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To Remember  
Static NMR Spectrum Measurements ⇒
 Local Magnetic Field Probability Distribution

K(T ) ∝ χ′(q = 0,ω → 0)

In metals: 

K(T ) ∝ N(EF )

〈Hhf 〉 =
∑

n

−An,k〈Sk〉

ωn = γnHloc = γn (H0 + 〈Hhf 〉)

Width of an NMR spectrum ⇒ Distribution of 〈!Sz(r)〉

Shift of an NMR spectrum ⇒ Magnetic susceptibility

T−1
1 ∝ χ′′(q, ω → 0)

T−1
2 ∝ χ′(q, ω → 0)
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ν = 1 state - elementary excitations ?

Anti-skyrmionSkyrmion
Localized   holes   and   electrons

S.E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995)
P. Khandelwal et al., Phys. Rev. Lett. 86, 5353 (2001) 

Energy gap & size (s) ⇒

€ 

˜ g = Ez

Ec



 To vary skyrmion size → tune  g :
      g → 0
 - hydrostatic pressure
 - Al0.13Ga0.87As - QW  (gtheory = -0.04 ; gGaAs = 0.44) 

Skyrmion Size (s)

Energy gap & size 
(s = No of reversed spins within an excitation) ⇒

€ 

˜ g → 0⇒ s→∞
€ 

˜ g = Ez

Ec

Limits # of spin-flips

Favors FM ordering

€ 

Ez = gµBB

€ 

Ec = e2 εlB



Small g sample:

30 QWs
gtheory = -0.04  ↔  gGaAs = 0.44

n2D = 1.1 × 1011 cm-2 

m0 = 30 000 cm2 / Vs

QW: 24 nm of Al0.13Ga0.87As

barriers: 75+57 nm of Al0.35Ga0.65As 

Large Skyrmions in Al0.13Ga0.87As  (g ≅ 0) Quantum Wells

Magnetotransport measurements in Al0.13Ga0.87As QW

(S. P. Shukla et al., PRB 61, 4469 (2000))  ⇒  s ≈ 50 

1.0

0.8

0.6

0.4

0.2

0.0

 M
ag

ni
tu

de
 [a

. u
.]

58.8658.8458.8258.8058.78

 Frequency [MHz]

 71Ga, ν = 1
 
   T = 65 mK
 

barrier ---->

Problem: 
How to separate the signals?
|P(gµBH/kBT )|→ 0



Separate overlapping QW and barriers’ signal ?
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Separate overlapping QW and barriers’ signal ?
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Separate overlapping QW and barriers’ signal ?

Small tip angle technique : 
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2 µs =
 0.075 π/2
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Inhomogeneous Systems 

Stripe phase (Tranquada et al., Nature 1995)

(T. Imai and collaborators, MIT & McMaster University)
(M. Julien and collaborators, UJF & GHMFL,Grenoble)
(C.Hamel, N. Curro and collaborators, LANL)



Enhanced AF order
from vortex cores

Katano et al.
Lake et al.

Suzuki et al.
Kimura et al.

Wakimoto et al.
« Inc. » AF LRO
(stripe pattern)

Glassy freezing
Cluster spin-glass

Niedermayer et al., 
Julien et al.

Inhomogneneity
&

Phase Separation

Singer et al.

?

What’s going on in LSCO ?



Spatial inhomogeneities (Distribution of  T1 values)

Single T1 :  

Case 1.  
Spatially resolved measurement 

Case 3. Not resolved
⇒  convolute with distribution function

⇒  deduce parameters

Case 2. Not resolved
⇒ phenomenological fit

    exponent α quantifies disorder strength

T = 4.9 K

 (Tc = 30 K)
La1.88Sr0.12CuO4

139La NMR

M0 −M∞
M∞

=
∑

k

ck · e−bk
t

T1



Analysis of Spatial Inhomogeneities  I
1. phenomenological fit:
    exponent α quantifies disorder strength 
    good qualitative analysis

2. Convolute with distribution
     function of T1 

Single T1  

Mα(t, T−1
1 ) = 1− 0.714 e

−
“
28 t

T1

”α

− 0.206 e
−

“
15 t

T1

”α

− 0.068 e
−

“
6 t

T1

”α

− 0.012 e
−

“
t

T1

”α

.

MG(t) = (
√

π/2 σlog)−1 ×
∫

e−2(log R1−log T−1
1 )2

/σ2
log Mα=1(t, R1) d(logR1)

MG(t) =
∫

P (log R1 − log T−1
1 ) Mα=1(t, R1) d(logR1)
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T1 Distribution: x = 12 % (Tc= 30 K)

• Tg from µSR = 20 K 

• Inhomogeneities develop below ~ 80 K
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1
T1
=
γ n
2

2
A( )2 S(0)S(t) eiωntdt ∝ J(ωn )

−∞

+∞

∫  Time fluctuations of              
the hyperfine field

Slowing down of fluctuations 
τc→ ∞
T1

-1 enhancement 
until maximum when τc

-1 = ωn

Simple Model:

S(0)S(t) = S⊥
2e− t /τ c BPP

1
T1
∝

τ c
1+ω

n

2τ c
2

Probing spin dynamics with T1 



T1 Distribution: x = 12 % (Tc= 30 K)
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Spatial inhomogeneities (Vortex States)

Case 3. Not resolved
⇒  convolute with distribution function

⇒  deduce parameters

Case 2. Not resolved
⇒ phenomenological fit

    exponent α quantifies disorder strength

Case 1.  
Spatially resolved measurement 



Real Space Magnetic Field Distribution

 in the Vortex Lattice



NMR Microscopy  

Field Probability Distribution ~ NMR Spectrum

M. Takigawa et al.,
     PRL 83, 3057 (1999)
-R. Wortis et al., 
     PRB 61, 12342 (2000)
-D. Morr and R. Wortis, 
     PRB 61, R882 (2000)
-N. J. Curro et al., 
     PRB 62, 3473 (2000)



Normal State vs. Low Temperature Spectra
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Spectra - f(TR)



Spectra - f(TR)



Low Temperature T1 vs. H0 & Hint
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Low Temperature T1 vs. H0 & Hint
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Low Temperature T1 vs. H0 & Hint
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Outside the Cores

• T1
-1

   increases with increasing H0   

• T1
-1

   increases with increasing Hint, i.e. on approaching 
vortex core 

• (TT1)-1
 = Constant 

• T1  lower then inside    



Low Energy Excitations

 s-wave   
   Low energy excitations bound to the core region and
   and occupy a fraction ~ B\Hc2  

   (Caroli-deGennes-Matricon States).

   C. Caroli, P. G. deGennes, J. Matricon,  J., Phys. Lett. 9, 307, (1964)

    H. F. Hess et al.,  PRL 62, 214, (1989)

 

 d-wave
      Low energy excitations  extended along 
      nodal directions. 

           G. E. Volovik, JETP Lett. 58, 469 (1993)

      Nature of the core states?
 I. Maggio-Aprile et al.,  PRL 75, 2754 (1995)   

 Ch. Renner Ch. et al.,  PRL 80, 3603 (1998)

 S. H. Pan et al.,  PRL 85, 1536 (2000)

 J. E.  Hoffman et al., Science 295, 452 (2002)



Outside the Cores - Energy Spectrum of Nodal QP

• In the nodal region quasiparticle DOS  varies linearly on energy     

• T1 depends on the product of initial and final QP energies

• QP energy depends on temperature, applied field, and internal field

Ek =
√

ε2k + ∆2
k ±

1
2
γe!H0 + #vf (k) · #ps = ET ±Z +D

T−1
1 ∝ 〈Ni(E)Nf (E)〉
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Outside the Cores - Energy Spectrum of Nodal QP

T1
−1 ~ D2 − Z 2 F1

T1
−1 ~ D2 + Z 2 F3

T−1
1 ∝ |ET + Di + Z| |ET + Df − Z|

Ek = ET ± Z + D

T−1
1 ∝ 〈Ni(E)Nf (E)〉 ∝ 〈EiEf 〉



Outside the Cores - Energy Spectrum of Nodal QP

F3 dominant scattering process 

BUT q ~ (π, π) required => QP are AF correlated

T1
−1 ~ D2 + Z 2 F3
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Spatial inhomogeneities (FFLO)

The destruction of SC by a magnetic field.
!

1
2χnH2

0 = 1
2N(0)∆2

χn = 1
2 (gµB)2N0

Relative importance of the two effects 
described by the Maki Parameter: α =

√
2
Horb

c2

HP
c2

II. Pauli paramagnetism

EP = Ec ⇒ HP
c2

=
√

2∆
gµB

Abrikosov Vortex Lattice

I. Orbital Effect

G-L Equation: Horb
c2

=
Φ0

2πξ2

Cooper-pairs Breaking



The FFLO State

P. Fulde and R. A. Ferrell, Phys. Rev. 135,  A550 (1964);   
A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964).  

Basic Idea:

Formation of a new pairing state with finite 
center-of-mass momentum can reduce the 
paramagnetic pair-breaking effect.

The critical field can 
be further enhanced!

J. Phys. Soc. Jpn. Full Paper Author Name 3

Fig. 2. Schematic figure of pairing states. (a) BCS pairing state
(k ↑,−k + q ↓). (b) FFLO pairing state (k ↑,−k + q ↓). The
inner and outer circles represent the Fermi surface of the spin
down and up bands, respectively. The electron with −k′ +q ↓ is
not on the inner Fermi surface.

BCS state. Figure 2 illustrates these pairing states. Here-
after, we denote the BCS pairing state with q = 0 as the
BCS state and the pairing state with q != 0 as the FFLO
state.

Compared to the BCS state, the FFLO state has a
smaller condensation energy, butreduction of the Zee-
man energy can stabilize the FFLO state. Then upper
critical field in the FFLO state HFFLO can be higher
than HP

c2. At T = 0, H3D
FFLO " 1.51∆0/gµB " 1.07HP

c2

for 3D,5, 6, 29, 32 and H2D
FFLO " 2∆0/gµB " 1.42HP

c2 for
2D.13, 14, 33, 34 For 1D, H1D

FFLO diverges as T → 0, as will
be discussed later.35, 36 It turns out that the FFLO state
only appears at T < T †; the point (T †, H†) is a tricritical
point, at which the normal, uniform BCS superconduct-
ing, and FFLO phases all meet.

The q-vector in the FFLO state gives rise to spatial
symmetry breaking. As a result, the superconducting or-
der parameter exhibits spatial oscillation. A possible su-
perconducting order parameter, originally proposed by
Fulde and Ferrell, is

∆(r) = ∆1e
iq·r, (3)

in which the amplitude of the superconducting order pa-
rameter is homogeneous, but the phase changes in real
space. In this state, depairing occurs for some part of
the Fermi surface (the shaded portion in Fig. 3) and
pairing can ocur in the remaining regions of the Fermi
surface.5, 32

In the gap equation, the two solutions ∆1eiq·r and
∆1e−iq·r represent degenerate superconducting states at
a transition for a given q. The degeneracy is lifted by
forming the linear combinations of eiq·r and e−iq·r. It
has been found that

∆(r) = ∆1(e
iq·r + e−iq·r) = 2∆1 cos(q · r) (4)

provides a lower free energy than eq. (3) for the whole
temperature range below T †.6 This state was originally
proposed by Larkin and Ovchinnikov. In this state, the
superconductor becomes spatially inhomogeneous, be-
cause the order parameter undergoes 1D spatial oscil-
lation with a wave length of 2π/q and, as a result, the
normal quasiparticle and paramagnetic moments appear
periodically.

Generally, because of the symmetry of the system,
there are more than two equivalent q-vectors which give
the same upper critical field. Then, the order parameter

Fig. 3. Pairing state described by eq. (3). The shaded region is
the blocking region where Cooper pairs are not formed.

is expressed by a linear combination of eiq
m
·r,

∆(r) =
M
∑

m=1

∆meiq
m
·r, (5)

where M denotes the number of equivalent q-
vectors.6, 37–42 In an isotropic system, M = ∞.

Figure 4 displays the H–T phase diagram and quasi-
particle structure in a 2D thin film in a parallel field.
Just below T †, the order parameter described by eq. (4)
is stabilized. However, as the temperature decreases, or-
der parameters with linear combinations of larger num-
ber of plane waves stabilize.37 This is because the in-
creasing number of plane waves increases the number of
nodes, which in turn reduces the Pauli paramagnetic en-
ergy of the quasiparticles excited around the nodes. At
lower temperatures, the “triangular state”, with a gap
function of the form

∆(r) = ∆1 (eiq
1
·r + eiq

2
·r + eiq

3
·r), (6)

has a lower free energy, with q1 = (q, 0, 0), q2 =
(−q/2,

√
3q/2, 0), and q3 = (−q/2,−

√
3q/2, 0), where we

take the z-axis to be perpendicular to the 2D plane. A
further decrease of the temperature stabilizes the “square
state”, with a gap function of the form

∆(r) = ∆1 (cos(qx) + cos(qy)), (7)

and the “hexagonal state”, with a gap function of the
form

∆(r) = ∆1 (cos(q1 · r) + cos(q2 · r) + cos(q3 · r)). (8)

In a 3D isotropic system, a recent calculation40 demon-
strates that the first order transition line is slightly higher
than the second order transition line at all temperatures
below T †. Moreover, similar to the 2D case, the order pa-
rameter is cos(q ·r) just below T †, but at lower tempera-
tures the order parameter switches to more complicated
structures which are expressed by a sum of two or three
cosines. It has also been suggested that at zero tempera-
ture a state, which is expressed by a sum of eight plane
waves forming a face-centered cubic structure, appears.38

We note that the FFLO state had not been reported
for thin films until now. The main reason for this is that
the FFLO state is readily destroyed by impurities,9, 10

as will be discussed later. In fact, most thin films are in
the dirty limit, ξ ' #, where # is the mean free path of
the electrons. Even in clean films, surface scattering may
destroy the FFLO state. Even if a very clean thin film
could be produced, the magnetic field must be applied
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Fig. 2. Schematic figure of pairing states. (a) BCS pairing state
(k ↑,−k + q ↓). (b) FFLO pairing state (k ↑,−k + q ↓). The
inner and outer circles represent the Fermi surface of the spin
down and up bands, respectively. The electron with −k′ +q ↓ is
not on the inner Fermi surface.

BCS state. Figure 2 illustrates these pairing states. Here-
after, we denote the BCS pairing state with q = 0 as the
BCS state and the pairing state with q != 0 as the FFLO
state.
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than HP

c2. At T = 0, H3D
FFLO " 1.51∆0/gµB " 1.07HP

c2

for 3D,5, 6, 29, 32 and H2D
FFLO " 2∆0/gµB " 1.42HP

c2 for
2D.13, 14, 33, 34 For 1D, H1D

FFLO diverges as T → 0, as will
be discussed later.35, 36 It turns out that the FFLO state
only appears at T < T †; the point (T †, H†) is a tricritical
point, at which the normal, uniform BCS superconduct-
ing, and FFLO phases all meet.

The q-vector in the FFLO state gives rise to spatial
symmetry breaking. As a result, the superconducting or-
der parameter exhibits spatial oscillation. A possible su-
perconducting order parameter, originally proposed by
Fulde and Ferrell, is

∆(r) = ∆1e
iq·r, (3)

in which the amplitude of the superconducting order pa-
rameter is homogeneous, but the phase changes in real
space. In this state, depairing occurs for some part of
the Fermi surface (the shaded portion in Fig. 3) and
pairing can ocur in the remaining regions of the Fermi
surface.5, 32
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a transition for a given q. The degeneracy is lifted by
forming the linear combinations of eiq·r and e−iq·r. It
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∆(r) = ∆1(e
iq·r + e−iq·r) = 2∆1 cos(q · r) (4)

provides a lower free energy than eq. (3) for the whole
temperature range below T †.6 This state was originally
proposed by Larkin and Ovchinnikov. In this state, the
superconductor becomes spatially inhomogeneous, be-
cause the order parameter undergoes 1D spatial oscil-
lation with a wave length of 2π/q and, as a result, the
normal quasiparticle and paramagnetic moments appear
periodically.

Generally, because of the symmetry of the system,
there are more than two equivalent q-vectors which give
the same upper critical field. Then, the order parameter

Fig. 3. Pairing state described by eq. (3). The shaded region is
the blocking region where Cooper pairs are not formed.
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where M denotes the number of equivalent q-
vectors.6, 37–42 In an isotropic system, M = ∞.

Figure 4 displays the H–T phase diagram and quasi-
particle structure in a 2D thin film in a parallel field.
Just below T †, the order parameter described by eq. (4)
is stabilized. However, as the temperature decreases, or-
der parameters with linear combinations of larger num-
ber of plane waves stabilize.37 This is because the in-
creasing number of plane waves increases the number of
nodes, which in turn reduces the Pauli paramagnetic en-
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function of the form
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take the z-axis to be perpendicular to the 2D plane. A
further decrease of the temperature stabilizes the “square
state”, with a gap function of the form

∆(r) = ∆1 (cos(qx) + cos(qy)), (7)

and the “hexagonal state”, with a gap function of the
form

∆(r) = ∆1 (cos(q1 · r) + cos(q2 · r) + cos(q3 · r)). (8)

In a 3D isotropic system, a recent calculation40 demon-
strates that the first order transition line is slightly higher
than the second order transition line at all temperatures
below T †. Moreover, similar to the 2D case, the order pa-
rameter is cos(q ·r) just below T †, but at lower tempera-
tures the order parameter switches to more complicated
structures which are expressed by a sum of two or three
cosines. It has also been suggested that at zero tempera-
ture a state, which is expressed by a sum of eight plane
waves forming a face-centered cubic structure, appears.38

We note that the FFLO state had not been reported
for thin films until now. The main reason for this is that
the FFLO state is readily destroyed by impurities,9, 10

as will be discussed later. In fact, most thin films are in
the dirty limit, ξ ' #, where # is the mean free path of
the electrons. Even in clean films, surface scattering may
destroy the FFLO state. Even if a very clean thin film
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Fig. 4. H–T phase diagram of a 2D superconductor in a parallel
field. The color regions are in the FFLO state. (T †, H†) is the
tricritical point. The solid and dashed lines represent the second
and first order transition lines, respectively. Just below T †, the
order parameter undergoes 1D spatial oscillation, as expressed by
eq. (4). At lower temperatures, triangular, square, and hexagonal
FFLO states, expressed by eqs. (6), (7) and (8), respectively,
appear. For details, see the text. The quasiparticle densities of
the states in each FFLO state are shown.

very precisely parallel to the plane to produce the FFLO
state.77 Otherwise a small but finite perpendicular field
component leads to the formation of a vortex state, which
destroys the FFLO state (see §2.2).

The stability of the FFLO state with respect to ther-
mal fluctuations is different from that of BCS supercon-
ductors.52, 53 In an isotropic system, the direction of the
q-vector is arbitrary. For 3D systems, long-range-order
(LRO) is destroyed by thermal fluctuations of the q-
vector and quasi long range order (QLRO), characterized
by a correlation function with a power law decay, is es-
tablished.52, 53 For 2D systems, it is well known that LRO
is absent even in the BCS state, and superconductivity
with QLRO is achieved through a Kosterlitz–Thouless
transition. In the FFLO state with 1D oscillation ex-
pressed by eqs. (3) and (4), even QLRO is absent due to
directional fluctuation of the q-vector.52, 54 However, it
has been shown that LRO is established even in an FFLO
state in the presence of crystal anisotropy,52 which exists
in real systems, because the anisotropy fixes the q-vector
in a certain direction. It has also been shown that the
fluctuations lead to a divergent spin susceptibility and a
breakdown of the Fermi-liquid behavior at the quantum
critical point.55 Moreover, in the FFLO state of quasi-2D
d-wave superconductors, a fluctuation-driven first-order
transition has been proposed.56

2.2 Orbital pair-breaking

In real bulk type-II superconductors, the orbital effect
is invariably present. Gruenberg and Gunther examined
the stability of the FFLO state against the orbital ef-
fect in 3D isotropic systems with s-wave pairing.8 It has
been shown that orbital effects are detrimental to the
formation of the FFLO state. The FFLO state can exist

at finite temperatures if α is larger than 1.8. The FFLO
region shrinks considerably from that in the absence of
the orbital effect.

In the presence of a magnetic field H = (0, 0, H), the
spatial variation of the order parameter is determined
by the cyclotron motion of the Cooper pairs in the plane
perpendicular to H. Generally, the orbital effect forces
the solutions for the order parameter to be eigenfunctions
of the operator Π

2, where Π = −i!∇ − 2e
c A with the

vector potential A = (0, Hx, 0). This problem is equiva-
lent to that of a charged particle in a constant magnetic
field. The operator Π

2 can be rewritten as

Π
2 =

2!2

ξ2
H

(

η†η +
1

2

)

− !
2 ∂2

∂z2
, (9)

where η† and η are the boson creation and annihilation
operators defined by

η =
ξH√
2!

(Πx − iΠy)

η† =
ξH√
2!

(Πx + iΠy),
(10)

respectively. Here, ξH =
√

Φ0/2πH. Eigenfunctions with
respect to the degrees of freedom perpendicular to H are
described by the Abrikosov functions with Landau level
index n,

φ(k)
n (ρ) = (−1)neikyHn

[
√

2
x − xk

ξH

]

, (11)

for any real number k and xk = kξH , where Hn is the
Hermite polynomial and ρ = (x, y). The lowest Landau
level solution (n = 0) is given by

φ(k)
0 (ρ) = eiky exp

[

−
(x − xk)2

2ξ2
H

]

. (12)

In the BCS state, the eigenvalues of the operator Π
2

are

2!2

ξ2
H

(

n +
1

2

)

. (13)

Usually, the BCS state is described by the lowest Landau
level solution

∆(r) ∝ φ(k)
0 (ρ), (14)

which gives the highest upper critical field.
The coexistence of both the FFLO state and vortex

modulation has been investigated through exact calcula-
tions of the upper critical field assuming that the tran-
sition is of second order.8, 16, 74 In the FFLO state, the
eigenvalues of the operator Π

2 are

2!2

ξ2
H

(

n +
1

2

)

+ !
2q2. (15)

The second term represents the kinetic energy of the
Cooper pairs along H . We note that the increase of the
kinetic energy in eq. (15) is compensated by the reduc-
tion of the Pauli paramagnetic energy. Assuming that the
lowest Landau level gives the highest upper critical field
even in the FFLO state, the order parameter is given by

∆(r) ∝ exp(iqz)φ(k)
0 (ρ) (16)

2D thin film

Y. Matsuda & H. Shimahara



FFLO ⇔ SC Imbalanced Spin Populations

Nature and stability of SC phase with 
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Phases with gapless excitations
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Mixed Phases of SC and Normal 
P. F.  Bedaque, H. Caldas, G. Rupak PRL 91, 247002 (2003);
H. Caldas, PRA 69, 063602 (2004);
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Microscopic Probes?

LDOS (spin-up)Text

s-wave

Q. Wang et al., 
PRL 96, 117006 (2006)
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The NMR Probe

 Image of Local Magnetic Field Probability Distribution
 
Local Magnetic susceptibility (LDOS)

1/q

!(r)

0

1D

⇒

2D250

200

150

100

50

0

M
ag

n
it

u
d

e 
[A

.U
.]

4.0054.0003.9953.9903.985

Hint [T]

⇒
d-wave



The NMR Probe

 Image of Local Magnetic Field Probability Distribution
 
Local Magnetic susceptibility (LDOS)

M. Ichioka and K. Machida, PRB 76, 064502 (2007).



Pseudogap

Shastry-Mila-Rice form factors for HTS,
Physica C 157, 561 (1989).

1
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!m χβ(q, ωnn′)
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Examine magnetic field responce of  the pseudogap in different regions of  the Brillouin zone 
=> spin gap vs pairing gap?



Pseudogap

Explore magnetic field dependece of  T1

T~ T*

T~ Tc

T~ T*

T~ Tc

χ(q,ω) = χAF + χFL =
1
4
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j

αξ2µ2
B

1 + ξ2(q−Qj)2 − iω/ωSF
+
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1− iπω/Γ

Qi = (π ± δ,π ± δ)q ≈ (π,π) q ≈ (0, 0)

MMP - (Millis 1990)
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NMR in SC

K ∝ χ(q = 0,ω = 0) ∝ N(EF )

For singlet SC:

Yoshida (1958) Curro(2005)



NMR in SC

1
T1
∝ χ′′(q, ω = 0) ∝ Ni(EF )Nf (EF )

d-wave:

s-wave:

1
T1
∝ T 3

s-wave:  Habel-Slichter Peak 
            (u & v - coherence factors) 

d-wave:


