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Physical and chemical systems can be characterized by
their natural frequencies ω and energy scales. It is hardly
an exaggeration that most of what we know about such
systems, from the acoustics of a violin to the energy lev-
els of atoms, comes from their response to perturbations
at these natural frequencies. For instance, chemists and
biologists use infrared spectroscopy absorptions around
1650 cm−1 (which corresponds to frequencies of 49 THz,
wavelengths of 6 µm, and energies of 0.2 eV) to identify
the carbon-carbon double bond in organic compounds.
And it was the observation of light emission from atoms
at discrete energies in the electron Volt range that led to
the quantum theory.

It is of course the same situation in ‘correlated’ elec-
tron systems. We learn about the novel effects of strong
electron-electron interactions and the properties of collec-
tive states of matter by characterizing their response to
small amplitude perturbations at their natural frequen-
cies. In solids, these natural frequency scales span an
impressively large frequency range from the DC to the
x-ray. This incredible range means that a blizzard of ex-
perimental techniques and analysis methods are required

for the characterization of correlated systems with optical
techniques.

These short lecture notes attempt to lay out a brief
summary of the formalism, techniques, and analysis used
for ‘optical’ spectroscopies of correlated electron systems.
This collection is idiosyncratic, opinionated, and, con-
sidering the breadth of the subject, very brief. Unfor-
tunately, there is no single complete treatise yet that
presents a complete background for these topics in the
context of correlated electron materials. However, there
are a number of excellent resources that collectively give
a solid background to this field.

I recommend:

1. F. Wooten, “Optical Properties of Solids”, (Aca-
demic Press, New York, 1972).
The classic introduction to the subject of the elec-
trodynamic response of solids

2. M. Dressel and G. Grüner, “Electrodynamics of
Solids: Optical Properties of Electrons in Matter”,
(Cambridge University Press, 2002).
Much newer and modern with many excellent plots
of relevant response functions. Treatments of mod-
ern subjects such as superconductivity. Already a
classic.

3. G. D. Mahan, “Many-Particle Physics”, (Plenum,
2nd ed., 1990).
The go-to resource for pertubative treatments of
correlations in solids.

4. Richard D. Mattuck, “A Guide to Feynman Dia-
grams in the Many-Body Problem”, (Dover, 2nd
ed., 1992).
“Feynman diagrams for dummies.” Well ... I like
it anyways.

5. E. van Heumen and D. van der Marel, “Salerno
lectures: Optical probes of electron correlations
in solids”, Available at http://optics.unige.ch/
vdm/marel_files/salerno_lectures.pdf
Excellent lecture notes some of which parallels the
treatment here.

6. D. Basov and T. Timusk, “Electrodynamics of
high-Tc superconductors”, Reviews of Modern
Physics 77, 721 (2005).
A thorough review of the use of optical probes in
the cuprate superconductors.

7. L. Degiorgi, “The electrodynamic response of
heavy-electron compounds”, Rev. Mod. Phys. 71,
687 (2005).

8. A. Millis and P.A. Lee, “Large-orbital-expansion
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for the lattice Anderson model”, Phys. Rev. B 35,
3394 (1987).
Theoretical paper with an excellent section on the
phenomenological expectations for the optical re-
sponse of heavy fermion materials and optical self-
energies.

9. C.C. Homes, “Fourier Transform Infrared Spec-
troscopy”, Lecture notes available here http://
infrared.phy.bnl.gov/pdf/homes/fir.pdf
A good introduction to various technical issues as-
sociated with Fourier Transform Infrared Reflectiv-
ity (FTIR); the most commonly used measurement
technique for optical spectra of correlated electron
systems.

10. George B. Arfken and Hans J. Weber, ”Mathemat-
ical Methods for Physicists”
The classic textbook of mathematical methods for
physicists. Good reference on Kramers-Kronig and
Hilbert transforms

11. John David Jackson, ”Classical Electrodynamics”
(3rd ed., Wiley)
No motivation need be given

Other references as cited below.

I. INTRODUCTION

As mentioned above, the energy and frequency scales
relevant for correlated systems span the fantastic range
of the DC to the x-ray (Fig. 1). For instance, atomic
energy scales of 0.5 eV to the keV, make solids possible
through chemical bonding. These energies also mani-
fest themselves explicitly in correlations by, for instance,
setting the energy scale of the large on-site repulsions
U of electrons which can lead to Mott-Hubbard inter-
actions and insulating states. Typical overlap integrals
between atomic wavefunctions in solids are at the low
end of the eV energy scale and set the scale of Fermi en-
ergies in metals and hence the energy scale for electron
delocalization and roughly that also of plasmon collec-
tive modes. Various collective modes such as phonons
and magnons are found at lower energy scales, typically
at fractions of an eV. At energies of order 50 meV are
the superconducting gaps of optimally doped cuprates.
At even lower energies of the few meV scale the scatter-
ing rate of charges in clean metals is found. This is also
the energy scales of gaps in conventional superconduc-
tors. Many local f -electron orbitals, which are relevant
in Kondo materials also have energies found at these en-
ergies as well. At even lower energies can be found the
width of the ‘Drude’ peaks found in the AC conductivity
of heavy fermion systems. All such energy scales can be
studied in many different contexts with various photon
spectroscopies.

Although there are many different photon spectro-
scopies that can be discussed, which span these scales,
in these lectures I concentrate on ‘optical’ spectroscopies,
which I define as spectroscopies which involve transitions

with net momentum transfer q = 0 and whose absorption
and polarization properties are governed by the dipole
matrix element. I do not discuss the fascinating and
important work being done using other photon spectro-
scopies using light and charge in correlated systems with
Raman spectroscopy (1), electron energy loss, Brillouin
scattering, optical Kerr rotation, photoemission, and flu-
orescence spectroscopies to give a very incomplete list.
In our case, the quantities of interest are typically the
complex frequency dependent conductivity σ(ω) or di-
electric constant ε(ω). Alternatively data may be ex-
pressed in terms of one of a variety of straightforward
complex parametrizations of these quantities like the in-
dex of refraction n and absorption coefficient k, or the
complex surface impedace Zs. These quantities are de-
fined for the interaction of light with materials generi-
cally from zero frequency to arbitrarily high frequencies.
However, in these lecture notes I confine myself to the
frequency range from microwaves, through the THz, to
infrared, visible and ultraviolet. Each of these regimes
gives different kinds of information and requires differ-
ent techniques. For instance, microwaves are measured
in cavities, striplines, or with Corbino techniques. THz
is a huge growth area with the advent of time-domain
THz and the increased use of Backward Wave Oscillators
(BWOs). The infrared and visible range are measured by
Fourier Transform Infrared Reflectivity (FTIR). Visible
and Ultraviolet can be measured by spectroscopic ellip-
sometry. Of course there are large overlaps between all
these regimes and techniques.

I caution that throughout these lecture notes, I fre-
quently make use of the language of quasi-free electrons
with well-defined masses and lifetimes. It is not clear that
such a description is automatically valid in correlated sys-
tems. In fact, it is not even clear that such a description
should be valid in ‘normal’ materials. Why should an en-
semble of 1024 electrons/cm3 interacting with each other
via long range Coulomb interaction have excitations and
states that resemble anything like those of free electrons?
Naively one would expect that excitations would be man-
ifestly many-electron composite objects wholly unrelated
to the individual particles which constitute the system.
It is nothing short of a miracle that, in fact, many mate-
rials are relatively well described by the assumption that
interactions do not play a principle role in the explicit
physics. Low-energy experiments (e.g. DC resistivity,
specific heat) on materials like sodium, gold, or silicon
indicate that many aspects of such systems can be well
described by free-electron physics. The electrons only
appear to feel the static field of the ionic cores and the
average static effect of the other electrons. In other ma-
terials, like for instance the heavy fermion compounds,
experiments seem to indicate that the charge carriers are
free, but have masses many times larger than that of a
bare electron. But even here at the lowest energy scales
there are no explicit signs that charger carriers are simul-
taneously interacting with 1023 other charges. In general,
it is surprising that considering the close proximity that
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FIG. 1 (Color) The electromagnetic spectrum from radiofrequencies to gamma rays. Diagram from the LBL Advanced Light
Source web site http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html.

many electrons have to each other that such interactions
appear to only be weak perturbations on the free-electron
physics.

In a system of interacting fermions, the relatively weak
effect that even potentially strong interactions have on
the underlying physics can be understood by realizing
the strong constraint that a Fermi surface provides on
the scattering kinematics. This phase space constriction
gives, within the conventional treatment, a scattering
rate that goes like ω2 + T 2 at low frequency and tem-
perature. Due to this quadratic dependence, for some
small frequency the particle’s scattering rate will be less
than its energy and one can say that the quasi-particle
excitation is well-defined and scattering is a minor per-
turbation on the free-electron physics. Such a perturba-
tion renormalizes to zero in the ω → 0 limit. The effect
of interactions can be subsumed into giving quasiparti-
cle excitations a finite lifetime and a renormalized energy
parameterized by an effective mass m∗.

Landau hypothesized that if one envisions slowly turn-
ing on an interaction potential in a gas of non-interacting
electrons, some character of the original system would re-
main (2). Specifically, he conjectured that there would
be a one-to-one correspondence between states and ex-
citations of the non-interacting system and those of the
interacting system. In which case there can be said to
be an adiabatic continuity between the two and one can
try to understand and model the interacting system by
modeling the non-interacting one. A system with such
a mapping is termed a Fermi-liquid. And its quasi-free
electron-like excitations are termed quasi− particles.

The success of Fermi liquid theory comes, as men-

tioned above, from the constraint on scattering kinemat-
ics for low-energy excitations. This gives the result that
quasi-particle excitations are only defined at arbitrar-
ily small energy scales. The condition for well defined
quasiparticles to exists, βω2 � ω, means that as one in-
creases the parameter β, which characterizes the strength
of electron-electron excitations, the maximum energy of
well-defined excitations decreases, but well-defined quasi-
particles will still exist at low energies. Within this view,
stronger interactions mean only that Fermi liquid behav-
ior will occur at lower-energy scales i.e. at lower temper-
atures and excitation energies.

Systems for which the Fermi-liquid paradigm is valid
can be described at low energies and temperatures in
terms of quasi-free electrons. Although the vast majority
of normal metallic systems do seem to obey the Fermi liq-
uid phenomenology, it is unclear whether such a descrip-
tion is valid for correlated electron systems. A violation
could occur for instance in Hubbard models when the
intersite hopping parameter t, which parameterizes the
band width, is much smaller than the onsite Coulomb
interaction U resulting in an insulating state. So far the
fractional quantum Hall effect is the only case where Lan-
dau’s conjecture regarding a one-to-one correspondence
of states has been experimentally falsified (3; 4). On the
theoretical side, exact solutions to 1D interacting models
also show definitively that the fundamental excitations
in 1D are not electron-like at all, but are fractions of
electrons: spinons and holons that carry spin and charge
separately (5). This would be another case where the
electronic quasiparticle concept is not valid, but thus far
in real systems the residual higher dimensionality has
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been found to stabilize the Fermi liquid (See for instance
Ref. (6)).

It is true that many systems that we call strongly cor-
related exhibit a phenomenology inconsistent with the
Fermi-liquid paradigm. It is unclear whether this is be-
cause interactions have driven such materials truly into
a non-Fermi liquid state or because other effects cover
up what would be otherwise Fermi liquid phenomena at
the experimentally accessible temperatures and frequen-
cies is unclear. For instance, it is important to keep in
mind that the much heralded non-Fermi liquid behavior
of high Tc cuprates is actually exhibited at relatively high
temperatures (∼100 K) above the occurence of supercon-
ductivity. It may be that the inopportune occurrence of
superconductivity obstructs the view of what would be
the low-energy quasiparticle behavior.

At this point it is unclear to what extent the Fermi
liquid paradigm applies to many of the materials be-
ing given as examples below. In this regard, one must
keep in mind, that much of the language tossed around
in this field presupposes the validity of it and the ex-
istence of well-defined electronic excitations. Indeed,
much of the terminology used in the field shows this bias.
The terms ‘density of states’, ‘effective mass’, ‘scattering
rate’, ‘Pauli susceptibility’, ‘band structure’, ‘electron-
phonon’ coupling all require the context of the Fermi
liquid to make sense. Clearly such language is inappro-
priate if such excitations and states do not exist! In the
literature one sees many papers discussing, for instance,
optical or photoemission electronic self-energies, while at
the same time the authors discuss the non-Fermi liquid
aspect of these materials. It is not clear whether it is ap-
propriate to discuss electronic self-energies in materials
where the elementary excitations are not electron-like. It
is the case that while the formalism for generating elec-
tronic self-energies from optical or photoemission data as
discussed below may be followed straightforwardly, the
physical signficance of such self-energies is not clear. For
instance, although the parametrizations of optical spec-
tra in terms of the frequency dependent mass and scat-
tering rate from the extended Drude model (see below)
can always be valid as a parameterization, it is proba-
ble that one can only assign physical significance to these
quantities if the quasi-particle concept is valid in the en-
ergy range of interest.

Some aspects of the below formalism is model inde-
pendent and some rests on the concept of well-defined
electronic Fermi-liquid excitations. Although I will try to
make the various distinctions clear, I use the language of
quasi-free electrons almost entirely throughout the below,
because at the very least it provides a rough intuition of
the kinds of effects one expects in insulator, metals, and
superconductors. It also provides a self-contained formal-
ism for the analysis of optical spectra. A generalization
of these ideas to strongly correlated systems does not cur-
rently exist. In the spirit of learning to walk before one
learns to run, we use the ideas and language of quasi-free
electrons in these lecture notes throughout, but I caution

on the naive application of these ideas, which are only
formally true for non-interactings systems to strongly in-
teracting ones! The generalization to non-Fermi liquid,
correlated, strongly interacting etc. etc. systems is left
as an excercise for the reader!!!

II. FORMALISM

A. Optical Constants of Solids

Any discussion of the interaction of light with matter
starts with Maxwell’s equations

∇ · E(r, t) = 4πρ(r, t), (1)

∇× E(r, t) = −1
c

∂

∂t
B(r, t), (2)

∇ ·B(r, t) = 0, (3)

∇×B(r, t) =
1
c

∂

∂t
E(r, t) +

4π
c
J(r, t). (4)

where E and B represent the electric and magnetic
fields averaged over some suitable microscopic length,
typically the incident light wavelength. As usual we in-
troduce auxiliary fields as

D = E + 4πP, (5)
H = B − 4πM. (6)

where D and H have their usual definitions and M and
P are magnetization and polarization. Using the continu-
ity equation for the electric current ∇ · J = −∂ρ∂t and ac-
counting for all sources for free conduction, polarization,
and magnetization currents Jtot = Jcond + ∂P

∂t + c∇×M
as well as the external and induced charges ρtotal =
ρext + ρind we get the additional equations (please re-
fer to Jackson for a more extended discussion).

∇ ·D = 4πρext, (7)

∇×H =
1
c

∂D

∂t
+

4π
c
Jext +

4π
c
Jcond. (8)

Here we assume that we are in the linear regime and
the response of polarization, or magnetization of current
is linear in the applied field. We therefore write

P = χeE,

M = χmH,

J = σE. (9)

Typically we express the electric and magnetic suscep-
tibilities in terms of dielectric functions ε = 1+4πχe and
magnetic permittivity µ = 1 + 4πχm. Except for explic-
itly magnetic materials, χm = 0. The dielectric function
is a response function that connects the field E at some
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time t and position r with the field D at some later time
and position. Generally we first define it in the time and
position domain via the relation

D(r, t) =
∫ t

−∞

∫
ε(r, r′, t, t′)E(r′, t′)d3r′dt′. (10)

One could also describe the system’s response in terms
of current and conductivity σ(ω)

J(r, t) =
∫ t

−∞

∫
σ(r, r′, t, t′)E(r′, t′)d3r′dt′. (11)

In this context, the real space and time dependent ε
and σ are usually referred to as memory functions for
obvious reasons. For analysis of optical spectra we are
typically more interested in their Fourier transforms. The
quantities σ(q, ω) and ε(q, ω) are related by

σ =
iω

4π
(1− ε). (12)

One frequently sees the complex response functions
written using the real part of the conductivity and the
real part of the dielectric function e.g. ε = ε1 + i4πσ1/ω.

Given the very general form of Eqs. 10 and 11, simple
physical considerations allow a number of general state-
ments to be made. First, due to the vast mismatch be-
tween the velocity of light and the typical velocity of
electrons in solids, we are typically concerned with the
q = 0 limit of their Fourier transforms. This means that
except in a few circumstances, where one must take into
account non-local electrodynamics, (very clean metals or
superconductors for instance), one can assume that down
to the scale of some microscopic length there is a lo-
cal relationship between the quantities given in Eqs. 9.
This means that while these quantities may have spa-
tial dependence (for instance the current J is confined to
surfaces in metals), the proportionality expressed in Eq.
9 holds. One can use the above expressions to rewrite
Maxwell’s equations explicitly in terms of ε, µ and σ.
(Please see Jackson for further details.)

Furthermore, the principle of causality - that effects
can not proceed their causes - demands strict temporal
considerations regarding the integrals in Eqs. 10 and 11.
This leads to the powerful Kramers-Kronig relations re-
lating the real and imaginary part of such response func-
tions. We can rewrite Eq. 11 as

J(t) =
∫ t

−∞
σ(t− t′)E(t′)dt′. (13)

From causality the conductivity memory function σ(t−
t′) has the property that σ(τ < 0) = 0. The Fourier
transform of σ(t− t′) is then

σ(ω) =
∫ t

0

σ(τ)eiωτdτ. (14)

The integral can be performed in the complex fre-
quency plane with the substitution ω → z = ω1 + iω2. It
is then written

σ(ω) =
∫ ∞

0

σ(τ)eiω1τe−ω2τdτ. (15)

The second exponent in this integral is bounded in the
upper half of the complex plane for τ > 0 and in the lower
half plane for τ < 0. Since σ(τ < 0) = 0, this means that
σ(ω) is analytic for the upper half of the complex plane.
This means that Cauchy’s theorem applies and therefore

∮
σ(ω′)
ω′ − ω0

dω′ = 0 (16)

holds in the upper half of the complex plane in the
usual way (Please see Jackson or Arfken for further de-
tails on the integration and derivation of the Kramers-
Kronig relations). This gives the expression

P

∫ ∞
−∞

dω′
σ(ω′)
ω′ − ω

− iπσ(ω) = 0, (17)

where P as usual denotes the principal part.
From this the Kramers-Kronig relations can be in-

ferred. Using the fact that in the time domain Im
σ(τ) = 0 then σ(−ω) = σ∗(ω) we can write a simpler
form of them as

σ1 =
2
π
P

∫ ∞
0

dω′
ω′σ2(ω′)
ω′2 − ω2

, (18)

σ2 = −2ω
π
P

∫ ∞
0

dω′
σ1(ω′)
ω′2 − ω2

. (19)

The Kramers-Kronig relations are tremendously use-
ful in the analysis and determination of optical spectra.
When one knows one component of a response function
for all frequencies, the other component automatically
follows. As will be discussed below, they are used exten-
sively in Fourier Transform Infrared Reflectivity (FTIR)
measurements to determine the complex reflectivity (am-
plitude and phase), by only measuring reflected power.

The above discussion was based on some generalized
frequency dependent conductivity σ(ω) and its model in-
dependent properties. In real materials, one has a zoo
of different possible contributions to the electromagnetic
response. In simple metals with periodic translational
symmetry (i.e. a crystal), one can identify a number of
absorptions that satisfy the q = 0 constraint. For in-
stance, for the schematic band structure shown in Fig.
2, one expects a broad feature at finite energy (in red)
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in the optical conductivity, which comes from the sum
over all possible direct interband band absorptions (red
arrow) in which electrons are promoted from below EF
across an energy gap to a higher lying band, with zero
net momentum change. Near EF absorptions with low
but finite ω (green arrow) are only possible if strict trans-
lational symmetry has been broken by, for instance, dis-
order. Electrons moving in Bloch waves with mean free
path `, can violate strict momentum conservation in opti-
cal absorption at momentum scales on the order of 2π/`.
One can think of this heuristically as smearing out the
band structure on this scale. This gives a peak centered
at zero frequency (in green). In limit of perfect trans-
lational symmetry this peak would be a delta function
centered at ω = 0. One can also have excitations of
harmonic waves of the lattice (phonons) if such phonons
posses a net dipole moment in the unit cell. They appear
as distinct and frequently very sharp peaks in the optical
conductivity (in blue).

FIG. 2 (Color) Various different optical absorptions that sat-
isfy the q = 0 constraint of optical spectroscopy can appear in
the optical conductivity of simple metals. Near EF intraband
absorptions (green). Interband absorptions (red). Phonons
(blue)

Having introduced the general idea of optical response
functions, I now discuss the derivation of them, both clas-
sically and quantum mechanically.

B. Classical Treatments: Drude-Lorentz

Almost the simplest model of charge conduction we
can conceive of is of a single charge e, driven by an elec-
tric field E, and subject to a viscous damping force that
relaxes momentum on a time scale τ . Consider the force
equation describing this situation

mx′′ = −eE −mx′/τ. (20)

If we assume harmonic motion then x = x0e
−iωt and

E = E0e
−iωt. Substituting in for x and E and solving

for x′0 we get

x′0 =
eτE0

m

1
1− iωτ

. (21)

If we then consider an ensemble of such charges with
density N, and realize that the maximum current density
is J0 = Nex′0, we get the relation

J0 =
Ne2τE0

m

1
1− iωτ

. (22)

Using the previously defined relation J = σE we find
the relation for the frequency dependent Drude conduc-
tivity is

σ(ω) =
Ne2τ

m

1
1− iωτ

=
Ne2τ

m

1 + iωτ

1 + ω2τ2
. (23)

Interestingly, this classical model, first conceived of by
Paul Drude, is actually of great use even in the analysis
of particles obeying quantum mechanical statistics. As
discussed below one finds the same functional form to
leading order in that case as well.

The Drude model demonstrates a number of important
features that are found generally in response functions.
Its limit at ω → 0 is Ne2τ/m is well behaved mathemat-
ically and equivalent to the DC value. As shown in Fig.
3, it has real and imaginary components that differ from
each other. At low frequency the current’s response is in
phase with the driving field and purely dissipative (real).
At intermediate frequencies (when the driving frequency
equals the scattering rate 1/τ), the real conductivity falls
to half its DC value and imaginary conductivity peaks
and is equal to the real value. At higher frequencies,
two things happen. Not only does the current begin to
lag the driving field, but also the overall magnitude of
the response has a harder time keeping up with the driv-
ing electric field. The conductivity also exhibits distinct
power laws in its various frequency limits: linear for the
imaginary part at low ω, 1/ω at high ω, and 1/ω2 for the
real part at high frequency.

In the limit of zero dissipation 1/τ → 0 we have

σ1 =
π

2
Ne2

m
δ(ω = 0), (24)

σ2 =
Ne2

mω
. (25)

σ1 is zero everywhere, but at ω = 0. As σ1 is pro-
portional to dissipation, this demonstrates that a gas
of collisionless electrons cannot absorb photons at finite
frequency. This can be shown directly by demonstrat-
ing that the Hamiltonian that describes this interaction,
commutes with the momentum operator p and hence it
has no time dependence. Electron-electron interactions
without umklapp scattering do not change this situation,
as such interactions cannot degrade the total system mo-
mentum.

The dependence of the Drude conductivity on τ , N ,
and m, shows that the optical mass of charge carriers
in metals can be obtained if for instance the charge den-
sity is known by other techniques like the Hall coefficient.
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FIG. 3 (Color) Frequency dependent Drude conductivity
with scattering rate 1/τ = 15 on linear scale (top) log-log
scale (bottom).

For instance, in Fig. 4 the mass determined by optical
conductivity is plotted against the linear coefficient in the
specific heat (which is proportional to the electronic den-
sity of states and hence the mass). From simple metals
to exotic heavy fermion materials, it shows a dramatic
linear dependence over 3 orders of magnitude.

It is convenient to express the prefactors of the Drude
conductivity in terms of the so-called plasma frequency

ωp =
√

4πNe2

m . The plasma frequency is equivalent to
the frequency of the free longitudinal oscillations of the
electron gas. It reads

σ(ω) =
ω2
p

4π
τ

1− iωτ
. (26)

Therefore within the Drude model, the optical re-
sponse is fully determined by two frequencies: the plasma
frequency ωp and the scattering rate 1/τ . Since ωp is
many orders of magnitude greater than 1/τ , this allows
us to define three distinctly different regimes for the op-
tical response.

At low frequencies ω � 1/τ , in the so-called Hagen−

FIG. 4 (Color) Specific-heat values γ vs effective mass m∗,
evaluated from the optical data using spectral-weight argu-
ments (7)

Rubens regime, the conductivity is almost purely real,
frequency independent, and approximately equal to the
DC value. At higher frequencies, in the relaxation
regime where ω is on the order of 1/τ , one must ex-
plicitly take into account the ωτ factor in the denomi-
nator of Eq. 23. As mentioned above, in this range the
real conductivity falls to half its DC value and imaginary
conductivity peaks and is equal to the real value. The
significance of the high frequency regime ω > ωp can be
seen in rewriting the conductivity as the dielectric func-
tion. It is

ε(ω) = 1−
ω2
p

ω2 − iω/τ
. (27)

The real and imaginary parts of this expression are
given in Fig. ??. One sees that for the conventional case
where ωp � 1/τ , the plasma frequency is the frequency
at which the real part of the dielectric function changes
sign from negative to positive. ωp sets the scale for the
zero crossing of ε1. An analysis of the reflection and
transmission using the Fresnel equations (see Jackson),
shows that above the zero crossing, metals described by
the Drude model become transparent. Hence this high
frequency regime is called the transparent regime.

Despite its classical nature, the Drude model describes
the gross features of many metals at low frequencies quite
well. We give a number of examples of its use and exten-
sions below. Of course, our interest in the electrodynam-
ics of solids extends far beyond the case of simple metals.
And even for ‘simple’ metals, one has the interesting as-
pects of finite frequency absorptions that parameterize
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FIG. 5 (Color) Frequency dependent Drude dielectric func-
tion with scattering rate 1/τ = 15 and plasma frequency
ωp = 60. The real part of the dielectric function changes
sign at ωp.

band structure and, for instance, give copper and gold
their beautiful colors. The Drude model is wholly in-
adequate to describe such finite frequency absorptions.
For such processes in more complicated metals, semicon-
ductors, and insulators, one can model them quantum
mechanically in a number of ways, but we can also gain
predictive power and intuition from an extension to the
classical Drude model called Drude-Lorentz.

Here we envision the electrons are also subject to a
simple harmonic restoring force −Kx. Of course, such
a model is physically inadequate to describe finite fre-
quency absorption in semiconductors and insulators, as
their insulating nature is due to the properties of filled
bands and not the localization of electrons. Neverthe-
less, numerous aspects of absorption at ‘band-edges’ in
semiconductors can be modeled phenomenologically with
Drude-Lorentz. Of course its applicability to model har-
monic phonon absorptions is obvious.

With ω2
0 = K/m, we extend Eq. 20 as

mx′′ = −eE −mx′/τ − ω2
0x, (28)

Proceeding in exactly the same fashion as for the sim-
ple Drude model, we obtain for the conductivity

σ(ω) =
Ne2

m

ω

i(ω2
0 − ω2) + ω/τ

, (29)

One can see that in the limit ω0 → 0 the Drude relation
is obtained.

As mentioned above, despite its classical nature and
the inapplicability of the underlying physical picture, in
some cases the Drude-Lorentz model can be used to quan-
tify finite frequency absorptions. In the case of the band

 ! = 1/15
 "0 = '5

FIG. 6 (Color) Frequency dependent Drude-Lorentz complex
conductivity with scattering rate 1/τ = 15 and oscillator res-
onant frequency ω0 = 45. The real conductivity is zero at
ω = 0 and positive for all frequencies.

edge absorption in semiconductors, a number of oscilla-
tors of the form of Eq. 29 with different weights can be
used to capture the decidely non-Lorentzian line shape.
One can convince oneself that since any lineshape can be
fit arbitrarily well using a arbitrarily large number of os-
cillators and moreover since the imaginary part of the re-
sponse follows from a Kramers-Kroning transform of the
real part, it is always perfectly feasible to parametrize
the response using Drude-Lorentz.

C. The Quantum Case

The above Drude and Drude-Lorentz models are clas-
sical models used to describe intrinsically quantum me-
chanical phenomena and the fact that they are useful at
all is surprising. It is clear that a quantum mechanical
treatment is desired. The most commonly used method
for the quantum mechanical calculation of electromag-
netic response of materials is the Kubo formalism. It is
based on the fluctuation-dissipation theorem, which re-
lates the spontaneous fluctuations of a system described
through its correlation functions to its driven linear re-
sponse.

The interaction Hamiltonian for charge with the elec-
tromagnetic field to first-order in field is

Hi =
e

2mc

N∑
i=1

[pi ·A(ri) +A(ri) · pi]− e
N∑
i=1

Φ(ri), (30)

where p, A, and Φ are the quantum mechanical oper-
ators for momentum, vector potential, and scalar poten-
tial. Since the vector potential A depends on position,
it does not in general commute with p. However since
p = −i~∇, one can show that p ·A−A ·p = −i~∇·A and
within the Coulomb gauge ∇ ·A = 0, p and A do in fact
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commute. This means that for purely transverse waves
with Φ = 0 the interaction Hamiltonian simplifies to

HT
i =

e

mc

N∑
i=1

pi ·A(ri). (31)

By substituting in for the canonical momentum p =
mv−eA/c, dropping all terms that are higher than linear
in A, and replacing the summations by an integral one
can show that Hi takes the form

HT
i = −1

c

∫
drJT (r) ·AT (r). (32)

This gives a Fourier transformed quantity of

HT
i = −1

c
JT (q) ·AT (q). (33)

Next we calculate the absorption rate of a system based
on the power dissipated P = σ1E

2. We use Fermi’s
Golden rule to calculate the scattering probablility that
incident radiation excites an electron from one state |s〉
to another |s′〉.

Ws→s′ =
2π
~2
|〈s′|HT

i |s〉|2δ(ω − ωs′ + ωs). (34)

Note that the orbitals |s〉 and |s′〉 do not necessarily
have to be single-particle states of the system. They are
the system’s eignestates, which can include the effects of
many body physics. Also note that this formula is valid
not only at zero temperature, but also at finite temper-
atures if the bracket is interpreted as a thermodynamic
average.

The matrix element follows from the form of HT
i . It is

〈s′|HT
i |s〉 = −1

c
〈s′|JT (q)|s′〉AT (q). (35)

which leads to

Ws→s′ =
2π

~2c2
〈s′|JT (q)|s〉〈s|JT∗(q)|s〉, (36)

|AT (q)|2δ(ω − ωs′ + ωs).

where JT∗(q) = JT (−q). One then sums over all occu-
pied initial and all empty final states W =

∑
s,s′Ws→s′ .

The dissipated power per unit time and volume at a par-
ticular photon frequency ω follows after a few essentially
mathematical steps as (see Dressel and Grüner (8))

P = ~ωW = (37)

|AT (q)|2
∑
s

ω

~c2

∫
dt〈s|JT (q, 0)JT∗(q, t)|s〉e−iωt

For transverse EM waves, the electric field is related to
the vector potential as ET = iωAT /c. Upon substitution
we get the absorbed power per unit volume per unit time
expressed as a current-current correlation function

P = |ET (q)|2
∑
s

1
~ω

∫
dt〈s|JT (q, 0)JT∗(q, t)|s〉e−iωt.(38)

Using our previously given relation P = σ1E
2, the

expression for the real part of the conductivity follows

σT1 (q, ω) =
∑
s

1
~ω

∫
dt〈s|JT (q, 0)JT∗(q, t)|s〉e−iωt.(39)

The imaginary part of σ(ω) follows from the Kramers-
Kronig relation. This is the Kubo formula. It has the
form expected for the fluctuation-dissipation theorem,
that of a correlation function averaged over all the states
of the system |s〉 and describes fluctuations of the cur-
rent in the ground state. The conductivity depends on
the time correlation between current operators integrated
over all times.

The above formalism is general and applies to any set
of system states |s〉. An extension can be made in cases
where Fermi statistics applies. The end result is (see
Dressel and Grüner (8) for the full derivation)

σT1 (ω) =
πe2

m2ω

2
(2π)3

|〈s′|p|s〉|2Ds′s(~ω). (40)

Here 〈s′|p|s〉 is known as the dipole matrix element.
Ds′s is the so-called joint density of states, defined as

2
(2π)3

∫
δ(~ω − ~ωs′s)dk.

This equation, which is often referred to as the Kubo-
Greenwood formula is extremely useful for the calcula-
tion of higher lying interband transitions in metals and
semiconductors when the states |s〉 and |s′〉 belong to dif-
ferent bands (as for instance illustrated by the red arrow
in Fig. 2 ). It has the form that one may naively ex-
pect; it is proportional to the joint density of states and
a matrix element which incorporates aspects like allowed
transitions due to symmetry.

We can use the Kubo formalism Eq. 39 to calculate
the leading order metallic conductivity in a more rigorous
fashion than was done in the classical approach above.
We start with Eq. 39 and then posit as an ansatz that
finite currents relax as

J(q, t) = J(q, 0)e−t/τ . (41)

and assume that the current correlation time τ has no
dependence on q. Inserting this into the Kubo formula,
one gets that

σ1(q, ω) =
1

~ω
∑
s′

∫
dte−iωt−|t|/τ 〈s|J2(q)|s′〉. (42)
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One now needs an expression for the current fluctua-
tions at finite q. Of course, the average J is zero, but
fluctuations lead to an expectation for a finite 〈J2〉. For
small q, one can show in the dipole approximation that
J(q) = − e

m

∑
j pj where j labels the individual particles.

With the insertion of a complete set of states s′ one gets
the expression

σ1(q, ω) =
e2

m2~ω

∫
dte−iωt−|t|/τ

∑
s,s′,j

|〈s′|pj |s〉|2. (43)

The quantity 2
∑
s,s′,j |

|〈s′|pj |s〉|2
m~ωs,s′

found in Eq. 43 is
called the oscillator strength fs,s′ . Here ω in Eq. 43
is the energy difference between states |s〉 and |s′〉 as is
ωs,s′ in the definition of the oscillator strength. Below,
we pay special attention to the oscillator strength when
we calculate the conductivity sum rules.

The oscillator strength can be easily calculated for the
case of free electrons where the energy is ~ω = ~k2

2m and
the average momentum is |〈s′|pj |s〉|2 = ~2k2

4 . In such
a case fs,s′ = N the total number of free charge carri-
ers. The final result for the leading order conductivity
calculated via the Kubo formalism is

σKubo1 (ω) =
Ne2τ

m

1
1− iωτ

, (44)

which is the exact same result as calculated classically
via the Drude model above. For more details see the
chapters in Mahan (10).

III. TECHNIQUES

As mentioned above, the incredibly large spectral
range spanned by the typical energy scales of solids means
that many different techniques must be used. Below I
discuss the most used techniques of microwave measure-
ments, THz spectroscopies, optical reflectivity, and ellip-
sometry that are used to span almost six orders of mag-
nitude in measurement frequency. These various regimes
are loosely defined below, but of course there are overlaps
between them.

Although I don’t discuss them, one might naturally
include various radio frequency techniques in this list
(which would increase the frequency range by another
three orders of magnitude at least). At typical experi-
mental temperatures, the low frequency available in tech-
niques like mutual inductance measurements allows al-
most the DC limit of quantities like the superfluid density
in superconductors to be measured. Interested readers
are directed to Ref. (9) and reference therein.

A. Microwaves

Until recently measurements in the microwave range
(100 MHz - 100 GHz) were almost entirely done using mi-

crowave cavity resonator techniques. Of course, at lower
frequencies (kHz and MHz), measurements can be per-
formed by attaching contacts to samples and the complex
conductivity can be measured by lock-in techniques, net-
work analyzers, and impedance analyzers. Such meth-
ods become problematic in the GHz range however, be-
cause wavelengths become comparable to various mea-
surement dimensions (sample size, microwave connector
dimensions, cable lengths), and capacitive and inductive
effects become appreciable.

In microwave cavity resonance techniques, one is less
sensitive to such considerations as the sample forms part
of a resonance circuit, which dominates the measure-
ment configuration. Typically one measures transmis-
sion through a cavity, which is only possible when at
resonance. The technique is widely used for the study
of dielectric and magnetic properties of materials in the
GHz range, because of its high sensitivity and relative
simplicity.

FIG. 7 (Color) View of the UCLA He3 CryoMag system.
Cavities can be interchanged quickly to enable a number of
different frequencies to be accessed.

A microwave resonator is an enclosed hollow space
of cylindrical or rectangular shape machined from high-
conductivity metal (typically copper or superconduct-
ing metals) with interior dimensions comparable to the
free-space wavelength. On resonance, an electromagnetic
standing wave pattern is set up inside the cavity. One
characterizes the resonance characteristics of the cavity,
both with and without a sample inside. Upon sample
introduction the center frequency of the resonance shifts
and it broadens. From the shifting and broadening, one
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can define a complex frequency shift, which with knowl-
edge of the sample size and shape allows one to quantify
the complex conductivity directly. For instance, in the
limit of very thin films, the center frequency shift is pro-
portional to σ2 and the broadening is proportional to
σ1. For samples much thicker than the skin or penetra-
tion depth, different relations apply (11). The technique
does have the considerable disadvantage that only dis-
crete frequencies are measurable, as one is limited to the
standing wave resonance frequencies of the cavity, which
means that true spectroscopy is not possible. In such
measurements one typically determines a sample’s com-
plex conductivity as a function of temperature at some
finite fixed frequency.

In contrast, the Corbino geometry is a measurement
configuration, which is capable of broadband microwave
spectroscopy. It is compatible with low T and high field
cryogenic environments and capable of broadband mi-
crowave spectroscopy measurements from 10 MHz to 40
GHz. It is relatively a new technique, but one which
has recently been used with great success by a number
of groups in the correlated electron physics community
(12–17). Although powerful, it has the disadvantage that
its use is confined to samples which have typical 2D re-
sistance within a few orders of magnitude of 50 Ohms.

In a Corbino geometry spectrometer a microwave sig-
nal from a network analyzer is fed into a coaxial trans-
mission line. A schematic is shown in Fig. 8 (left). The
signal propagates down the coaxial line and is reflected
from a sample that terminates an open ended coaxial
connector. The network analyzer determines the com-
plex reflection coefficient S11 of the sample which can be
related to the complex sample impedance ZL via the rela-
tion S11 = ZL−Z0

ZL+Z0
where Z0 is the coaxial line impedance

(nominally 50 Ω). Because the sample geometry is well
defined, knowledge of the sample impedance yields in-
trinsic quantities like the complex conductivity. In the
typical case of a thin film where the skin or penetration
depth is much larger than the sample thickness d, the
sample impedance is related in a straightforward fashion
to the complex conductivity as σ = ln (r2/r1)

2πdZL
where r1

and r2 are the inner and outer conductor radii respec-
tively.

An experimental challenge in Corbino geometry mea-
surements is that the coaxial cables and other parts of
the transmission lines can have strongly temperature de-
pendent transmission characteristics. Errors in the in-
trinsic reflection coefficient, coming from standing wave
reflections or phase shifts and damping in the transmis-
sion lines, are accounted for by performing a number of
calibration measurements. It is imperative that the same
cryogenics conditions are reproduced between calibration
and each subsequent measurement. In general this is eas-
ily done by ensuring the same starting conditions and
using a computer controlled cool-down cycle. Recently
it has been demonstrated that a three sample calibra-
tion (open, short, and a standard 50 ohm resistor) at all
temperatures dramatically increases the precision of the

FIG. 8 (Color) (left) Experimental geometry for a Corbino
spectrometer. (right) The real and imaginary parts σ1+iσ2 of
the optical conductivity spectrum of UPd2Al3 at temperature
T = 2.75 K. The data are fit to σdc(1 − iωτ)−1 with σdc =
1.05×105(Ω−cm)−1 and τ = 4.8×10−11s and show excellent
agreement with the Drude prediction. Adapted from (12; 13)

technique over previous single sample calibrations(12).
As an example of the power of the technique we show

in Fig. 8 (right) recent measurements taken on films of
the heavy-fermion compound UPd2Al3 at T = 2.75 K.
The data show almost ideal Drude behavior with a real
conductivity of Lorentzian shape and an imaginary con-
ductivity that peaks at the same ω as the real conductiv-
ity has decreased by half. The anomalous aspect is the
Drude peak is seen to be of remarkably narrow width -
almost 500 times narrower than that of a good metal like
copper. This is a consequence of the mass renormaliza-
tions in the heavy fermion compounds and a feature that
would have been completely undetectable with a conven-
tional spectrometer.

Recently there also been the very interesting develop-
ment of a bolometric technique for high-resolution broad-
band microwave measurements of ultra-low-loss samples,
like superconductors and good metals (18). This tech-
nique is a non-resonant one where the sample itself is
actually used as a detector in a bolometric fashion. Mi-
crowaves are fed through a rectangular coaxial transmis-
sion line into which the sample under test and a refer-
ence sample are mounted. Small changes in the sample
and reference’s temperature are monitored as they ab-
sorb microwave radiation. The key to the success of this
technique is the in situ use of this normal metal ref-
erence sample which calibrates the absolute microwave
incident power. As the absorbed power is proportional
to the surface resistance Rs(ω), the independent measure
of the incident power allows one to measure the surface
resistance precisely.

In such an apparatus, the sample temperature can be
controlled independently of the 1.2 K liquid-helium bath,
allowing for measurements of the temperature evolution
of the absorption. The minimum detectable power of
this method at 1.3 K is 1.5 pW, which corresponds to
a surface resistance sensitivity of ≈ 1µΩ for a typical
1mm× 1mm platelet sample. The technique allows very
sensitive measurements of the microwave surface resis-
tance over a continuous frequency range on highly con-
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ducting samples. This is a region of sample impedances
generally inaccesible with the Corbino technique and only
available at discrete frequencies in microwave cavities.

A disadvantage of the technique is that although one
measures Rs(ω) the quantity of interest is typically the
complex conductivity σ(ω). One must make various
assumptions to get this from the relation for surface
impedance

Zs = Rs + iXs =
√

iωµ0

σ1 + iσ2
. (45)

as Xs is not measured. At low temperatures and fre-
quencies in the superconducting state σ2 is mostly deter-
mined by the superconducting response and can be re-
lated to the independently measured penetration depth
λ. σ1 then follows from the relation Rs = 1

2µ
2
0ω

2λ3σ1.
At higher temperatures and frequencies a more compli-
cated iterative procedure must be used that is based on
the Kramers-Kronig transform (18).

This technique has been used to measure the real part
of the conductivity of YBa2Cu3O6.5 single crystals across
a wide frequency range as shown in Fig. 9. One can see a
quasi-Drude like peak at low frequencies that comes from
quasi-particle excitation at the nodes of the d-wave su-
perconductor. The peak has a narrow width of the order
of 5 GHz, signifying a collapse of quasiparticle scattering
in the superconducting state and very long quasiparti-
cle scattering lengths. This is indicative of the very high
quality of these YBa2Cu3O6.5 single crystals. Measure-
ments of a broadband nature on these kind of materials
are not possible with other techniques. As powerful as
it is, the technique is hampered by the fact that various
assumption must be made about σ2. This is problematic
for materials where its dependence is not known a priori.

B. THz spectroscopy

Time scales in the picosecond (10−12 sec) range are
among the most ubiquitous in condensed matter systems.
For example, the resonant period of electrons in semicon-
ductors and their nanostructures, the scattering times of
electrons in metals, vibrational frequencies of molecular
crystals, superconducting gap energies, the lifetime of bi-
ologically important collective vibrations of proteins, and
- now - even the transit time for an electron in Intel’s
new THz transistor - these are all picosecond phenom-
ena. This ubiquity means that experimental probes em-
ploying Terahertz (THz) electromagnetic radiation are
potentially quite powerful. It is unfortunate then that
this spectral range lies in the so-called ‘Terahertz Gap’
- above the capabilities of traditional electronics and the
microwave range, but below that of typical optical instru-
mentation. In recent years, however, there have been
a number of developments that allow measurements in
the THz range in a manner that was not previously ac-
cesible. These come in the form of time domain THz

FIG. 9 The real part of the microwave conductivity σ1(ω)
extracted from measurements of Rs(ω) as described in the
text and Ref. (18). Figure adapted from (18).

spectroscopy and the increasing use of Backward Wave
Oscillator (BWO) based spectrometers.

As mentioned, the THz spectral region has been a tra-
ditionally difficult part of the electromagnetic spectrum
to work in. This has been for a number of reasons includ-
ing weak sources, long wavelengths, and contamination
by ambient room temperature black body radiation. In
recent years, however, a number of dramatic technical ad-
vances such as time-domain THz spectroscopy (TDTS)
using so-called ‘Auston’ switch generators and detectors
have enabled measurements that span this gap in mea-
surement possibilitites. As such, THz spectroscopy has
become a tremendous growth field (19), finding use in
a multitude of areas including characterization for novel
solid-state materials (20; 21), optimization of the elec-
tromagnetic response of new coatings (22), probes of su-
perconductor properties (23; 24), security applications
for explosives and biohazard detection (25), detection
of protein conformational changes (26), and non-invasive
structural and medical imaging (27–29).

TDTS works (See Ref. (30) for an additional excellent
short summary) by the excitation of a source and acti-
vation of a detector by ultrafast femtosecond laser (typ-
ically Ti-sapphire) pulses. A basic schematic is shown
in Fig. 10. A femtosecond laser has, via a beam split-
ter, its radiation split off to fall on source and detec-
tor Auston switches, which are typically pieces of Low
Temperature-GaAs with two electrodes grown on top in
a dipole arrangement and separated by approximately
20 µm (Fig. 11). Before laser illumination, the switch
has a resistance of a few megaohms. After the fast il-
lumination by the femtosecond laser pulse, the source
switch’s resistance falls to a few hundred ohms and with
a bias by a few tens of volts, charge carriers are acceler-
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FIG. 10 A diagram of a typical experimental layout used in
TDTS.

FIG. 11 An optical image of the two-contact photoconductive
‘Auston’ switch antenna structure used in TDTS. Two elec-
trodes are grown on top of an insulating high defect semicon-
ductor, like low temperature grown GaAs or radiation dam-
aged silicon. Electrode spacing is typically on the order of
microns.

ated across the gap on a time scale of a few picoseconds.
Their acceleration produces a pulse of almost single-cycle
radiation, which then propagates through free space and
- collimated by mirrors and lenses - interacts with the
sample. Measurements have been typically performed in
transmission. After passing through the sample, THz ra-
diation falls on the second Auston switch, which is also
activated by the femtosecond pulse. Whereas the first
Auston switch was DC biased, the 2nd Auston switch is
biased by the electric field of the THz radiation falling
upon it. Current flows across the second switch with the
direction and magnitude proportional to this transient
electric field at the instant the short femtosecond pulse
impinges on it. The experimental signal is proportional
to this current with a magnitude and polarity that re-
flects the THz electric field at the switch. A delay line
is then advanced and the THz electric field at a different
time can be measured. In this way, the entire electric
field profile as a function of time can be mapped out as
shown in Fig. 12(left). The time-domain pulse is then
Fourier transformed to get the complex electric field as
a function of frequency. A reference measurement is also
performed on an aperture with no sample. The measured
transmission function is the ratio of the signal transmis-

FIG. 12 (Color) (left) Time-domain trace of electric field
transmission through 60 µm thick SrTiO3 subtrate. Multiple
reflections from front and back surfaces are readily visible.
(right) Power spectrum of the transmission through the same
60 µm thick SrTiO3 subtrate. The data is obtained from the
squared Fourier transform of the data in (left) and ratioed to
a reference aperature signal. From (31)

sion to the reference [Fig. 12(right)].
There are a number of unique aspects to TDTS that

allow it to work exceptionally. Since the detected signal
is proportional to the instantaneous electric field, and
not the power, the measured transmission function is the
complex transmission coefficient for the electric field.
This allows one to invert the data directly to get the real
and imaginary optical constants (e.g. the complex con-
ductivity) of the material. This is essential for a thorough
characterization of material’s properties. Typical optical
measurements discussed below measure only reflected or
transmitted power, quantities in which the complex opti-
cal constants of interest are confolded into in a non triv-
ial fashion. In such measurements one has to measure
over the largest frequency range possible (even if one is
only interested in a limited spectral range), extrapolate
to both DC and infinite frequency, and then Kramers-
Kronig transform to get phase information. In TDTS
one gets both components by direct inversion.

TDTS is also capable of unprecedentedly high signal-
to-noise ratios. Typically efforts in the THz and far in-
frared spectral range are complicated by a very large
ambient black body radiation background. In the case
of TDTS the fact that the signal is ‘time-gated’ and co-
herent, whereas black-body radiation is incoherent, al-
lows a very high detection efficiency. Additionally, since
the detected quantity is actually electric field and not
power (proportional to electric field squared), the noise
in the spectral power is reduced by a factor proportional
to the electric field itself. These aspects allow detection
of transmission signals approaching one part in 106. This
is an incredibly large dynamic range and is essentially un-
precedented in optically based spectroscopies where one
part in 103 is typically considered extremely good.

The other major development for THz spectroscopy is
the increased use of Backward Wave Oscillators (BWOs)
Although developed in the 60’s, BWOs are gaining in-
creasing prominence in the investigation of correlated
systems in the important THz range (32). These BWOs
are traveling wave guide tubes, capable of producing very
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FIG. 13 Absolute reflectivity R(ω) is obtained by measuring
the reflected intensity and ratioing with the intensity after
gold evaporation. Figure courtesy of A. Kuzmenko.

monochromatic THz range radiation over a relatively
broad range per device. With a number of tubes, it is
unique method to cover the 0.03 THz to 1.5 THz range
in a continuous wave configuration.

The longer wavelengths in this spectral region give the
capabilities to measure phase of transmitted waveforms
through Mach-Zender two-beam polarization interferom-
etry. This method also allows direct precision measure-
ments of both real and imaginary components of the com-
plex optical response without resort to Kramers-Kronig
transforms and their associated ambiguities. A spectrom-
eter based on BWOs is easily integrated with a low tem-
perature cryostat and magnetic field system as well as
glove boxes for environmental control.

C. Infrared

Fourier transform infrared reflectivity (FTIR) is the
workhorse spectroscopy of optical measurements (Fig.
14). Measurements are possible from ∼ 10 cm−1 to ap-
proximately 25,000 cm−1, although measurement get in-
creasingly difficult below 50 cm−1. Heroic efforts can
push the lower end of this range slightly below 10 cm−1

(33). Here the quantity of interest is typically the power
reflectivity (transmission measurements are possible as
well). One shines broadband light, sometimes from sev-
eral different sources, on a sample surface and via an
interference technique measures the reflected intensity.
As the source spectrum and detector response can have
all kinds of frequency structure, it is necessary to ref-
erence the reflected signal against a standard sample to
obtain the absolute reflectivity. Typically the reference
spectrum is chosen to be a noble metal like gold whose
reflectance can to good approximation be taken to be
unity over a broad frequency region below the material’s
plasma frequency (see below). Typically gold is evapo-
rated onto a sample as shown in Fig. 13 or the sample is
replaced with a mirror to do this referencing.

As the materials we are interested in typically have
interesting experimental signatures in both the real and
imaginary response, it is not sufficient to to compare to
theory by simply measuring quantities like absorbence.
We want quantities like the complex conductivity or di-
electric function. It is not necessarily straightfoward to
obtain a complex quantity from the measured scalar mag-
nitude of the reflectivity R(ω). Unlike TDTS, phase is
not measured in FTIR measurements. Therefore typi-
cally use is made of the above discussed Kramers-Kronig
transforms, which apply to any causal response function.
If one knows one component of the response (real or
imaginary) for all frequencies then one can determine the
other component. For reflected power, one can obtain the
phase shift as

φ(ω) = − 1
π
P

∫ ∞
−∞

dω
ln|R(ω)|
ω′ − ω

. (46)

Of course the problem is that one doesn’t measure over
an infinite frequency range. In typical FTIR spectoscopy,
the usual mode of operation is therefore to measure over
as large a frequency range as possible and then extrap-
olate with various schemes to ω → 0 and ω → ∞. This
method works quite well for some materials, although it
can generate large errors when, for instance, reflectivi-
ties approach unity as they do in good conductors at low
frequencies.

As mentioned, FTIR spectoscopy is a standard spec-
troscopic technique for the characterization of materials
and chemicals. It is used routinely to identify the pres-
ence of various chemical bonds in chemistry as in, for
instance, C = C or C = O, which all have distinct fre-
quencies and absorptive strengths. It is also the standard
optical tool for probing materials like high-Tc supercon-
ductors (34). It has the advantage of being relatively easy
to perform and possessing a very large spectra range. It
has the above mentioned disadvantage of only measur-
ing a scalar - the power - and having a lower bound on
the spectral range that is at the limit of that explicitly
relevant for many correlated materials.

D. Visible and Ultraviolet

The technique of optical reflection begin to become
more difficult at frequencies on the order of the plasma
frequencies of metals. To do reflectivity measurements,
one always needs a standard sample. Standard metal
references cannot be used above their plasma frequen-
cies as their reflectivity changes quickly with frequency.
Quartz or silicon which have an approximately flat (but
low) reflectivity can be used as a reference. However,
more common nowadays is to use techniques such as el-
lipsometry to determine complex optical coefficients in
this spectral range.

Ellipsometry is an optical technique for determining
properties of surfaces and thin films. Although the
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FIG. 14 (Color) Modified Fourier Transform Spectrometer
Bruker 66. As shown, the spectrometer is setup to perform
reflection, but with additional mirrors near-normal incidence
reflection is possibe. The apparatus works by shining broad
band light from a variety of sources on a sample. Reflected
or transmitted intensity is measured at a few different de-
tectors. A beamsplitter/interferometer apparatus allows the
resolution of distinct frequency components. Figure from
http://www.pi1.physik.uni-stuttgart.de/research

/Methoden/FTIR e.php. Courtesy of N. Drichko.

method was originally used as far back as 1887 by Paul
Drude to determine the dielectric function of various met-
als and dielectrics, it only gained regular use as a charac-
terization tool in the 1970s (35; 36). It is now widely used
in the near infrared (NIR) through ultraviolet (UV) fre-
quency ranges in semiconductor processing for dielectric
and thickness characterization.

When linearly polarized light is reflected from a sur-
face at glancing incidence the in- (p) and out-of-plane
(s) of incidence light is reflected at different intensities
as well as suffering a relative phase shift. The reflected
light becomes elliptically polarized as shown in Fig. 15.
The shape and orientation of the ellipse depend on the
angle of incidence, the initial polarization direction, and
of course the reflection properties of the surface. An el-
lipsometer measures the change in the light’s polariza-
tion state and characterizes the complex ratio ρ of the
in- (rp) and out-of-plane (rs) of incidence reflectivities.
The Fresnel equations allow this quantity to be directly
related to various intrinsic material parameters, such as
complex dielectric constant or layer thicknesses.

The ellipsometer itself is designed to measure the
change in polarization state of the light reflected from
a surface at glancing incidence. From a knowledge of
the orientation and polarization direction of the incident
light one can calculate the relative phase difference, ∆,
and the relative amplitude difference, (tanΨ), between
the two polarization components that are introduced by
reflection from the surface.

Given the complex ratio ρ of the in- (rp) and out-of-
plane reflectivities (rs), various intrinsic material param-
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zysample
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s

p

FIG. 15 (Color) Schematic showing the basic principle of el-
lipsometry. Glancing incidence light linearly polarized with
both s and p components is reflected with different intensities
and a relative phase shift. A characterization of the resulting
elliptically polarized reflected light’s minor and major axes,
as well as tilt angle gives a unique contribution of the complex
optical constants of the material.

eters can be generated via the Fresnel equations. For
instance, in a homogeneous sample the complex dielec-
tric constant ε = ε1 + iε2 is related to ρ as given in Eqs.
47, 48 and 49 below. Here as usual ε1 parameterizes the
polarizability of a material, whereas ε2 parameterizes the
dissipative properties. Here, εz is the complex dielectric
constant perpendicular to the reflection surface and εx is
the complex dielectric constant in the plane of the reflec-
tion surface, and θ is the angle of incidence as shown in
Fig. 15.

ρ = rp/rs = tanΨei∆, (47)

rp =

√
1− ε−1

z sin2θ −√εxcosθ√
1− ε−1

z sin2θ +
√
εxcosθ

, (48)

rs =
cosθ −

√
εy − sin2θ

cosθ +
√
εy − sin2θ

. (49)

In a typical configuration, monochromatic light is in-
cident on a glancing trajectory θ close to the Brewster
angle (usually ∼ 65 − 85◦ for bad metals at high fre-
quencies) with a linear polarization state of 45◦. As the
typical detector measures power and not electric field, it
is essential that the light’s elliptical polarization is mea-
sured over at least 180◦ (and more typically 360◦). To
completely characterize the phase, it is clearly not suffi-
cient to simply measure the projection of the ellipse along
two orthogonal directions, as can be seen by construction
in Fig. 16. In order to get the phase information, the el-
lipse’s orientation and major and minor axes must be
known. Generically, the light originally linearly polar-
ized at 45◦ is changed to an elliptical polarization with
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its major axis displaced from 45◦. A characterization of
this ellipse’s major and minor axes, as well as tilt angle is
a direct measure of the complex amplitude reflection co-
efficients, which can then be related to intrinsic material
quantities.

FIG. 16 (Color) To completely characterize the electric field
vectors and their phase, it is insufficient to measure the pro-
jection of the ellipse along two orthogonal directions. The
complete ellipse must be mapped out to get its major and
minor axes and tilt angle.

The fact that ellipsometry measures the ratio of two
simultaneously measured values gives it several distinct
advantages as a characterization tool over simple reflec-
tivity. It is highly accurate and reproducible even at
low intensities as many systematic errors are divided
out. Moreover, unlike reflectivity measurements, the
technique is self-normalizing and a reference sample is
not necessary. This is important as the choice of a ref-
erence can be problematic in the optical and ultra vi-
olet spectral range or when the surface is of unknown
quality. The method is also particularly insusceptible
to source intensity fluctuations as they are also divided
out. Perhaps most important for the overall utility of
the technique is that the method also measures a phase,
which gives additional information regarding materials
properties. The phase information can also be used to
generate the complex optical constants (the complex di-
electric constant for instance, or the complex index of
refraction n and k or the complex conductivity σ) which
is essential information for a complete characterization
of a material’s optical response. If the optical constants
are known, the phase information can be used to sensi-
tively measure films thicknesses. As mentioned above,
the technique is well established and widely used in the
NIR through ultraviolet (UV) frequency ranges (37; 38).
There have been a number of attempts to extend ellip-
sometry to these lower frequencies (37–39), but among
other reasons the lack of sufficiently intense sources has
meant that such efforts have met with limited success, al-
though synchrotron based efforts have had some success
in this regard (40). If ellipsometry has a disadvantage it

is that with typical grating monochromator data acquisi-
tion (i.e. one frequency stepped at a time) it is relatively
slow as both the grating and polarizers must continue to
be moved. In such a setup one loses the rapid acquisi-
tion time of the multiple frequency multiplexing in, for
instance, Fourier transform infrared reflectivity (FTIR).

The energy scales of the visible and ultraviolet, which
are measured by ellipsometry are not usually explicitly
relevant for strongly correlated systems. Typically we are
interested in much lower energies that are on the order of
the temperatures that phenomena are expressed. How-
ever, such energies are relevant for the determination of
important band structure parameters on, say, 3D materi-
als that photoemission cannot be performed on. Charac-
terization of materials in this range is also imperative to
constrain the phase information at low energies when per-
forming Kramers-Kronig with reflectivity data. Recently
an extremely powerful method for combining different
data sets using a Kramers-Kronig consistent variational
fitting procedure was developed (41). It allows a gen-
eral procedure for combining say, DC resistance, cavity
microwave measurements at a few distinct frequencies,
IR power reflectivity, and ellipsometry to extract over a
broad energy range of all the significant frequency and
temperature dependent optical properties.

IV. EXAMPLES

A. Simple Metals

Noble metals like silver and gold provide a good first
step for the understanding the electrodynamics of solids.
Compare the reflection spectra of silver and gold given
in Fig. 17 as a function of energy. The reflection spec-
tra of silver shows a sharp plasma edge around 3.8 eV
Gold has a much lower plasma frequency with its plasma
edge at a wavelength of around 2.5 eV. Also shown is
the reflection spectra for aluminum which has a much
larger plasma frequency than any of these at around 15.5
eV. The small dip in Al around 1.65 eV is caused by an
interband absorption and is not its plasma frequency.

From these spectra we can immediately see the rea-
son for the visual difference between silver and gold. As
mentioned above, the reflection/transmission properties
of metals greatly change above their plasma frequencies.
If not for the presence of interband transitions, metals
would be transparent in this regime. The lower plasma
frequency of gold is what determines its yellowish color in
reflection. It reflects less in the blue/violet portion of the
spectra and hence looks yellowish. In contrast the plasma
frequency of silver is in the UV range and so the reflec-
tion of silver is almost constant at constant throughout
the infrared to visible range. Aluminum’s plasma fre-
quency is higher yet still and so the major differences in
its optical properties as compared to silver are invisible
to the human eye.

As discussed above, within the Drude model the
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FIG. 17 Reflectance curves for aluminium (Al), silver (Ag),
and gold (Au) metal at normal incidence as a function of
incident energy. The plasma frequencies of silver and gold
are clearly seen. The small dip in aluminum’s curve around
1.65 eV is caused by an interband absorption and is not its
plasma frequency. Aluminum’s plasma frequency lies at much
higher energies at around 15.5 eV. Adapted from Ref. (42).

plasma frequency is set by ωp =
√

4πNe2

m . This is fre-
quency of the dip in the plasma frequency, the zero cross-
ing in ε1, and the frequency of free longitudinal charge
oscillations (the plasmon frequency). However, the pres-
ence of interband excitations, which contribute a high
frequency dielectric constant ε∞ changes the situation.
The features are now exhibited at the so-called screened
plasma frequency set by ω̃p =

√
4πNe2

ε∞m
. It is interest-

ing to note that the carrier density and masses of silver
and gold are almost identical and so the difference in
their plasma frequencies comes from the renormalization
effect of the interband transitions ε∞.

Data like that shown in Fig. 17 can, with appropriate
extrapolations to high and low frequency, be Kramers-
Kronig transformed to get the real and imaginary dielec-
tric function as shown in Fig. 18 for silver and gold. As
expected they both show strong almost perfect ω = 0
Lorentzian Drude peaks of almost equal weight, but gold
shows stronger interband absorptions, gives it a larger
ε∞ that renormalizes its plasma frequency. Such spectra
can be decomposed into various contributions as shown
in Fig. 19 for gold. Also as expected there is a strong
zero frequency Drude peak contribution as well as inter-
band contributions. Although the interband piece shows
some resemblance to the Drude-Lorentz plots in Fig. 6,
the shape is a more rounded cusp, which is characteristic
of transitions within the manifold of d-electron states.

In Fig. 20 a similar plot of the complex response func-
tions for Aluminum is shown. In addition to the metallic
ω = 0 Lorentzian Drude peak, the prominent absorption

FIG. 18 Real and imaginary dielectric functions for silver
(top) and gold (bottom). The thickness of the curve indicates
the experimental uncertainty, which originates mainly in the
Kramers-Kroning transform. From Ref. (43).

that gives the dip in the reflectivity curve around 1.65 eV
can be clearly seen. That this dip in the reflectivity does
not reflect the plasma frequency can be see in the plot
of the loss function Im − 1

ε , which shows a strong peak
at the ‘screened’ plasma frequency 15.5 eV (i.e. the zero
cross of ε1.
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FIG. 19 Decomposition of the dielectric function of gold into
Drude and interband contributions. The threshold absorption

for interband excitations is indicated by ωi. ε
(1)
1 is the Drude

contribution. δε1 is the interband piece. From Ref. (45).

B. Semiconductors and Band Insulators

In semiconductors and band insulators, the real part
of the conductivity is dominated by interband transitions
(red in Fig. 2). At low temperatures in a clean undoped
insulator, naively one expects to see a gap with no con-
ductivity and then a sudden onset at the gap edge. In
fact, various other contributions are also possible inside
the gap. Electron-hole pair bound states can form as ex-
citons and give dissipative response and be seen as sharp
peaks below the gap. This is seen for instance in Fig.
21 for the ionic insulator KCl, where the only electronic
transition in addition to the band edge excitation is a se-
ries of below gap excitons. Even lower frequencies than
those shown would reveal a series of sharp peaks from
phonons down in the 50 meV range.

If one starts to dope into a typical semiconductor like
phosphorus into silicon, massive changes in the optical
spectra occur. At very low doping levels one can discern
the sharp absorptions of individual donors as seen in the
bottom of Fig. 22. As the dopant density is increased
inter-pair and inter-cluster quantum tunneling broadens
the spectra until a prominent a prominent impurity band

FIG. 20 (top) Real and imaginary dielectric functions for alu-
minum. (bottom) Real part of the conductivity and the loss
function. In addition to the Drude peak, a prominent absorp-
tion is found around 1.65. This feature gives the dip in the
reflectivity curve around the save energy. The loss function
shows a strong peak at the screened plasma frequency 15.5
eV. From Ref. (44).

forms in the gap as shown in Fig. 23. Charge transitions
can occur in this manifold of impurity states. Below a
certain critical doping such a doped state is an insulator
and called an electronic glass. I discuss this state of
matter below.

C. Electron glasses

Many crystalline and amorphous semiconductors show
a metal-insulator transition (MIT) as a function of
dopant concentration or stochiometry. On the insulat-
ing side of the transition, the materials are insulators not
due to completely filled bands (as in the case of a band
insulator) or interactions (as in the case of a Mott insula-
tor), but because electronic states at the chemical poten-
tial are localized due to disorder. Such materials which
have a random spatial distribution of localized charges
have been called - in analogy with structural glasses -
electron-glasses and are more generally termed Ander-
son insulators.

At finite temperatures these materials conduct under
DC bias via thermally activated transport of charges
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FIG. 21 Imaginary dielectric function of KCl. The absorption
around 9 eV is the bad gap. The series of sharp features at
energies below the band gap are due to excitons. From Ref.
(46)

FIG. 22 Absorption coefficient in P doped Si normalized to
the number of donors nD for the three different labeled doping
levels at 2 K. At the lowest doping, absorptions due to indi-
vidual donor atoms can be seen. These absorption broaden
into a impurity band at higher dopings. The direct gap is at
much higher energies as shown in Fig. 23. From Ref. (47)

hopping between localized states in the impurity band.
The DC conductivity tends to zero as the temperature
tends to zero. However, because their insulating nature
derives from localization of the electronic orbitals and
not necessarily a vanishing density of states at EF , such
materials can have appreciable conductivity at low fre-
quency deriving from transitions between localized states

FIG. 23 Optical conductivity of silicon doped close to the
3D metal-insulator transition. The optical band gap is visible
via the high energy onset at 1.12eV. The intermediate energy
conductivity is associated with excitations from the dopant
band to the conduction band. The conductivity at the lowest
energies, i.e. photon assisted hopping conductivity, is due to
intra-dopant band excitations. From Ref. (49).

inside the impurity band. Although electron transport in
electronic glasses is still not completely understood, dif-
ferent regimes for AC transport can be distinguished de-
pending on the strength of electron-electron interactions,
the energy scale being probed and the amount of disor-
der. See Helgren et al. (49) for a complete discussion on
this subject.

Far away from the MIT and in regimes when electron-
electron interactions are not significant, one considers a
so-called Fermi glass. This is an ensemble of localized
charges whose properties are primarily determined by the
Fermi statistics. When the long-range Coulomb interac-
tion is of the same order as the disorder potentials, a
so-called Coulomb glass emerges, and finally, near the
transition to the metallic state, fluctuations lead to a
quantum critical regime. For these various regimes, cer-
tain characteristic power law and exponential functional
forms for the AC and DC transport are expected. For in-
stance, in a Fermi glass the AC conductivity is expected
to be a power law σ ∝ ω2 (50). In a Coulomb glass the
conductivity is expected to take the form σ ∝ U(r)·ω+ω2

(51). Here, the non-interacting Fermi glass functional
form is returned at high frequencies, but a linear depen-
dence is found at low frequencies. The crossover between
these regimes is smooth and set by U(r) which is the typ-
ical long range interaction strength between the charges
forming the absorbing resonant pair. There are expected
to be logarithmic corrections to these power laws. As the
energy scale U(r) characterizes the long range Coulomb
interaction, it is expected to go to zero at the MIT. As one
approaches the quantum critical point, the behavior may
also be interpreted using scaling laws (discussed below)
that connect the temperature, frequency and concentra-
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tion dependence of the response. It is expected that there
is a correspondence between the frequency and tempera-
ture dependent conductivity on both sides of the critical
concentration. Such an analysis of the conductivity leads
to a universal scaling function and defines critical expo-
nents as discussed below.

In Fig. 24, the pioneering data of Stutzmann and Lee
(17) on Si:B demonstrates the real part of the conduc-
tivity measured with a broad band microwave Corbino
spectrometer. The data shows a remarkable observation
of conductivity linear in frequency at low frequencies and
a sharp crossover at U(r) to ω2 at high frequencies. Work
on Si:P on samples farther from the metal-insulator tran-
sition shows the same behavior (48; 49), albeit the en-
ergy scale of the crossover is found at higher energies as
it is set by the long range Coulomb interactions (which
increases away from the MIT). Although the proposed
functional form of Efros and Shkovlkii approximately fits
the data of Stutzmann and Lee (17) (and of Helgren et
al. (48)), it fails to account for the very sharp crossover
between power laws. Stutzmann and Lee (17) interpreted
the sharp crossover as deriving from a sharp feature in
the density of states - the Coulomb gap (a depression at
the Fermi energy in the density of states that is a conse-
quence of the long range Coulomb interaction). However,
such an interpretation is at odds with theory and more-
over, was not consistent with the work of Helgren et al.
(48), where it was shown that the crossover was set by
the typical interaction strength. The sharp transition
between power laws remains unexplained; although one
should consider that this sharp crossover may arise from
collective effects in electron motion (53).

FIG. 24 The real part of the complex frequency dependent
conductivity for two samples of Si:B at 85%and 88% of the
way to metal-insulator transition (17). Data has been mea-
sured up to 20 GHz with a Corbino geometry microwave
probe. The crossover in the frequency dependent conduc-
tivity from linear to quadratic is qualitatively consistent with
a crossover from Coulomb glass to Fermi glass behavior.

The theoretical functional form and experimental ob-
servation is remarkable, because the ordering of regimes
is at odds with the typical situation in solid state physics.

Typically it is that non-interacting functional forms are
expected at low frequency and temperature, while the
explicit effects of interactions are seen at higher fre-
quencies. The canonical example of this ordering is the
Fermi liquid, where it is the low frequency spectra which
can be typically modeled in terms of quasi-free non-
interacting particles (perhaps with renormalized masses).
The higher energy spectra are typically more complicated
and show the non-trivial effects of electron-electron and
electron-boson interactions. Similar physics is exhibited
in the heavy-fermion compounds in that it is the low fre-
quency regime that can be understood in terms of con-
ventional Boltzmann transport of heavy electrons. In
contrast, in electron glasses, it is the low frequency spec-
tra which shows the effect of interactions while the high
frequency spectra returns the non-interacting functional
form.

This was not the original expectation. Anderson orig-
inally coined the term ”Fermi glass” in analogy with
the Fermi liquid, to describe a ensemble of localized
charges whose properties where largely determined by
Fermi statistics alone (54).

"(The) Fermi liquid theorem is a rigorous
consequence of the exclusion principle, it
happens because the phase space available
for real interactions decreases so rapidly
(as E2 or T2). The theorem is equally true
for the localized case: at sufficiently
low temperatures or frequencies the
non-interacting theory must be correct,
even though the interactions are not
particularly small or short range: thus the
non-interacting theory is physically correct:
the electrons can form a Fermi glass."

- P.W. Anderson, 1970

It is surprising that even in a material as thoroughly
studied as doped bulk silicon that there exists no clear
consensus as to the ground state and the nature of the
low energy excitations at low dopings. It appears how-
ever, that Anderson’s speculation is not borne out by the
experimental situation. The low lying excitations appear
fundementally changed by interactions. Of course, ex-
isting experiments do not preclude that at even lower
energies the Coulomb glass-like behavior will not break
down or give way to a different response like a Fermi
glass.

D. Mott insulators

Mott insulators differ from band insulators and Ander-
son insulators in that their insulating effects derive from
correlations and not from filled bands or disorder-driven
localization. One expects to see very interesting aspects
of spectral weight transfer as charges are doped and they
eventually become metals.
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At half-filling it is believed that such Mott insulators
are characterized by upper and lower Hubbard bands,
which are split by an energy U which is the energy to
doubly occupy a single site. If one wants to occupy a site
doubly, one must pay this energy cost U . As will be dis-
cussed below the spectral weight

∫
σ(ω)dω is a conserved

quantity which depends on the total amount of charge in
a system. It is interesting to account for how spectral
weight is transfered by doping electrons to such a system
(55).

At half-filling, the lower Hubbard band is filled (oc-
cupied) and the upper Hubbard band is unfilled. Since
every site in the system has one electron, the spectral
weight of upper and lower Hubbard bands are equal. Not
consider the situation after one dopes a single electron
to the upper Hubbard band. The unoccupied spectral
weight of the upper Hubbard band reflects the total num-
ber of sites which can have an electron added, the lower
Hubbard band reflects the total number of sites occu-
pied by a single electron, and the occupied weight of the
upper Hubbard band reflects the total number of sites
that are doubly occupied. One expects then that dop-
ing a single electron transfers a state each from both the
upper and lower Hubbard bands as shown in Fig. 25
because doping changes the number sites which are oc-
cupied/unoccupied. It is natural to expect that a state is
removed from the unoccupied part of the upper Hubbard
band as now a state is occupied. However a state is also
removed from the occupied part of the lower Hubbard
band as its spectral weight quantifies how many elec-
trons sit on singly occupied sites. The occupied weight
of the upper Hubbard band is then ‘2’, and the spectral
weights of occupied lower Hubbard band and unoccu-
pied upper Hubbard band are both N-1. The situation
differs from doping a semiconductor because then dop-
ing a single electron into the upper band, only takes that
single state from the upper band. There is no transfer
of spectral weight across the gap. An intermediate case
is expected for the charge-transfer insulators, which the
parent compounds of the high Tc superconductors are
believed to be. In these compounds a charge transfer
band (consisting primarily of O 2p states) sits in the gap
between upper and lower Hubbard bands and plays the
role of an effective lower Hubbard band. The energy to
transfer charge from from an oxygen to copper ∆ be-
comes the effective onsite Hubbard U . Issues of spectral
weight transfer in Hubbard and charge transfer insulators
are discussed more completely in Ref. (55).

In Fig. 26 we show the doping dependence of the room
temperature optical conductivity of La2−xSrxCuO4. At
x = 0 the spectra show a clear charge transfer gap of
about 1.8 eV. This largely reflects excitations from O
2p6 states to Cu 3d10. Upon doping with holes, spectral
weight is observed to move from the high energies to low
in a manner consistent with the picture for the charge
transfer/Mott Hubbard insulators in Fig. 25. It is in-
teresting to note that the charge transfer band remains
even for samples that have become superconductors and

FIG. 25 A schematic of the electron-removal and addition
spectra for a simple semiconductor (left), a Mott-Hubbard
system in the localized limit (middle) and a charge transfer
system in the localized limit. (a) Undoped (half-filled) (b)
one-electron doped, and (c) one-hole doped. The onsite re-
pulsion U and the charge-transfer energy ∆ are indicated.
From Ref. (55)

are known to have a large Fermi surface.

FIG. 26 Doping dependence of the room temperature optical
conductivity of La2−xSrxCuO4. At x = 0 the spectra show
a clear charge transfer gap of about 1.8 eV. Upon doping
with holes, spectral weight is observed to move from the high
energies to low in a manner consistent with Fig. 25. Figure
adapted from(56)

.
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E. Superconductors and other BCS-like states

One can gain a rough intuition of the electrodynamic
response of superconductors for ~ω � 2∆ and T�Tc
from the relations in Eq. 25, which give the dissipation-
less limit for the Drude model. One expects a δ function
peak at zero frequency in the real conductivity and a
1/ω dependence in the imaginary part, whose coefficient
is set by the strength of the δ function. At frequencies on
the order of the superconducting gap 2∆, Cooper pairs
can be broken and enhanced absorption should be found.
At higher temperatures, thermally excited quasiparticles
are created and one expects that as they are subject to
essentially normal state dissipative processes, they will
give a contribution to σ1 at finite ω.

Very roughly one expects a two fluid scenario where
the conductivity is approximately given by σ(ω) =
π
2
Ne2

m δ(ω = 0) + iN(T )e2

mω + σ1n(ω, T ). At low tempera-
tures, one expects that N(T ) is degraded as 1−e−∆/kBT ,
as quasiparticles thermally disassociate. As the super-
fluid density decreases the normal fluid component in-
creases and one may in some circumstances expect an
increase in σ1n to go as e−∆/kBT .

These above considerations are only approximate how-
ever. The explicit temperature dependence of the gap
and the mutual screening effects of the superfluid and
normal fluid must be taken into account. Among other
things, this means that the functional form of the contri-
bution from ‘normal’ electrons σn, although still peaked
at ω = 0, will be decidedly non-Lorentzian. Within the
context of the BCS theory the response of a superconduc-
tor can be calculated from the Mattis-Bardeen formalism.
I will not go into the details of the calculation here. In-
terested readers should consult Tinkham (57). One of
the important results from this formalism however is the
effect of the superconducting coherence factors, which de-
pending on their sign can lead to enhanced or suppressed
absorption over the normal state above or below the gap
edge. This means that different symmetries of the super-
conducting order parameter (or order parameters of other
BCS-like condensates like spin- or charge-density waves),
leave their signatures on the dissipative response.

Shown in Fig. 27 is the temperature and frequency
dependence of the real part of the conductivity σ1 as
evaluated from the Mattis-Bardeen expression for ‘type
II’ coherence factors, which are appropriate for s-wave
superconductivity. One can see that at T=0, one has
no below gap absorption, and then a gentle rise begins
starting at the gap edge 2∆. Despite the singularity in
the density of states, the conductivity is suppressed at
the gap edge, as the type I coherence factors effectively
cancel the enhanced density of states. As one warms
the sample, below gap excitations are possible from ther-
mally excited quasiparticles. Just as above the gap edge
the absorption is suppressed, the absorption is enhanced
over the normal state at energies below the gap. This is
again the consequence of type II coherence factors.

This anomalous behavior is more clear along the tem-

FIG. 27 Temperature and frequency dependence of the con-
ductivity σ1 as evaluated from the Mattis-Bardeen expres-
sion. The coherence peak exists only at low frequencies
~ω/2∆ < 0.1. The cusp in the surface corresponds to the
energy gap.

perature axis. If one follows the conductivity at a partic-
ular frequency as a function of temperature, one will see
a large enhanced absorbence at temperatures below Tc.
This result although surprising is direct evidence for co-
herence effects in the superconductor. An analogous en-
hancement found in the nuclear relaxation rate via NMR
- the so-called Hebel-Schlichter peak - was early evidence
for the BCS theory (58).

These features contrast with the situation in Type I
coherence factors as shown in Fig. 28. In a Type I co-
herence factor SDW material one expects a very different
response. There the coherence factors don’t cancel the
singularity in the density of states. Likewise, there is no
Hebel-Schlicter like peak in the temperature dependence.

FIG. 28 (Color) (left) Approximate frequency dependence of
the dissipation rate from the Mattis-Bardeen theory for Type
I and Type II coherence factors. (right) Approximate tem-
perature dependence of the dissipation rate for ω = 0.1∆ for
both coherence factors.

Qualitatively the behavior for Type II coherence fac-
tors is realized in conventional s-wave superconductors.
In Fig. 29, the normal state normalized conductivity
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from some of the original measurements of Palmer and
Tinkham (59) is shown, which is in good agreement with
the Mattis-Bardeen prediction. The suppression at the
gap edge is consistent with type II coherence factors and
hence a s-wave superconducting state. Mattis-Bardeen
predicts that subgap absorptions rise with increasing
temperature and become enhanced over the normal state
conductivity.

FIG. 29 Frequency dependence of the normalized conductiv-
ity through lead films at three different temperatures. The
results are obtained through a combination of reflection and
transmission measurements. The solid line is a calculation
using the Mattis-Bardeen theory with a 2∆/~ = 22.5 cm−1.
Tc for these lead films is 7.2 ± 0.2 K. From Ref. (59).

In Fig. 30 the conductivity of Nb at 60 GHz as mea-
sured in a microwave resonance cavity is shown as a
function of temperature (60). The peak below Tc is the
electromagnetic equivalent of the Hebel-Schlicter peak in
NMR. This is again consistent with s-wave superconduc-
tivity.

As noted, different behavior is expected for type I co-
herence factors. There one expects an absorption en-
hancehment at the gap edge and no ‘Hebel-Schlicter’
peak. The lack of such a peak in electromagnetic ab-
sorption of cuprate superconductors is at least partial ev-
idence for d-wave superconductivity in those compounds.
It is due in part to the lack of a strong singularity in the
d-wave density of states, but also because the coherence
factor vanishes for q = π, π since ∆k = −∆k+π,π. Such
data is shown in Fig. 31 where the conductivity measured
at a number of different frequencies in the GHz range on

FIG. 30 Temperature dependence of the complex conductiv-
ity σ(ω) of Nb as evaluated from surface impedance measure-
ments at 60 GHz in cavities. The solid curve is the weak
coupling Mattis-Bardeen prediction. The dashed curve is a
strong coupling Eliashberg prediction. From Ref. (60).

YBCO is displayed as a function of temperature (61).
The data does show a number of broad peaks in σ1 at
around approximately 35 K, but a comparison with the
Mattis-Bardeen prediction shows that it is incapable of
describing it as the rise in σ1 is much more gradual than
predicted. An explicit comparison is shown in Fig. 32.
This peak has been quite reasonably described in terms
of a collapsing scattering rate below Tc of quasiparticles
whose number remains appreciable until low tempera-
tures due to the d-wave nature of this compound. An
examination of the Drude model shows that in general
one expects a peak in σ1 when the probe frequency is ap-
proximately equal to 1/τ the scattering rate. The exhib-
ited peak is therefore not a Hebel-Schlicter peak, and the
data is consistent with d-wave superconductivity. These
experiments give evidence for d-wave superconductivity
twice: the lack of a Hebel-Schlicter peak and the large
σ1 due to quasiparticle effects. Note that the other sharp
peak right at Tc is believed to be due to fluctuations of
superconductivity. Its functional form is also inconsistent
with it being a Hebel-Schlicter peak.

Spin density wave compounds which can be treated
within the BCS formalism are also expected to have a
type I order parameter and a gap edge enhancement.

A vast literature exists on the electrodynamics of su-
perconductors. I have given only the most superficial
treatment here. Many considerations go into how super-
conductivity is exhibited in optical spectra. See Tinkham
(57) or Dressel and Grüner (8), for instance, for in-depth
discussions on the clean and dirty limits of superconduc-
tivity and Basov and Timusk (34) for the state-of-the-art
on high-temperature superconductivity.
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FIG. 31 The real part of the conductivity extracted from
the microwave surface resistance of YBCO at a number of
different GHz frequencies. From (61).

FIG. 32 The real part of the conductivity extracted from
the microwave surface resistance of YBCO at a number of
different GHz frequencies (squares). The BCS conductivity
(solid) is calculated using a Tc of 91.8 K, a gap ratio of 3.52,
and various other physical parameters such as penetration
depth, coherence length, and mean free path. From Ref. (62).

V. ADVANCED ANALYSIS

A. Sum Rules

The optical constants satisfy a number of different sum
rules (10). The most frequently used sum over the real
conductivity is the one that will be discussed here. As
alluded to above, there is a relation for the integral over
all frequencies of the real part of the conductivity to the
total number of charges and their mass.

8
∫ ∞

0

σ1(ω)dω =
4πne2

me
. (50)

Analysis of data in terms of sum rules provides a pow-
erful tool that can be used to study spectral weight dis-
tributions in a relatively model free fashion. The above
integral which extends from zero to infinity is the global
oscillator strength sum rule, which relates the integral of
the σ1 to the density of particles and their bare mass.
This analysis applied to the simple metal case of alu-
minum is shown in Fig. 33. Aluminum’s nominal elec-
tronic configuration is 1s2, 2s2, 2p6, 3s2, 3p1. Depending
on the cutoff of the integral, the sum rule for different or-
bitals is satisfied. Integrating up the approximately the
plasma frequency (15.5 eV) returns the number of elec-
trons in the n = 3 valence band. At the x-ray L edge at
around 100 eV, one begins to reveal spectral weight of
the n = 2 formed bands. One can see that if the integral
is performed to high enough energies (well above the K
edge of aluminum) one recovers the aluminum’s atomic
number ‘13’.

FIG. 33 The effective number of carriers neff (Ωc) as a func-
tion of cutoff frequency Ωc for Aluminum. A number of dif-
ferent sum rules are investigated and displayed. The sum
rule for ε1 is equivalent to the sum rule expressed in Eq. 50.
Figure adapted from Ref. (63).

The integral to infinite frequencies is rarely utilized in
practice and we are usually more concerned with partial
sum rules such as

8
∫ W

0

σ1(ω)dω =
4πne2

mb
. (51)

where W is the unrenormalized electronic bandwidth
and mb is the band mass. In correlated systems one fre-
quently makes use of an even more limited sum rule and
only performs the integral over an energy several times
the Drude width to determine the mass renormalized due
to interactions. The small spectral weight in a very nar-
row Drude peak as shown in Fig. 8 gives a very large
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mass. An integral as such over a renormalized Drude
peak with small spectral weight is how the very large
masses in Fig. 4 were generated.

Sum rules have been used extensively in the analysis of
the data for correlated electron systems because, in some
circumstances, they allow a relatively model independent
way to analyze the data. For instance, one can show that
for a tight binding model with nearest neighbor interac-
tions that

8
∫ W

0

σ1(ω)dω = −πe
2ar

2~2
Kr. (52)

where ar is the lattice constance in the incident E
field’s polarization direction and Kr is the effective ki-
netic energy. This relation has been used extensively
in the cuprate superconductors to attempt to show ev-
idence for a novel lowering of the kinetic energy-driven
mechanism for superconductivity. This is in contrast to
the usual mechanism in the BCS theory where it is the
potential energy that drops when falling into the super-
conducting state. Such analysis is not trivial in these
materials, as there is evidence that the spectral weight
that goes into the condensate is derived not just from the
near EF electronic band over a width much smaller than
W , but over an energy range many times the band width
W .

For instance, it is believed that the usual sum rule for
superconductors (Ferrell-Glover-Tinkham) is satisfied for
the ab plane conductivity of the cuprate superconductors
up to about 10% accuracy (34). Using spectroscopic el-
lipsometry, Molegraaf et al. (64) used a combination of
reflectivity and spectroscopic ellipsometry in Bi2212 to
conclude that about 0.2 - 0.3% of the total strength of
the superconducting δ funtion is collected from an energy
range beyond 10,000 cm−1 to 20,000 cm−1 (Fig. 34) and
that the kinetic energy does decrease in the supercon-
ducting state. This is a very small effect, but still large
enough to account for the condensation energy. Such
analysis of total spectral weight transfer can be tricky
as it requires the analysis of spectral weight beyond the
measurement regime. These results or rather the anal-
ysis of the data has been disputed by Boris et al., (65)
who form a nearly opposite conclusion regarding spectral
weight transfer based on nearly identical experimental
data.

The c-axis response has been investigated in a simi-
lar manner and a similar transfer of spectral weight from
very high energies to the δ function has been observed,
although in this case the magnitude of the effect is defini-
tively insufficient to account for Tc (34).

B. Extended Drude Model

Within the Drude-Lorentz (Sec. II.B ) model we con-
sider that conduction electrons are quasi-free. The relax-
ation rate of the Drude intraband contribution is consid-

FIG. 34 Temperature dependence of the low-frequency spec-
tral weight A1+D(T ) and the high-frequency spectral weight
Ah(T ), for optimally doped and underdoped Bi2212. Insets:
derivatives −T−1dA1+D/dT and T−1dA1h/dT . From Ref.
(64).

ered to be characterized by a single frequency indepen-
dent relaxation time τ . It is well known however that
various channels can contribute to relaxation in solids,
each with a characteristic frequency dependence. For
instance, in 3D the charge-charge scattering rate is ex-
pected to exhibit an ω2 dependence at low frequency. An
electron scattering off an Einstein boson (a single spec-
tral mode with a well-define frequency ω0) is expected to
show an onset in scattering at the boson frequency ω0.

Allen and Mikkelsen (66) proposed that one could
capture these frequency dependences in optical spectra
through an extended Drude model (EDM) where the
mass and scattering rate are explicitly frequency depen-
dent. Inverting the complex conductivity one gets

m∗(ω)
mb

= −
ω2
p

4πω
Im

[
1

σ(ω)

]
, (53)

1
τ(ω)

=
ω2
p

4π
Re

[
1

σ(ω)

]
. (54)

where mb is the band mass.
Both in spirit and formalism this is equivalent to stan-

dard treatments in many-body physics where one posits
that the effects of interactions can be captured by shift-
ing the energy of an electron added to an interacting
ensemble from the bare non-interacting energy ε(k) by a
complex self -energy Σ(ω,k) = Σ1(ω,k) + iΣ2(ω,k).

One can express the optical response in terms of the
complex self-energy Σop(ω) = Σop1 (ω) + iΣop2 (ω) as
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σ(ω) = −i
ω2
p

4π(2Σop(ω)− ω)
. (55)

and in terms of previously defined quantities

Σop1 =
ω

2
(1−m∗/mb),

Σop2 = − 1
2τ(ω)

. (56)

A caveat should be given about the interpretation of
optical self-energies. Although an identification can be
made with the quasi-particle self-energies found in one
particle spectral functions, the two self-energies are not
exactly the same. While quasi-particle scattering de-
pends only on the total charge scattering rate to all final
states, backward scattering gives a much bigger contribu-
tion to lifetime effects than forward scattering in trans-
port and optics, because it degrades the momentum much
more efficiently. In general this means that the quantities
derived via optics emphasize backward scattering over
forward scattering and so the optically derived quanti-
ties can contain a vertex correction not included in the
full quasi-particle interaction. In this sense the two self-
energies are different although they contain much of the
same information.

Frequently the extended Drude model will be in-
troduced in terms of a complex frequency dependent
Memory function, M(ω) = 1/τ(ω) − iωλ(ω), where τ
is the lifetime and 1 + λ = m∗/mb

σ(ω) =
ω2
p

4π(M(ω)− iω)
, (57)

σ(ω) =
ω2
p

4π(1/τ(ω)− iω[1 + λ(ω)])
. (58)

One can put Eq. 58 in the form of the standard Drude
model with the substitutions τ∗(ω) = [1 +λ(ω)]τ(ω) and
ω∗2p = [1 + λ(ω)]ω2

p to get

σ(ω) =
ω∗2p (ω)

4π(1/τ∗(ω)− iω)
. (59)

This equation describes the frequency dependence of a
particle with renormalized plasma frequency (and hence
renormalized mass) and renormalized scattering rate.
Note that the quantity 1/τ∗ is not equivalent to the
quantity defined in Eq. 54 above, as 1/τ∗ includes the
renormalization effects of the lifetime as well as the mass,
whereas 1/τ includes only lifetime effects. The two quan-
tities differ by a factor of 1+λ(ω). In this sense 1/τ(ω) is
the more intrinsic quantity, as also evidence by its direct
proportionality to the imaginary part of the self-energy.
For weak frequency dependence 1/τ∗ is the actual half
width of the Drude peak in the optical conductivity.

Various contributions to the total scattering rate such
as electron-electron (ee), electron-phonon (ep), electron
magnon (em), etc. add within the prescription set by
Matthiesen’s rule as 1

τ(ω) = 1
τ0

+ 1
τee

+ 1
τep

+ 1
τem

. Note
that there is also typically a contribution 1

τ0
to the elas-

tic scattering which is frequency independent that comes
from static disorder. As mentioned above this can be
seen as a measure of the degree to which the translational
symmetry is broken by disorder and hence the degree to
which strict momentum conservation in the optical selec-
tion rule q = 0 can be violated.

As 1
τ(ω) and m∗(ω) are a particular parameterization

of the real and imaginary parts of a complex response
function, they are Kramers-Kronig related. Analogous
to the case of σ(ω) detailed above, if one knows 1

τ(ω) for
all ω, then m∗(ω) can be calculated and vice versa.

The near-EF electrons of the noble metals, like Cu, Ag,
and Au are free-electron-like s-states, which form a Fermi
surface that deviates from almost spherical symmetry
only near the Brillouin zone necks in the < 111 > direc-
tions. The above analysis applied to such metals is shown
in Fig. 35 and Fig. 36. The scattering rate shows an al-
most ideal ω2 dependence of the scattering rate, which is
in accord with the expectation for electron-electron scat-
tering. It is interesting that electron-electron scattering
is observed up to such high energies as we may have ex-
pected other contributions such as electron-phonon scat-
tering also to give an observable contribution. We should
reiterate that a purely translational invariant electron
gas, cannot dissipate momentum by electron-electron col-
lisions alone. In this regard effects like umklapp scatter-
ing are essential to see the effects of such collisions in the
optical response.

Note that in Eqs. 53 and 54 there is the matter of how
to define the plasma frequency ωp. For the electron gas
the plasma frequency is given by 4πne2/m, however the
precise definition is less clear in a real material with inter-
actions and interband transitions. In the above analysis
ωp must come from the spectral weight of the full intra-
band contribution. Rigourously the plasma frequency
should be defined from the sum rule as

∫ ∞
0

σintra1 (ω) =
ω2
p

8
. (60)

where σintra1 is contribution to the conductivity coming
from all intraband spectral weight. The integral extends
all the way to infinity, which gives of course a practical
difficulty in real systems because the value of the spectral
weight will be contaminated by interband contributions.
Note that for a complicated interacting system the inte-
gral and ωp must include not only the contributions of the
weight of the low frequency Drude peak, but must also
include higher energy parts of the spectra if their origin
is from the same intraband excitations. It can be difficult
experimentally to estimate ωp accurately. For instance,
in the case of a system with strong electron-phonon cou-
pling the spectra may be approximately modeled as the
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FIG. 35 Scattering rate vs. ω2 of (a) Cu, (b) Ag and (c) Au. Solid and dotted lines are the bare scattering rate 1/τ0 and the
dressed scattering rate 1/τ respectively as detailed in the text. From (67)

FIG. 36 Mass enhancement factor 1+λ of noble metals. From
(67)

usual Drude model with a simple ω = 0 Lorenztian and
frequency independent scattering rate at low frequencies,
but with a higher frequency satellite at the characteristic
phonon frequency which results physically from the exci-
tation of a real phonon as well as an electron-hole pair.
The high frequency satellite manifests in the scattering
rate as an onset at the phonon frequency as an additional
decay channel becomes available at that energy. In this
sense the plasma frequency which goes into an extended
Drude analysis is the plasma frequency associated with
the spectral weight of both the low frequency ‘Drude’
contribution and the satellite. The spectral weight of
the low frequency part may be clear, but it may be a
difficult practical matter to clearly identify the spectral
weight of the satellite, due to the overlapping contribu-
tions of it with true interband transitions etc. In practice,
a high frequency cutoff to the integral in Eq. 60 is usu-
ally set at some value which is believed to capture most
of the intraband contribution, while minimizing contam-
ination by interband transitions. A number of different
criteria can be used: the requirement that the intergral
is temperature independent, an appeal to reliable band
structure calculations etc.

There can also be a difficulty in definitions of the

plasma frequency for systems described by, for instance,
the Mott-Hubbard model, where a strong onsite repul-
sion splits a single metallic band into upper and lower
Hubbard ‘bands’. In such cases, one has one band or
two depending on definitions and so the matter of the
true intraband spectral weight can also be poorly de-
fined. In such cases it is important to remember that in
this and other cases that the Drude model is a classical
model applicable only to weakly interacting mobile par-
ticles. Although the EDM can be put on more rigorous
ground expressing its quantities as optical self-energies,
one still always makes analogy and connection to a non-
interacting system. To the extent that the EDM is just
a parameterization of optical spectral, it is always valid.
However, to the extent that its output can be interpreted
as a real mass and scattering rate of something, it is im-
portant that that something exists. In other words, it
must be valid to discuss the existence of well-defined elec-
tronic excitations in the Fermi-liquid sense in the energy
regimes of interest.

The EDM has been used in many different contexts
in strongly correlated systems. An ideal example is af-
forded by its application to heavy fermion systems. As
mentioned above, due to interaction of conduction elec-
trons with localized moments the conduction electrons
can undergo extremely large mass renormalizations of
a factor of a few hundred over the free electron mass.
These mass renormalizations develop below a coherence
temperature T ∗. Such effects are reflected in the optical
spectra. As seen in Fig. 37, at high temperatures an
EDM analysis reveals a pure Drude-like essentially fre-
quency independent mass and scattering rate. The small
mass and large scattering rate at high temperatures re-
flect the effects of essentially normal electron scattering
strongly and incoherently with the localized moments.
The spectra show no particularly interesting frequency
dependence. Below the coherence temperature at low
frequencies significant renormalizations to the mass and
scattering rate are seen. The mass develops a significant
enhancement and the scattering rate drops. The coher-
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ence temperature T ∗ and the frequency above which the
unrenormalized values are recovered ωc are equivalent to
each other to within factors of order unity. Remarkably
the optical mass as compared to the band mass is in-
creased by a factor of almost 350. Note that although
both the mass and the low frequency scattering rate un-
dergo dramatic changes, the DC Drude conductivity is
not changed signifiantly, as σDC ∝ τ/m and the respec-
tive changes approximately cancel. This is reflected in
the fact that the relation m∗(ω → 0)/mb is expected to
be equivalent to τ/τ∗(ω → 0) to within factors of order
unity (68). Note that these changes in scattering rate
and mass are reflected in the optical conductivity itself
by the formation of a very sharp zero frequency mode (es-
sentially a Drude peak) which rides on top of the normal
Drude peak (68).

Evidence that the renormalizations in the optical mass
reflect the existence of real heavy particles in these sys-
tems and not just a convenient parametrization of the
optical spectral can be seen in the above discussed Fig.
4 which shows a proportionality of the optically measured
mass to the linear coefficient of the specific heat (which is
proportional to inverse of the near EF density of states).
It is remarkable that a parameter determined dynami-
cally - essentially by shaking charge with an oscillating
E-field - is precisely related to a quantity which is deter-
mined thermodynamically by quantifyng the amount of
heat absorbed. This graph provides a remarkable demon-
stration of the quasiparticle concept!

In addition to electron-electron scattering, the effects
of electron-boson interactions also reveal themselves in
the optical spectra. Spectral features in the optical
conductivity deriving from electron-boson coupling were
orginally discussed in the context of Holstein processes -
the creation of a real phonon and an electron-hole pair
with the absorption of a photon - in superconducting Pb
films (69; 70). As mentioned above, the EDM analysis
can reveal significant information about the interaction
of electrons with various bosonic modes.

In Fig. 38 the optical conductivity calculated for an
electron with impurity scattering coupled to a single Ein-
stein phonon is shown for a few temperatures. (See
Puchkov, Allen, Shulga (72) for details regarding the cal-
culation of the effects of electron-boson scattering in op-
tical spectral.) The lower two panels show the scattering
rate and mass enhancement generated from the optical
conductivity. At low temperatures the optical conduc-
tivity (Fig. 38 (top)) reveals a sharp Drude peak at low
frequencies, which results from the usual electron-hole ex-
citations. The sharp onset in absorption at the phonon
frequency is the threshold for excitation of a real phonon.
At threshold, electron-hole pairs are excited additionally,
but it is the phonon which carries away most of the en-
ergy. This is reflected in the scattering rate, which is
flat and small at low ω, but shows a cusp and sudden
increase at ω0 as the phase space for scattering increases
discontiously (Fig. 38 (middle)).

Although real phonons can only be excited above

FIG. 37 Scattering rate and effective mass in CeAl3. (a)
Frequency-dependent optical scattering rate for CeAl3 at four
temperatures, compiled using both infrared reflectivity and
microwave cavity data. (b) Frequency dependence of m∗ ob-
tained from Eq. 54 (71).

threshold, electron-phonon coupling manifests itself at
energies below threshold by an increase in the effective
mass (Fig. 38 (bottom)). Physically, this can be un-
derstood as a renormalization of the electron-hole pair
energy, which is modified by the excitation of virtual
phonons. This renormalization of the energy manifests
itself as an increased mass. The electron-hole pair can
be viewed as being surrounded by a cloud of virtual
phonons.

One can get an approximate measure of the boson cou-
pling function as (73)

α2F (ω) =
1

2π
d2

dω2
[ωRe

1
σ(ω)

]. (61)

Although the results of the calculation diplayed in Fig.
38 is for phonons, the general idea holds generically for
electron-boson coupling (73; 74) although, of course, the
bosonic density of states is generally more complicated
than a single sharp mode. Recently Tediosi et al. (75)
found a remarkable example of this general idea in semi-
metal bismuth, where the bosonic excitation is formed
out of the collective excitations of the electronic ensem-
ble itself i.e. the plasmon. This is an effect that should
be present in all metals, but is enhanced in a semi-metal
like bismuth due to its very low carrier density and high
ε∞ ≈ 100. At low frequencies Tediosi et al. (75) found
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FIG. 38 Electron-boson model calculations with a boson
spectral density A(Ω) = ω0δ(ω − ω0). The top panel gives
the optical conductivity and the lower two panels show the
corresponding scattering rate and mass enhancement. The
coupling constant in this calculation is set to 1. From (72).

in their EDM analysis (Fig. 39) that the mass and scat-
tering rate are approximately frequency independent as
expected for the Drude model. However, at higher fre-
quencies there is sharp onset in the scattering rate at a
strongly temerpature dependent position. As one cools
bismuth, the charge density changes dramatically and the
plasmon frequency (as given by the zero crossing of ε1)
drops by a factor of almost two. It was found that the
energy scale of this sharp onset in scattering tracks this
independently measured plasmon frequency as shown in
Fig. 40. One can note the strong resemblance of the data
to the calculation of an electron interacting with sharp
mode in Fig. 38. A strong coupling as such between elec-
trons and plasmonic electron degrees of freedom may in
fact be captured within the same Holstein Hamiltonian
that is used to treat the electron - longitudinal phonon
coupling and describe polarons. As a result, this collec-
tive composite excitation has been called a plasmaron
(76; 77) when exhibited in the single particle spectral
function. The observation of Tediosi et al. was the first
such observation optically.

EDM analysis has been applied extensively to the high-
Tc cuprate superconductors (34). In Fig. 41 I show the
imaginary and real parts of the optical self-energy as de-
fined in Eq. 56 above for a series of four doping levels
of the compound Bi2Sr2CaCu2O8+δ (78). The displayed
samples span the doping range from the underdoped to
the severely overdoped. Again one can notice the resem-

400

300

200

100

0

1/
! 

(c
m

-1
)

8004000
cm-1

1.2

1.0

0.8

0.6

0.4

0.2

0.0

m
*/m

8004000
cm-1

100500
meV

100500
meV

(a) (b)

 290 K
 230 K
 170 K
 100 K
   20 K

FIG. 39 (Color) Frequency dependent scattering rate (a) and
effective mass (b), calculated from the optical data of ele-
mental bismuth using ε∞. The low frequency scattering rate
τ−1(ω) progressivly falls as the temperature is lowered. An
approximately frequency independent region is interrupted by
a sharp onset in scattering and a decrease of the effective
mass.

FIG. 40 A parametric plot of the sharp onset in scattering
plotted versus the independently measured plasmon frequency
in elemental bismuth. The plasmon frequency changes mono-
tonically as the sample is cooled from room temperature to
15K.

blance of the data to that of the model calculation in
Fig. 38 and indeed data of this kind, along with simi-
lar signatures in angle-resolved photoemission have been
interpreted as generic signatures of electron-boson inter-
action in the cuprates.

The identity of this boson is a matter of intense debate
in the community with some groups favoring interaction
with magnetism and notably the famous ‘41 meV’ reso-
nance mode and other groups claiming that interaction
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FIG. 41 (Color) a-d, The frequency and temperature depen-
dent optical scattering rate, 1/τ(ω) for four doping levels of
Bi2Sr2CaCu2O8+δ. a, Tc = 67 K (underdoped); b, 96 K (op-
timal); c, 82 K (overdoped); d, 60 K (overdoped). eh, The
real part of the optical self-energy, - 2Σop1 (ω) as defined in Eq.
56

with phonons more accurately describes the data.1

C. Frequency dependent scaling near quantum critical
points.

A quantum phase transition (QPT) is a zero-
temperature transition between two distinct ground
states as a function of a non-thermal parameter, such
as magnetic field, pressure, charge density etc. (79; 80).

1 My (NPA’s) opinion is these are by and large straw-man ar-
guments and perhaps not really the right way to approach the
problem. In a strongly correlated system like high-Tc supercon-
ductors, it is clear that everything is strongly coupled to every-
thing else and magnetism is strongly connected to lattice effects
and vice versa. In this regard, it is not surprising that experi-
ments sensitive to the lattice show lattice effects and experiments
sensitive to magnetism show magnetic effects. One should not
expect in such materials that various degrees of freedom neatly
partition in separate distinct subsystems.

Unlike conventional phase transitions, which are driven
by thermal fluctuations they are driven essentially by di-
verging fluctuations of the system’s zero point motion.
Once thought to be only of academic interest, the exis-
tence of a QPT nearby in a material’s parameter space is
believed to influence a whole host of finite temperature
properties. QPTs may hold the key to understanding
the unusual behavior of many systems at the forefront of
condensed matter physics (79).

Just as in the case of conventional phase transitions,
QPTs are believed to be characterized by diverging
length and time scales if second order. In the disordered
state, one envisions an order parameter that fluctuates
slower and slower over longer and longer length scales
until at the transition these length and time scales di-
verge. These length and time scales are the correlation
length ξc and time τc. The divergence of the fluctuation
time scales, which in the case of conventional transitions
is called critical slowing down implies the existence of a
characteristic frequency ωc which vanishes at the transi-
tion.

In a QPT, the transition occurs as a function of some
non-thermal parameter K. It is usually considered that
close to the transition at Kc, ξc diverges in a manner
∝ |K−Kc|−ν and τc diverges ∝ |K−Kc|−zν ∼ ξz where
ν and z are called the correlation length and dynamic
exponent respectively.

From the classical case, a well established formalism
exists for the understanding of various physical quanti-
ties close to continuous (2nd order) transitions. Widom’s
scaling hypothesis assumes that close to the transition
the only relevant length and time scales are those asso-
ciated with diverging correlations in the order parameter
(81). Such considerations hold for QPTs also and mean
that physical observables such as magnetization or con-
ductivity are expected to have scaling forms, in which
independent variables such as the temperature, probe fre-
quency or wave vector appear in the argument only as a
product with quantities like ξc and τc. This is expressed
formally in terms of finite−size scaling. For an incident
wave vector q = 0 such a scaling form can be written

O(K,ω, T ) =
1

T do/z
F (ω/T, Tτc). (62)

Here O is some observable and F is the scaling func-
tion. do is the scaling dimension, which determines how
various physical quantities change under a renormaliza-
tion group transformation. It is often close to the “engi-
neering” dimension of the system (for instance 0 for 2D
conductivity), but can acquire an anomalous dimension
in certain circumstances. For further discussion on scal-
ing forms and motivation on this and other related points
see the excellent review by Sondhi et al. (79).

Scaling functions written as a function of ξc and τc
can be very powerful as they allow the analysis of ex-
perimental data independent of microscopic theory. For
instance, the scaling exponents ν and z only depend on
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certain global properties of the system such as symmetry,
dimensionality, and the nature of the dominant interac-
tions.

There are many studies where the existence of a QPT is
inferred from frequency dependent scaling (see for exam-
ple (82)), but there are far fewer studies where scaling is
investigated as one passes through a known QPT. I know
of only two where scaling in the frequency dependent
conductivity has been investigated. This is unfortunate
because, as mentioned, such studies could potentially be
tremendously powerful for the investigation of correlated
systems where the underlying physical model is not clear.
This shows the extreme experimental challenges inherent
in accessing the experimentally relevant frequency and
temperature ranges where ~ω � kBT while both ~ω and
kBT are as low as possible, but also below any higher
energy scales that are not relevant to the ordered state.
Hopefully this situation will change with the increasing
prominence and usability of broadband microwave and
THz techniques.

The first experimental study to investigate frequency
dependent scaling near a QPT was that of Engel et al.
(83), who used a waveguide coplanar transmission setup
to perform broadband microwave range spectroscopy on
quantum Hall systems. In quantum Hall systems the
longitudinal resistivity goes to zero at field values where
the transverse resistivity assumes perfectly quantized val-
ues. Although the value of the Hall resistivity is perfectly
quantized, the width of the transition region depends on
temperature (84) and on measurement frequency (83).
In Fig. 42 the Re σxx vs. B is shown at three differ-
ent frequencies and two different temperatures. One can
see that at 50 mK, the width of the transitions regions
is strongly frequency dependent, while at 470 mK the
widths are almost frequency independent.

This frequency and temperature dependence of ∆B
(as defined as the extrema of the derivatives of Re σxx)
is summarized in Fig. 43 for one of the spin-split lev-
els. Similar data is found for other levels. One sees that
for all such levels at low frequencies, the data are fre-
quency independent, whereas for low temperatures the
data are temperature independent. The crossover be-
tween regimes takes place when 3~ω ∼ kBT . Such data
is consistent with scaling theories of quantum criticality,
where the only relevant frequency scale at the QPT is set
by the temperature itself. It is also significant that the
crossover condition involves ~, showing that the physics
is essentially quantum mechanical. In the high frequency
data it is observed that spin split levels give a ∆B which
is approximately ∝ ωγ , with γ = 0.43. This is consistent
with scaling theories that give the exponent for quantum
percolation of 1/γ = zν = 7/3 and also consistent with
the temperature dependence of these transition widths
as measured by DC transport that show a T

1
7/3 depen-

dence. It was claimed that through an analysis of both
the temperature and frequency dependent exponents, one
can extract the dynamic exponent z, which yields z = 1.
This is consistent with long range Coulomb interaction.

FIG. 42 (Color) Re σxx vs. B at three frequencies and two
temperatures. Peaks are marked with Landau level N and
spin index.

Both the DC data (84) and the high frequency data
have transition widths which exhibit a power law depen-
dence on temperature or frequency with an exponent of
3/7 at all spin-split transitions, showing that all such
transitions between quantum Hall levels fall into the same
universality class. It should be possible in such a study to
incorporate both temperature and frequency dependence
into a single scaling function although this has not been
done yet. It is expected that a general scaling function
of the form

ρ(B, T, ω) = F (ω/T, δ/T
1
zν ). (63)

applies where δ = |B − Bc|/Bc measures the distance
to the quantum critical point. This function is equivalent
to Eq. 62 using the fact that the scaling dimension of the
resistivity vanishes in d = 2. In the high frequency and
high temperature limits, Eq. 64 reduces to one where
frequency and temperature appear in the arguments as
δ

ω1/zv and δ
T 1/zv .

Lee et al. (85; 86) applied the ideas of finite size scaling
to the 3D metal-insulator (MI) transition in Nb1−xSix.
They measured the frequency dependent conductivity via
millimeter wave transmission through thin films whose
relative concentrations of Nb to Si were tuned to ex-
actly to the MI QPT point at xc. As in the study of
Engel et al. (83), for samples tuned right to quantum
criticality it is observed that for the ~ω >> kBT data
the conductivity is temperature independent and that
for ~ω � kBT , the data are frequency independent (Fig.
44). A crossover from a frequency dominated regime to
a temperature dominated regime implies the existence of
a scaling function

∑
of a form that can be inferred from

above Eq. 62
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FIG. 43 (Color) Peak width between extremal points in lon-
gitundinal resistance d Re σxx/dB ∆B vs. measurement fre-
quency at three different temperatures. Data is shown for the
N = 0 ↓ Landau level.

σ(xc, T, ω) = CT
1
z

∑
(

~ω
kBT

). (64)

FIG. 44 Reσ(ω) plotted against
√
ω for temperatures 2.8 to

32K and frequencies 87-1040 GHz. For the lowest temper-
atures and when ~ω > kBT , the data follow a

√
ω. The

data approaches the DC values plotted on the vertical axis
for ~ω � kBT .

In previous work on similar samples it was found that
for samples tuned to the critical concentration the DC
conductivity followed a T1/2 relation implying z = 2.
As shown in Fig. 45, successful scaling can be found by
plotting the scaled conductivity Re σ(T, ω)/CT 1/z us-
ing this z. This procedure collapses the data over the

entire measured frequency range for temperatures 16 K
and below, implying the applicability of a scaling func-
tion that depends only on the scaled frequency. Data
for temperatures higher than 16 K starts to rise above
the other collapsed curves, indicating the appearance of
other mechanisms (electron-phonon scattering for exam-
ple) which limits the size of quantum fluctuations. This
is consistent with the DC result where the conductivity
starts to deviate from the T

1
2 above 16 K.

As already inferred from Fig. 44, the scaling func-
tion shows both temperature and frequency dominated
regimes, with a crossover at approximately ~ω ∼ kBT .
Again, this shows that at the QPT the only energy scale
is set by the temperature itself. Note, that this crossover
happens at a slightly different ω/T ratio than the quan-
tum Hall case, but is still of order unity as expected.
For high frequencies the scaling function follows a power
law dependence with the same exponent as was used to
scale the vertical axis with z = 2. This means that
an equivalent scaling function could have been found by
dividing the conductivity data by ω

1
2 and plotting the

data as a function of T/ω. Lee et al. (85) attempted to
guess the form of the scaling function with the expression∑

= Re(1 − ib~ω/kBT )1/2). The function successfully
captures the high and low ω/T , but misses the sharp
crossover near ~ω/kBT ∼ 1.

FIG. 45 Log-log plot of conductivity scaled by the factor
C = 475(ΩmK1/2)−1 vs. ω/T . For temperatures 16 K and
below, the data for the entire experimental frequency range
collapse onto a single curve within the experimental noise.
Higher temperature data begins to rise above the collapsed
data systematically for low scaled frequencies. The dashed
line is a trial scaling function as described in the text.

The value of the dynamic exponent z = 2 is interesting.
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It is different than what is expected from models without
a density of states singularity, where z = d or for those
with straight Coulomb interation (z = 1 observed in the
quantum Hall case). It is consistent with several field-
theoretic scenarios which give z = 2 (87).

I should mention that as presented above, frequency
scaling does not necessarily give us any information on
exponents etc. that we could not also get from the tem-
perature scaling. Here the primary importance of fre-
quency scaling was in its ability to demonstrate how
characteristic time scales diverge at the QPT and leave
the temperature itself as the only energy scale in the
problem. However, as discussed by Damle and Sachdev
(88), the fact that at the QPT itself, response functions
can written as a universal function of ω/T , one does
not necessarily expect the same behavior in the ω = 0,
T → 0 (incoherent) limit as in the ω → 0, T = 0 (phase-
coherent) limit . Since all DC experiments are in the for-
mer limit, while the vast majority of theoretical predic-
tions are in the latter, finite frequency measurements can
in fact given unique insight. It was predicted by Damle
and Sachdev that at the 2D superfluid-insulator transi-
tion the conductivity is equal to two different universal
numbers of order e2/h in the ω/T → 0 and ω/T → ∞
limits as shown in Fig. 46. This is true even if both ω
and T are both asymptotically small.

FIG. 46 The real part of universal scaling function Σ, as a
function of ω̄ = ω/T . There is a Drude-like peak from the
inelastic scattering between thermally exciting carrier, which
falls off at order ω̄ ∼ 1. At larger ω̄ there is a crossover to a
collisionless regime. Importantly the function gives different
values in the ω̄ → 0 and ω̄ →∞ limits.
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lage, “Large Dynamical Fluctuations in the Microwave
Conductivity of YBa2Cu3O7 − δ above Tc”, Phys. Rev.
Lett. 77, 4438 (1996).

[15] J. C. Booth, Dong Ho Wu, and Steven M. Anlage, “A
broadband method for the measurement of the surface
impedance of thin films at microwave frequencies”, Rev.
Sci. Instrum. 65, 2082 (1994).

[16] M. L. Stutzman, Mark Lee, R. F. Bradley, “Broadband
calibration of long lossy microwave transmission lines at
cryogenic temperatures using nichrome films”, Rev. Sci.
Instrum. 71, 4596 (2000).

[17] M. Lee and M. L. Stutzmann, “Microwave ac Conductiv-
ity Spectrum of a Coulomb Glass”, Phys. Rev. Lett. 87,
056402 (2001).

[18] P. J. Turner, D. M. Broun, Saeid Kamal, M. E. Hayden,
J. S. Bobowski, R. Harris, D. C. Morgan, J. S. Preston,
D. A. Bonn, and W. N. Hardy, ”Bolometric technique
for high-resolution broadband microwave spectroscopy of
ultra-low-loss samples”, Rev. Sci. Instrum., Vol. 75, No.
1, January (2004).

[19] http://www.er.doe.gov/bes/reports/abstracts.

html#THz

[20] R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich
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