the damping time of the tank circuit. This latter 
is of the order of several tens of nanoseconds, a time 
supposedly shorter than the intrinsic decoherence time of the box,
estimated to be longer than 1 ms. The question therefore arises as to
whether the SET is sufficiently sensitive to detect the state of the 
box with a signal-to-noise ratio allowing the study of decoherence
mechanisms.

Measurement time and dephasing rate
An important concept is the measurement time Tm of the read-out
SET14, which is defined as the time needed for discriminating
between the two charge states of the box differing by a Cooper pair,
assumed to be good eigenstates, with a signal-to-noise ratio of 1.
Island box charge is a good quantum number when EJ/Eel ! 1, where
the electrostatic energy Eel = 2e2(11CgU/e)/Ctot of the box is 
controlled by the voltage U (here Cg and Ctot refer to the box gate
capacitance and total island capacitance). In practice, the charge
measurement is made just after U is varied away from the crossing
point (Fig. 8b). The circuit of Fig. 8a shows that Tm is closely related to
the voltage noise of the SET, with Tm = 4SV/(2e/Ctot)

2. We thus find
that Tm = (dQ/e)2(Ctot/Cin)2, where Cin/Ctot is the charge-coupling
coefficient.

It is interesting to note that the back-action current noise 
dephases the charge states relative to one another only if charge is a
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Figure 8 Measuring the state of a quantum system. a, Schematic circuit showing how
a qubit implemented by a Cooper-pair box could be read-out by an r.f.-SET. b, Time
evolution of signals in the circuit of a. While the read-out r.f.-SET is turned off, a first
pulse prepares the qubit in a quantum superposition of ground and excited state at the
crossing point CgU = e. After a waiting period, a second pulse is applied which, in
absence of decoherence, would make the qubit return to the ground state. Finally, after
these manipulations, the read-out transistor is switched on while the box gate charge is
moved away from CgU = e. If decoherence occurs, the qubit will be left in the n = 2
charge state with a non-zero probability p2. Given its sensitivity and low back-action
noise, the r.f.-SET should be able to detect this event with a signal-to-noise ratio better
than unity. Ctr and Ltr refer respectively to the capacitance and inductance of the
impedance transformer. The times tW and tf are the waiting time between the two
pulses and the intrinsic decoherence time of the box, respectively.
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good quantum number. The general expression for the dephasing
rate is

Gf = 1}
ù

e
}2

2

}
E2

J

E

&

2
e

E
l

2
el

}SV
box (v = 0) 

where SV
box (v ) = SI(v)/Ctotv)2 is the fluctuation spectral density of

the box island voltage induced by the SET current noise. In the regime
EJ/Eel ! 1, we find that the product TmGf = 2[EN(v)/ùv]2

v=0 involves
only the noise energy and is of order unity. Once again, this is another
close approach to the quantum limit as the minimum value for TmGf

is }
1
2

} (Table 1).
So in principle it seems that the SET could acquire charge with any

given large signal-to-noise ratio by measuring the box for a long
enough time. However, any coupling between charge states will
induce transitions and will corrupt the measurement. The transition
rate between charge states due to the current noise is given by
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where V = ÏEw2
J&wEw2

ewlw/ù is the transition frequency between charge
states.

We thus find that the signal-to-noise ratio including the effect of
transitions between charge states is
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In practice, a signal-to-noise ratio significantly greater than 1 seems
possible with an optimized r.f.-SET in a single charge measurement,
even when taking into account the 50% reduction in sensitivity of the
SET in the r.f.-bias mode41.

Towards single-photon sensitivity in the r.f. domain
To summarize, the SET transistor is a charge amplifying device whose
sensitivity in the r.f. domain is limited in principle only by a well
understood process, quantum shot noise. This property displays a
marked contrast with a FET. It should be possible in the near future to
show experimentally that the noise energy of the SET approaches the
quantum limit within a factor of order unity. Although the SET will
not be 100% efficient in acquiring charge information with only the
minimal back-action noise required by quantum mechanics, it
should still be able to read-out a charge qubit in a single-shot 
measurement. In more sophisticated devices using Cooper-pair 
tunnelling or co-tunnelling processes, the quantum limit could be
approached even more closely. Furthermore, by transposing in the
r.f. domain the manipulations of the quantum signal that are now
performed routinely in experiments in cavity quantum electrody-
namics42, one could use these ultimate amplifiers for measuring 
signals consisting of a single photon, without even destroying 
the photon. ■■
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