

Vesna Mitrović, Brown University

Boulder Summer School, 2008

To Remember

Static NMR Spectrum Measurements ⇒ Local Magnetic Field Probability Distribution

 $\omega_n = \gamma_n H_{loc} = \gamma_n \left(H_0 + \langle H_{hf} \rangle \right)$

 $\langle H_{hf} \rangle = \sum_{n} -A_{n,k} \langle S_k \rangle$

Width of an NMR spectrum \Rightarrow Distribution of $\langle S_z(r) \rangle$

 $K(T) \propto \chi'(q = 0, \omega \to 0)$ Shift of an NMR spectrum \Rightarrow Magnetic susceptibility

In metals:

 $K(T) \propto N(E_F)$

 $T_1^{-1} \propto \chi''(q, \omega \to 0)$

$$T_2^{-1} \propto \chi'(q, \omega \to 0)$$

2D Electron Gas - T₁ Contrast Imaging

MBE heterostructures

(S.E. Barrett and collaborators, Yale University)(M. Horvatic & C. Bertier and collaborators, GHMFL,Grenoble)

2D Electron Gas - T₁ Contrast Imaging

MBE heterostructures

2D Electron Gas in $H_0 \mid\mid z$:

(S.E. Barrett and collaborators, Yale University)(M. Horvatic & C. Bertier and collaborators, GHMFL,Grenoble)

2D Electron Gas - T₁ Contrast Imaging

MBE heterostructures

2D Electron Gas in $H_0 \mid\mid z$:

(S.E. Barrett and collaborators, Yale University)(M. Horvatic & C. Bertier and collaborators, GHMFL, Grenoble)

NMR line-shift (^{69,71}Ga)

$$\downarrow$$

 $K_{s} \propto P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \frac{2}{n} \sum_{k} S_{k}^{z}$

average spin polarisation

(GHMFL,Grenoble)

NMR line-shift (^{69,71}Ga)

$$\bigvee_{\mathbf{K}_{\mathbf{S}}} \propto \mathbf{P} = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \frac{2}{n} \sum_{k} S_{k}^{z}$$

average spin polarisation

(GHMFL,Grenoble)

NMR line-shift (^{69,71}Ga) ↓ K_S ∝ $P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \frac{2}{n} \sum_{k} S_{k}^{z}$ ↑

average spin polarisation

What if *g* -> *0*?

(GHMFL,Grenoble)

NMR line-shift (^{69,71}Ga) ↓ K_S ∝ $\mathbf{P} = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \frac{2}{n} \sum_{k} S_{k}^{z}$ ↑

average spin polarisation

(GHMFL,Grenoble)

S.E. Barrett *et al.*, Phys. Rev. Lett. **74**, 5112 (1995)P. Khandelwal *et al.*, Phys. Rev. Lett. **86**, 5353 (2001)

Energy gap & size
$$(s) \Rightarrow$$

$$\tilde{g} = \frac{E_z}{E_c}$$

Skyrmion Size (s)

Energy gap & size $(s = N^{\circ} \text{ of reversed spins within an excitation}) \Rightarrow$

Favors FM ordering

$$E_c = e^2 / \varepsilon l_B$$

$$\tilde{g} \rightarrow 0 \Rightarrow s \rightarrow \infty$$

To vary skyrmion size \rightarrow tune g:

 $g \rightarrow 0$

- hydrostatic pressure
- $Al_{0.13}Ga_{0.87}As QW$ ($g_{\text{theory}} = -0.04$; $g_{\text{GaAs}} = 0.44$)

Large Skyrmions in $Al_{0.13}Ga_{0.87}As \ (g \approx 0)$ Quantum Wells

Magnetotransport measurements in Al_{0.13}Ga_{0.87}As QW

(S. P. Shukla *et al.*, PRB **61**, 4469 (2000)) \Rightarrow s \approx **50**

Small *g* sample:

30 QWs $g_{\text{theory}} = -0.04 \iff g_{\text{GaAs}} = 0.44$ $n_{2\text{D}} = 1.1 \times 10^{11} \text{ cm}^{-2}$

 $m_0 = 30\ 000\ \mathrm{cm}^2/\mathrm{Vs}$

QW: 24 nm of Al_{0.13}Ga_{0.87}As

barriers: 75+57 nm of Al_{0.35}Ga_{0.65}As

Problem: How to separate the signals? $|\mathcal{P}(g\mu_B H/k_B T)| \rightarrow 0$

$$\frac{S}{N} = f\left(\frac{T_R}{T_1}, \text{ Tip Angle}\right)$$

$$\frac{S}{N} = f\left(\frac{T_R}{T_1}, \text{ Tip Angle}\right)$$

$$\frac{S}{N} = f\left(\frac{T_R}{T_1}, \text{ Tip Angle}\right)$$

QW signal

 $g \simeq -0.1 \times g_{\text{GaAs}}$

at low-*T* : "**negative**", small, strongly inhomogeneous polarization

Inhomogeneous Systems

(T. Imai and collaborators, MIT & McMaster University) (M. Julien and collaborators, UJF & GHMFL,Grenoble) (C.Hamel, N. Curro and collaborators, LANL)

What's going on in LSCO ?

Analysis of Spatial Inhomogeneities I

1. phenomenological fit: exponent α quantifies disorder strength good qualitative analysis

2. Convolute with distribution function of T_1

Single
$$T_1$$

 $\mathcal{M}_{\alpha}(t, T_1^{-1}) = 1 - 0.714 e^{-\left(28\frac{t}{T_1}\right)^{\alpha}} - 0.206 e^{-\left(15\frac{t}{T_1}\right)^{\alpha}} - 0.068 e^{-\left(6\frac{t}{T_1}\right)^{\alpha}} - 0.012 e^{-\left(\frac{t}{T_1}\right)^{\alpha}}.$
 $\mathcal{M}_{G}(t) = \left(\sqrt{\pi/2} \sigma_{\log}\right)^{-1} \times \int e^{-2\left(\log R_1 - \log T_1^{-1}\right)^2 / \sigma_{\log}^2} M_{\alpha=1}(t, R_1) d(\log R_1)$
 \downarrow
 $\mathcal{M}_{G}(t) = \int P(\log R_1 - \log T_1^{-1}) M_{\alpha=1}(t, R_1) d(\log R_1)$

Analysis of Spatial Inhomogeneities I

1. phenomenological fit: exponent α quantifies disorder strength good qualitative analysis

(a)

10³

0.4

0.2

0.0^L 10⁻³

10⁻¹

10¹

t [ms]

2. Convolute with distribution function of T_1

Single
$$T_{1}$$

 $\mathcal{M}_{\alpha}(t, T_{1}^{-1}) = 1 - 0.714 e^{-\left(28\frac{t}{T_{1}}\right)^{\alpha}} - 0.206 e^{-\left(15\frac{t}{T_{1}}\right)^{\alpha}} - 0.068 e^{-\left(6\frac{t}{T_{1}}\right)^{\alpha}} - 0.012 e^{-\left(\frac{t}{T_{1}}\right)^{\alpha}}.$

 $\mathcal{M}_{G}(t) = \left(\sqrt{\pi/2} \sigma_{\log}\right)^{-1} \times \int e^{-2\left(\log R_{1} - \log T_{1}^{-1}\right)^{2}/\sigma_{\log}^{2}} M_{\alpha=1}(t, R_{1}) d(\log R_{1})$

 $\int \int d(\log R_{1}) d(\log R_{1}) d(\log R_{1}) d(\log R_{1}) d(\log R_{1}) d(\log R_{1})$

 $\mathcal{M}_{G}(t) = \int P(\log R_{1} - \log T_{1}^{-1}) M_{\alpha=1}(t, R_{1}) d(\log R_{1}) d(\log R_{1})$

T_1 Distribution: $x = 12 \% (T_c = 30 K)$

 $(T_1^{-1})_{average} \approx (T_1^{-1})_{\alpha}$

 $\alpha \propto \sigma_{\log}$

- T_g from μ SR = 20 K
- Inhomogeneities develop below ~ 80 K

Probing spin dynamics with T₁

Time fluctuations of the hyperfine field

$$\frac{1}{T_1} = \frac{\gamma_n^2}{2} \left(A\right)^2 \int_{-\infty}^{+\infty} \left\langle S(0)S(t) \right\rangle e^{i\omega_n t} dt \propto J(\omega_n)$$

Slowing down of fluctuations

 $\tau_{\text{c}}{\rightarrow}\infty$

 T_1^{-1} enhancement until maximum when $\tau_c^{-1} = \omega_n$

T_1 Distribution: $x = 12 \% (T_c = 30 K)$

 $(T_1^{-1})_{average} \approx (T_1^{-1})_{\alpha}$

 $\alpha \propto \sigma_{\log}$

- T_g from μ SR = 20 K
- Inhomogeneities develop below ~ 80 K

Case 1. Spatially resolved measurement

Case 2. Not resolved \Rightarrow phenomenological fit exponent α quantifies disorder strength

Case 3. Not resolved

convolute with distribution function

 \Rightarrow deduce parameters

Real Space Magnetic Field Distribution

in the Vortex Lattice

Field Probability Distribution ~ NMR Spectrum

M. Takigawa *et al.*, PRL **83**, 3057 (1999) -R. Wortis *et al.*, PRB **61**, 12342 (2000) -D. Morr and R. Wortis, PRB **61**, R882 (2000) -N. J. Curro *et al.*, PRB **62**, 3473 (2000)

Normal State vs. Low Temperature Spectra

Normal State vs. Low Temperature Spectra

Spectra - $f(T_R)$

Spectra - $f(T_R)$

Outside the Cores

- T_1^{-1} increases with increasing H_0
- T_1^{-1} increases with increasing H_{int} , *i.e.* on approaching vortex core
- $(TT_1)^{-1} = Constant$
- T_1 lower then inside

Low Energy Excitations

s-wave

- Low energy excitations *bound* to the core region and and occupy a fraction $\sim B \setminus H_{c2}$ (Caroli-deGennes-Matricon States).
- C. Caroli, P. G. deGennes, J. Matricon, J., Phys. Lett. 9, 307, (1964)
- H. F. Hess et al., PRL 62, 214, (1989)

d-wave

- Low energy excitations **extended** along nodal directions.
 - G. E. Volovik, JETP Lett. 58, 469 (1993)
- Nature of the core states?
 - I. Maggio-Aprile *et al.*, PRL **75**, 2754 (1995) Ch. Renner Ch. *et al.*, PRL **80**, 3603 (1998) S. H. Pan *et al.*, PRL **85**, 1536 (2000)
 - J. E. Hoffman *et al.*, Science **295**, 452 (2002)

$$T_1^{-1} \propto \langle N_i(E) N_f(E) \rangle$$

In the nodal region quasiparticle DOS varies linearly on energy

 T_1 depends on the product of initial and final QP energies

QP energy depends on temperature, applied field, and internal field

$$E_k = \sqrt{\epsilon_k^2 + \Delta_k^2} \pm \frac{1}{2} \gamma_e \hbar H_0 + \vec{v}_f(k) \cdot \vec{p}_s = E_T \pm Z + D$$

Outside the Cores - Energy Spectrum of Nodal QP

Outside the Cores - Energy Spectrum of Nodal QP

BUT $q \sim (\pi, \pi)$ required => QP are AF correlated

Spatial inhomogeneities (FFLO)

Relative importance of the two effects described by the Maki Parameter: $\alpha = \sqrt{2} \frac{H_{c_2}^{orb}}{H_{c_2}^P}$

Basic Idea: Pauli pair breaking dominates over the orbital effects

Formation of a new pairing state with finite center-of-mass momentum can reduce the paramagnetic pair-breaking effect.

The critical field can be further enhanced!

P. Fulde and R.A. Ferrell, Phys. Rev. **135**, A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. **47**, 1136 (1964).

Basic Idea: Pauli pair breaking dominates over the orbital effects

Formation of a new pairing state with finite center-of-mass momentum can reduce the paramagnetic pair-breaking effect.

The critical field can be further enhanced!

P. Fulde and R.A. Ferrell, Phys. Rev. **135**, A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. **47**, 1136 (1964).

Finite \vec{q} breaks spatial symmetry. \implies SC order parameter oscillates in real space.

(FF)
$$\Delta(\vec{r}) = |\Delta_q| e^{i\vec{q}\cdot\vec{r}}$$

(LO) $\Delta(\vec{r}) = |\Delta_q| \cos(\vec{q}\cdot\vec{r})$
More generally:
 $\Delta(\vec{r}) = \sum_m \Delta_m e^{i\vec{q}\cdot\vec{m}\cdot\vec{r}}$

 $\Delta(r)$ 0 + + + + + + - - - 1/q

Finite \vec{q} breaks spatial symmetry. \implies SC order parameter oscillates in real space.

(FF)
$$\Delta(\vec{r}) = |\Delta_q| e^{i\vec{q}\cdot\vec{r}}$$

(LO) $\Delta(\vec{r}) = |\Delta_q| \cos(\vec{q}\cdot\vec{r})$
More generally:
 $\Delta(\vec{r}) = \sum_m \Delta_m e^{i\vec{q}\cdot\vec{m}\cdot\vec{r}}$

FFLO ⇔ SC Imbalanced Spin Populations

Nature and stability of SC phase with population imbalanced?

FFLO

P. Fulde and R.A. Ferrell, Phys. Rev. **135**, A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. **47**, 1136 (1964).

Phases with gapless excitations

G. Sarma, J. Phys. Chem. Solids **24**, 1029 (1963); breached pair SC - W. V. Liu and F. Wilczek, PRL. **90**, 047002 (2003); R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. **76**, 263 (2004).

Mixed Phases of SC and Normal

P. F. Bedaque, H. Caldas, G. Rupak PRL **91**, 247002 (2003);
H. Caldas, PRA **69**, 063602 (2004);
J. Carlson, S. Reddy, PRL **95**, 060401 (2005);
M.W. Zwierlein *et al.*, Science **311**, 492 (2006).

Microscopic Probes?

Magnetization

LDOS (spin-up; low energy peak)

Q. Wang *et al.*, PRL 96, 117006 (2006)

The NMR Probe

Image of Local Magnetic Field Probability Distribution

Local Magnetic susceptibility (LDOS)

Image of Local Magnetic Field Probability Distribution

Local Magnetic susceptibility (LDOS)

M. Ichioka and K. Machida, PRB 76, 064502 (2007).

Shastry-Mila-Rice form factors for HTS, Physica C **157**, 561 (1989).

Examine magnetic field responce of the pseudogap in different regions of the Brillouin zone => spin gap vs pairing gap?

Explore magnetic field dependece of T_1

 $\begin{aligned} \text{MMP-(Millis 1990)} \\ \chi(\mathbf{q},\omega) &= \chi_{AF} + \chi_{FL} = \frac{1}{4} \sum_{j} \frac{\alpha \xi^2 \mu_B^2}{1 + \xi^2 (\mathbf{q} - \mathbf{Q}_j)^2 - i\omega/\omega_{SF}} + \frac{\chi_0}{1 - i\pi\omega/\Gamma} \\ q &\approx (\pi,\pi) \quad q \approx (0,0) \end{aligned}$

 $\begin{aligned} \text{SF-MMP:} \quad \chi(\mathbf{q},\omega) &= \chi_{AF} + \chi_{FL} = \frac{1}{4} \sum_{j} \frac{\alpha \xi^2 \mu_B^2}{1 + \xi^2 (\mathbf{q} - \mathbf{Q}_j)^2 - i\omega/\omega_{SF}} + \frac{\chi_0}{1 - i\pi\omega/\Gamma} \\ \lim_{\omega \to 0} \frac{\chi''(q,\omega)}{\omega} \\ \frac{1}{T_1 T} &= \frac{k_B}{2\mu_B^2 \hbar^2} \times \sum_{q} F_c(\mathbf{q}) \cdot \left[\frac{1}{4} \sum_{j} \frac{\alpha \xi(T)^2 \mu_B^2/\omega_{SF}}{[1 + \xi(T)^2 (\mathbf{q} - \mathbf{Q}_j)^2]^2} + \frac{\chi_0 \pi}{\Gamma} \right] \end{aligned}$

$$\xi(T) = \xi_0 \sqrt{\frac{T_x}{(T_x + T)}}$$

Spin-Gap:

$$\omega_{SF}^{-1} \propto \frac{\left[\tanh\left(\frac{(T-T_p)}{c_1}\right) \right]}{\left[\xi_0^{-2}\xi(T)^2\right]}$$

AF correlations $(q \approx (\pi, \pi))$ suppressed below T^*

away from $(q \approx (\pi, \pi))$ pseudo gap shows magnetic field dependence $(H_0 < 10 \text{ T}) =>$ pairing fluctuations - precursory effetc to SC

NMR in SC

$$K \propto \chi(q=0,\omega=0) \propto N(E_F)$$

NMR in SC

