Multiferroic and magnetoelectric materials

Maxim Mostovoy

University of Groningen Zernike Institute for Advanced Materials

Boulder Summer School July 2008

Lectures

• Spin-orbital exchange in Mott insulators

✓ Multiferroics and magnetoelectrics

Outline

- Linear magnetoelectric effect, multiferroics
- Phenomenological description
- Microscopic mechanisms of magnetoelectric coupling
- Outlook

Electric ↔ Magnetic

• Duality of Maxwell equations

 Aharonov-Bohm Aharonov-Casher

 Thermodynamics of ferroelectrics and ferromagnets

$$\begin{cases} \Phi_{FE} = aP^2 + bP^4 - PE \\ \Phi_{FM} = aM^2 + bM^4 - MH \end{cases}$$

 $\begin{cases} \nabla \times \mathbf{E} = 0 \\ \nabla \cdot (\mathbf{E} + 4\pi \mathbf{P}) = 0 \end{cases} \qquad \begin{cases} \nabla \times \mathbf{H} = 0 \\ \nabla \cdot (\mathbf{H} + 4\pi \mathbf{M}) = 0 \end{cases}$

Multiferroics

- Both ferroelectric and magnetic
- Coupling between P and M

$Pb(Fe_{2/3}W_{1/3})O_3$	BiFeO ₃
$Pb(Fe_{1/2}Ta_{1/2})O_3$	BiMnO ₃
$Ni_3B_2O_{13}I$	YMnO ₃

G. A. Smolenskii

G.A. Smolenskii & I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982)

Time-reversal symmetry breaking in magnets

 $< \mathbf{S} > \neq 0$

 $\mathbf{S}(-t) = -\mathbf{S}(t)$

Ferromagnets

 $\mathbf{M} \neq \mathbf{0}$

Antiferromagnets

 $\mathbf{M} = \mathbf{0}$

Inversion symmetry breaking in ferroelectrics

No chemistry between magnetism and ferroelectricity

multiferroics

N. A. Hill, J. Phys. Chem. B 104, 6694 (2000)

Linear magnetoelectric effect

Cr2O3I. E. Dzyaloshinskii JETP 10 628 (1959),
D. N. Astrov, JETP 11 708 (1960)

 $P = \chi_e E + \alpha H$

 $M = \alpha E + \chi_m H$

G.T. Rado PRL 13 335 (1964)

FIGURE 1 Temperature dependences of the components α_{32} and α_{23} of the magnetoelectric tensor in C_2 phase of Co-Br^[1] (1), Co-I^[2] (2), and Ni-Cl^[3] (3) boracites.

D. G. Sannikov, Ferroelectrics **219** 177 *(1998)*

Orthorombic RMnO₃

Dielectric constant anomaly at the transition to spiral state

Polarization switching by magnetic field

TbMnO₃

H//a

(P//a)

H//b

ferrelectric

ferroelectric

(P//a)

H//c

canted AF paraelectric

10

(P//c)

T. Kimura Annu. Rev. Mater. Res. 37 387(2007)

Magnetic control of dielectric properties

T. Kimura Annu. Rev. Mater. Res. 37 387(2007)

Electric polarization reversals in TbMn₂O₅

N. Hur et al Nature 429, 392 (2004)

CoCr₂O₄

 $P \times M$ is conserved

Y. Yamasaki et al, PRL 96, 207204 (2006)

Outline

- Linear magnetoelectric effect, multiferroics
- Phenomenological description
- Microscopic mechanisms of magnetoelectric coupling
- Outlook

Linear magnetoelectric effect

Cr₂O₃ *I.E. Dzyaloshinskii (1959), D.N. Astrov (1960)*

$$P_{i} = \alpha_{ij} H_{j} \qquad \Phi_{me} = -\alpha_{ij} E_{i} H_{j}$$
$$M_{i} = \alpha_{ji} E_{j}$$

Time-reversal symmetry T (t \rightarrow - t) and inversion I (x \rightarrow - x) are broken

IT symmetry (t \rightarrow - t, x \rightarrow - x) is conserved

 Cr_2O_3

space group $R3\overline{c}$

Symmetries of low-T phase

Invariants: $F_{\rm me} = -\alpha_{\parallel}E_zH_z - \alpha_{\perp}(E_xH_x + E_yH_y)$

 Cr_2O_3 $R3\overline{c}$ AFM order parameter $T_N = 306K$ 3_{7} $L = M_1 - M_2 + M_3 - M_4$ $L_{z} \neq 0$ symmetries of paramagnetic phase $+2_x$ 3_z $2_{\rm x}$ L_z ╋ ╋ $\mathbf{E}_{\mathbf{z}}$ 3 Hz ⁺ 2_x $\lambda L_z E_z H_z = \alpha_{\parallel} E_z H_z$ nvariants: $lpha_{\parallel}, lpha_{\perp} \propto L_{_{7}}$ $L_z \left(E_x H_x + E_y H_y \right)$

-6-0=

Ferroelectrics

	Mechanism of inversion symmetry breaking	Materials	
Proper	covalent bonding between 3d ⁰ transition metal (Ti) and oxygen	BaTiO ₃	
	polarizability of 6s ² lone pair	BiMnO ₃ , BiFeO ₃	
Improper	structural transition	K ₂ SeO ₄ , Cs ₂ CdI ₄ h-RMnO ₃	
	'Geometric ferroelectrics'		
	charge ordering	LuFe ₂ O ₄	
	'Electronic ferroelectrics'		
	magnetic ordering	o-RMnO ₃ , RMn ₂ O ₅ , CoCr ₂ O ₄ , MnWO ₄	
	'Magnetic ferroelectrics'		

S.-W. Cheong & M. M. Nature Materials 6, 13 (2007)

Novel Multiferroics

material	T _{FE} (K)	Т _М (К)	P(μC m ⁻²)
TbMnO ₃	28	41	600
TbMn ₂ O ₅	38	43	400
Ni ₃ V ₂ O ₈	6.3	9.1	100
MnWO ₄	8	13.5	60
CoCr ₂ O ₄	26	93	2
CuFeO ₂	11	14	300
LiCu ₂ O ₂	23	23	5
CuO	230	230	100

Induced Polarization

Energy (cubic lattice)

$$F_{P} = \frac{\mathbf{P}^{2}}{2\chi_{e}} - \lambda \mathbf{P} \cdot \left[(\mathbf{M} \cdot \nabla) \mathbf{M} - \mathbf{M} (\nabla \cdot \mathbf{M}) \right]$$

Induced electric polarization

$$\mathbf{P} = \lambda \chi_e \left[\left(\mathbf{M} \cdot \nabla \right) \mathbf{M} - \mathbf{M} \left(\nabla \cdot \mathbf{M} \right) \right]$$

Bary'akhtar et al, JETP Lett **37**, 673 (1983); Stefanovskii et al, Sov. J. Low Temp. Phys. **12**, 478(1986), M.M. PRL **96**, 067601 (2006)

center of inversion

Ferroelectric

BiFeO₃

 $T_{FF} = 1100 \text{ K}$

Antiferromagnetic $T_N = 640 \text{ K}$

Free energy

$$F = \varphi(L) + (\partial L)^2 - \lambda PL \partial L$$

A.M. Kadomtseva et al. JETP Lett. 79, 571 (2004)

Periodic modulation of AFM ordering: $Q \propto \lambda P$

Low-pitch spiral $\lambda = 620 \text{ Å}$

Geometrical Frustration

Competing interactions

Magnetic frustration in RMnO₃ J_{FM} J_{FM} b J_{AFM} Mn $\kappa = \frac{2J_{AFM}}{J_{FM}}$ a $\kappa < 1$ Ferromagnetic

 $\kappa > 1$ Incommensurate SDW

Why T_{FE} is lower than T_M ?TbMnO3Ni3V2O8

6.3K < T < 9.1K

M. Kenzelmann et al PRL **95**, 087206 (2005)

G. Lawes et al PRL **95**, 087205 (2005)

Sinusoidal-helicoidal transition Ginzburg-Landau expansion $\Phi_m = a_x (M^x)^2 + a_y (M^y)^2 + a_z (M^z)^2 + \frac{b}{2} M^4 + c \mathbf{M} \left(\frac{d^2}{dx^2} + Q^2\right)^2 \mathbf{M}$ Anisotropy: $a_x < a_y = a_x + \Delta < a_z$

1st transition: Sinusoidal SDW $\mathbf{M} = M^x \hat{\mathbf{x}} \cos Qx$ $a_x = \alpha (T - T_{SDW}) = 0$ $\mathbf{P} = \mathbf{0}$

2nd transition: Helicoidal SDW $\mathbf{M} = M^x \hat{\mathbf{x}} \cos Qx + M^y \hat{\mathbf{y}} \sin Qx$

P || y

$$a_y = \frac{a_x}{3}$$
 $T_{SP} = T_{SDW} - \frac{3}{2}\frac{\Delta}{\alpha}$

Dielectric constant anomaly at the transition to spiral state

T. Kimura et al , Nature **426**, 55 (2003)

Polarization Flop in Eu_{1-x}Y_xMnO₃ H || a $\mathbf{H} = \mathbf{0}$ Ρ
b 8 $\mathbf{P} \propto \mathbf{e}_3 \times \mathbf{Q}$ **Spin flops Polarization flops**

Outline

- Linear magnetoelectric effect, multiferroics
- Phenomenological description
- Microscopic mechanisms of magnetoelectric coupling
- Outlook

Effects of Dzyaloshinskii-Moriya interaction

 $E_{DM} = \mathbf{D}_{12} \cdot \left[\mathbf{S}_1 \times \mathbf{S}_2 \right]$ $\mathbf{D}_{12} \propto \lambda \mathbf{x} \times \hat{\mathbf{r}}_{12}$

H. Katsura et al PRL **95** 057205 *(2005), Sergienko & Dagotto PRB* **73** 094434 *(2006)*

Moriya rules

Ferroelectricity induced by magnetostriction

 $\Phi_{\rm int} = -\lambda P \left(L_1^2 - L_2^2 \right)$

 $L_1 \stackrel{I}{\leftrightarrow} L_2$

 $L_1 = S_1 + S_2 - S_3 - S_4$ $P \propto L_1^2 - L_2^2$ $L_2 = S_1 - S_2 - S_3 + S_4$

RMn_2O_5

b

Two-dimensional representation and induced polarization

A. B. Sushkov et al. J. Phys. Cond. Mat. (2008)

Exchange striction

$E = J (S_1 S_2)$ $\theta = 180^{\circ} J > 0$ $\theta = 90^{\circ} J < 0$

Role of frustration

Néel ordering: Inversion symmetry not broken

 $\uparrow\uparrow\downarrow\downarrow$ ordering: Inversion symmetry is broken

To induce P spin ordering must break inversion symmetry

Higher-order terms in effective spin Hamiltonian

L.N. Bulaevskii, C.D. Batista, M. M., and D. Khomskii, arXiv:0709.0575 Hubbard model + coupling to external fields

Effective spin Hamiltonian (2nd order)

$$H_{\rm eff}^{(2)} = \frac{4t^2}{U} \sum_{\langle i,j \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4} \right)$$

$$I = -c \frac{\partial H_{\text{eff}}}{\partial \Phi_{123}} = \frac{24e}{\hbar} \frac{t^3}{U^2} \mathbf{S}_1 \cdot [\mathbf{S}_2 \times \mathbf{S}_3]$$

Effective spin Hamiltonian (3^d order)

Interaction with electric field

$$H_{\text{eff}}^{(3b)} = 8e\left(\frac{t}{U}\right)^3 \sum_{\langle i,j,k\rangle} \varphi_i \left[\mathbf{S}_i \cdot (\mathbf{S}_j + \mathbf{S}_k) - 2\mathbf{S}_j \cdot \mathbf{S}_k\right]$$

Spin-induced charge

$$\delta Q_1 = \frac{\partial H_{\text{eff}}^{(3b)}}{\partial \varphi_1} = 8e\left(\frac{t}{U}\right)^3 = \sum_n \left[\mathbf{S}_1 \cdot \left(\mathbf{S}_2 + \mathbf{S}_3\right) - 2\mathbf{S}_2 \cdot \mathbf{S}_3\right]$$

Polarization of electronic orbitals

Outline

- Linear magnetoelectric effect, multiferroics
- Phenomenological description
- Microscopic mechanisms of magnetoelectric coupling
- Outlook

Polarization of domain walls $\mathbf{P} = \mathbf{0}$ Â **e**₃ || **Bloch wall** X Domain A Bloch wall Domain B $\mathbf{P} \parallel [\mathbf{e}_3 \times \hat{\mathbf{x}}]$ $\mathbf{e}_{2} \perp \hat{\mathbf{x}}$ Néel wall Х

Electric charge of magnetic vortex

Charge in the vortex core

Electrostatics of magnetic defectsEasy plane spins: $\mathbf{M} = M \left[\mathbf{e}_1 \cos \varphi + \mathbf{e}_2 \sin \varphi \right]$ Polarization: $P_b = -\gamma \chi_e M^2 \varepsilon_{ab} \partial_b \varphi$

Total polarization of domain wall:

$$\int dx P_{y} = \gamma \chi_{e} M^{2} [\varphi(+\infty) - \varphi(-\infty)]$$

Charge density: $\rho = -\text{div}\mathbf{P} = 2\pi\gamma\chi_e M^2\Gamma\delta^{(2)}(\mathbf{x}_{\perp})$

Vortex charge: $Q \propto \Gamma = \frac{1}{2\pi} \oint_C d\mathbf{x} \cdot \nabla \varphi$ winding number

Magnetic vortex in magnetic field

Magnetic vortex in magnetic field

Array of magnetic vortices is magnetoelectric

KITPITE

C. Delaney, M. M. and N. A. Spaldin, to be published $\alpha = \alpha_0 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Conclusions

 Magnetic frustration gives rise to unusual spin orders that break inversion symmetry and give rise to multiferroic behavior and linear magnetoelectric effect