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Flags flapping in soap films
Zhang, Childress, Libchaber, Shelley, Nature 2000
Shelley, Vandenberghe, Zhang, PRL 2005

U=1-3 m/s, L=1-4 cm, Re ~ 104/ , ,
bistable and hysteretic
apparent long-wave instability

flapping

bistable

straight

Much much work in past decade:
See  Shelley & Zhangy g

Ann. Rev. Fluid Mech. 2011

s: A 1-d flag flapping in a 2-d wind

straight flapping



Flexible body-body couppling…



Drafting of flexible bodies – Zh
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hang & Reistroph
hys. Rev. Lett. 2008
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• S1 > 0, S2 = 0  Unstable a
S 0 S > 0  no flag ma• S1 = 0, S2 > 0  no flag ma
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at all scales
ass l di iass, only dispersive waves.
gives stability exchange for 
fundamental mode
finite flag w. wake)



Alben & Shelley, PRL 2008 – flag as sli
shedding a free vortex sheet (ala Krasny 9shedding a free vortex sheet (ala Krasny 9
Shedding rate determined by condition o

ip surface (bound vortex sheet)
0’s; Jones & Shelley JFM ’05, …)0 s; Jones & Shelley JFM 05, …)
of bded velocity at free end.
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Shows sensitivity of frequency
appearance of more spatial andpp p

a aa a

1% increase 

bb

chaotic temporal spectrum
c

A

y content to S2, and 
d temporal degrees of freedomp g

Eloy et al.
in S2 stable

Shelley et al.

Argentina & Maha.
S2

unstable

S1

Also observe bistability …
1



non-recip
waves

S  i  li

Re << 1

Some organisms li

clione antarctica
Childress and Dudley Jy

switches strategies w
rowing cilia to flapp

Micro-organisms and birds 
(or fish)  use very different 
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locomotion strategies

 b  h  ldve between these worlds
a
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with adulthood: 
ing wings
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Question: Is there some decisiv
and a “free” body int

Navier-Stokes Eqs:
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Rotary Reciprocal Flapper 
Vandenberghe, Zhang, and Childress, JFM 2
VCZ 2005, Rosselini & Zhang 2005
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Questions from the expQuestions from the exp
• What is the true nature of the

b iti l  iti l?subcritical or supercritical?
Friction on axle is a 
confounding factorconfounding factor.
Extrapolation with 
increasing viscosity:increasing viscosity:

~ 20 50crit
fRe 

• What does the work, pressur
 th  i  “t k  ff”?as the wing “takes off”?

• Is it really so easy? What is th• Is it really so easy? What is th
Body shape?

eriment...eriment...
e bifurcation,

b isubcrit. super

re or viscous forces, 

e role of the body mass?  e role of the body mass?  



Simulate the dynamics of a 2D
flapping elliptical body
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Re=7, M=1, “low” Reynolds number flap

Re 7,fr M

Symmetric fl

pping

1, / 3L W 

luid response



A faster body …

Re 35, /f b  1, / 5L W  



Swimming?  Ch
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let’s make the “swimmer” a 

Re 35, /fr b  fr b 

little heavier …
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What is the effect of passive p
Most of the animals have passive flexing pMost of the animals have passive flexing p
Is there any advantage or disadvantage to 

itching in free flapping flight ?
parts/appendages (wings and fins)parts/appendages  (wings and fins). 
be (somewhat) flexible?



Experimental setup on passive
S. Spag

• 0 < dr
• 4 cm

Driving system Linear stage
Physics

• 4 cm 
• 1.6 cm
• 0.04 N
• Gear

Optical
encoders Gear 

the two

Bearings

Wings
)(h )(th 

Water tank

qq

e pitching and free flight
gnolie, L. Moret, J. Zhang, and M. Shelley 

riving frequency f < 5 Hz
< chord C < 8 cm

s of Fluids, 2010

< chord C < 8 cm
m < peak to peak amplitude a < 5.5 cm
Nm < torsional spring constant k < 0.15 Nm 
box guarantees the equal pitching angle ofbox guarantees the equal pitching angle of 
 wings.

Gear box

)2i ( fa )2sin(
2

fta 
q

= 46cm



Only the heaving motion in the vertical direc
consequent unidirectional flight are passive r

ction is prescribed, the pitching and the 
responses of the fluid-structure interaction.   



The main effects of passiv
flight

• Flapping amplitude: 2.7cm
• Wing chord: 8cmg

• Backward free flight is 
forbidden for low driving g
frequencies.
• Passive pitching can 
increase the speed for a 
given heaving motion.

• Flexibility introduces y
forward/backward 
transitions.
• Forward free flight is 
forbidden above a 
threshold.

ve pitching in free 

afc 5410~Re 

afc

fwrd, rigid

fwrd w. pitching

bwrd w. pitching

bwrd, rigid



backward flapping flight:



Spagnolie, Moret, Shelley and Zhang, Physics of Fluids, 2010



Thanks.Thanks.

Let’s talk.


