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Abstract

The most advanced physical system for quantum bits or effective spins is a collection of trapped atomic ions. This
is evidenced by the number of controlled and interacting qubits, the quality of quantum gates and interactions, and
the fidelity of initialization/measurement fidelities. Trapped atomic ions, held in a vacuum chamber and confined
away from surfaces or solids by electromagnetic fields, laser cooled to be nearly at rest and “wired” together with
external laser or microwave fields, offer a very clean quantum system to perform quantum computations and simu-
lations. These notes are a primer on the control and entanglement of trapped ion qubits through classical (optical)
electromagnetic fields. Special attention is paid to how the control phases are relayed to the qubits.

1 Introduction

1.1 Atomic Ion Qubits

We represent qubits or spins by a crystal of electromagnetically trapped atomic ions, with two electronic energy
levels within each ion behaving as an effective qubit or spin-1/2 particle. The particular choice of electronic levels
depends on the atomic element and also the desired type of control fields used to manipulate and measure the qubit
state. The most important features of these qubit states for executing quantum information processing are (a) the
levels are long-lived and exhibit excellent coherence properties, (b) the levels states have appropriate strong optical
transitions to auxiliary excited states, allowing for qubit initialization through optical pumping and qubit detection
through fluorescence, and (c) the qubits interact through a coherent coupling that can be externally controlled and
gated. This restricts the atomic species to a handful of elements and qubit/spin states that are encoded in either S1/2

hyperfine or Zeeman ground states of single outer-electron atoms (e.g., Be+, Mg+, Ca+, Sr+, Ba+, Cd+, Zn+, Hg+,
Yb+) with radiofrequency/microwave frequency splittings or ground and D or F metastable electronic excited states
of single or dual outer-electron atoms (e.g., Ca+, Sr+, Ba+, Yb+, B+, Al+, Ga+, In+, Hg+, Tl+, Lu+) with optical
frequency splittings. Some species (e.g., Ba+, Lu+, Yb+) have sufficiently long D or F metastable excited state
lifetimes to host qubits in their hyperfine or Zeeman levels with radiofrequency/microwave splittings.

In any of these systems, we label the two relevant qubit states as |↓〉 ≡ |↓z〉 and |↑〉 ≡ |↑z〉, eigenstates of the Pauli
operator σz separated by energy E↑−E↓ = ~ω0. In the transverse bases of the Bloch sphere, we define by convention
the eigenstates of σx as

|↓x〉 ≡
|↓〉 − |↑〉√

2
(1)

|↑x〉 ≡
|↓〉+ |↑〉√

2
, (2)
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and the eigenstates of σy as

|↓y〉 ≡
|↓〉+ i |↑〉√

2
(3)

|↑y〉 ≡
i |↓〉+ |↑〉√

2
. (4)

A typical quantum operation in the ion trap system is comprised of three sequential steps: initialization, interaction,
and measurement, as depicted in Fig. 1. The qubits are initialized through an optical pumping process that prepares
each qubit in a nearly pure quantum state [1]. By applying resonant laser radiation that couples the qubit states to
appropriate short-lived excited states, each qubit can be initialized with > 99.9% state purity in a few microseconds.
This relies on appropriate selection rules for the excited states and also the frequency splitting of the qubit states
themselves (Fig. 1a). Laser cooling can prepare the motional states of the ions to near the ground state of harmonic
motion [2], which is important for the control of the qubit interactions as detailed below.

Each qubit can be coherently manipulated by driving the atomic ions with external fields that couple the qubit states.
This can be accomplished by resonantly driving the energy levels with appropriate radiation at frequency ω0, or in
Fig. 1b, this is depicted as a two-field Raman process, with a beatnote of two optical fields at ω0 driving the qubit
(this will be assumed throughout unless otherwise indicated). This coherent coupling can also drive motional sideband
transitions [2] that couple the qubit to the motion of the ion. For multiple ions, this can be used to generate qubit
couplings mediated by the Coulomb interaction, described in more detail below [3]. These external fields provide
exquisite control over the effective qubit interaction graph, with the ability to gate the interaction, program different
forms of the interaction strength and range, and even reconfigure the interaction graph topology for didgital quantum
gates or analog quantum simulation applications.

At the end of the coherent quantum operation, the qubits are measured by applying resonant laser radiation that
couples one of the two qubit states to a short-lived excited state through a cycling transition and detecting the resulting
fluorescence [4, 5, 6]. This is depicted in Fig. 1c, where we take the |↑〉 or “bright” state as fluorescing and the |↓〉 or
“dark” state as not fluorescing. Even though the photon collection efficiency may be small (typically less than 1%),
the effective qubit detection efficiency can be well above 99% owing to the low probability of leaving the fluorescence
cycle or having the other (dark) state entering the cycle [7, 8, 9, 10, 11]. In order to detect the qubits in other bases
in the Bloch sphere (σx or σy), previous to fluorescence measurement the qubits are coherently rotated by polar angle
π/2 along the y or x axis of the Bloch sphere, respectively.
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Figure 1: Reduced energy level diagram of a single atomic ion
with qubit levels |↓〉 and |↑〉. A typical quantum process is com-
prised of three steps: (a) Resonant radiation (blue lines) con-
nects one of the two qubit states to a pair of excited state lev-
els (linewidth γ) and optically pumps each qubit to the |↓〉 state
through spontaneous emission (wavy dotted lines). Here we as-
sume that the excited state |e〉 couples only to |↑〉 while the other
excited state |e′〉 couples to both qubit states. (b) For ground-state
(e.g., Zeeman or hyperfine) defined qubits separated by frequency
ω0, two tones of off-resonant radiation (purple lines) can drive
stimulated Raman transitions between the qubit states. The two
beams have resonant Rabi frequencies g1,2 connecting respective
qubit states to excited states and are detuned by ∆ � γ, and
have a difference frequency (beatnote) detuned from the qubit res-
onance by µ. The system can also be driven directly by radiofre-
quency, microwave signals, a single laser tone. (c) Resonant radi-
ation drives the |↑〉 ↔ |e〉 cycling transition, causes the |↑〉 state
to fluoresce strongly (wavy dotted lines), while the |↓〉 state is far
from resonance and therefore dark. This allows the near-perfect
detection of the qubit state by the collection of fluorescence.
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Figure 2: (a) Radiofrequency (rf) linear trap used to prepare a 1D crystal of atomic ions. The geometry in this trap has three layers
of electrodes, with the central layer (gray) carrying rf potentials to generate a 2D quadrupole along the axis of the trap. Static
electrodes (gold) confine the ions along the axis of the trap. For sufficiently strong transverse confinement, the ions form a linear
crystal along the trap axis, with an image of 64 ions shown above with characteristic spacing 5 µm for 171Yb+ ions. From [19]. (b)
Penning trap used to prepare a 2D crystal of atomic ions. The gold electrodes provide a static quadrupole field that confines the ions
vertically, and the vertical magnetic field stabilizes their orbits in the transverse plane. For sufficiently strong axial confinement,
the lowest energy configuration of the ions is a single plane triangular lattice that undergoes rigid body rotation, with an image of
∼ 200 9Be+ ions shown above with a characteristic spacing of 20 µm. From [18].

1.2 Coulomb-Collective Motion of Trapped Ion Crystals

Atomic ions can be confined in free space with electromagnetic fields supplied by nearby electrodes. Two types of
ion traps are conventionally used for quantum information processing: the linear radiofrequency (rf) trap and the
Penning trap. The linear rf trap (Fig 2a) [12] juxtaposes a static axial confining potential with a two-dimensional rf
quadrupole potential that provides a time-averaged or ponderomotive transverse confinement potential [13, 14]. The
trap anisotropy is typically adjusted so that the static axial confinement is much weaker than the transverse confinement
so that laser-cooled ions reside on the axis of the trap where the rf fields are null, resulting in a one-dimensional chain
of trapped ion qubits. A harmonic axial confinement potential results in an anisotropic linear ion spacing [15], but they
can be made nearly equidistant by applying an appropriate quartic axial confining potential [16]. The Penning trap (Fig
2b) juxtaposes a uniform axial magnetic field with a static axial confining potential, and the transverse confinement is
provided by the E × B drift toward the axis [17, 18]. Here, the trap anisotropy is typically adjusted so that the ions
form a two-dimensional crystal perpendicular to and rotating about the axis. Both traps can be modified to support
other types of crystals in any number of spatial dimensions, but the quantum simulations reviewed here are either 1-D
chains in rf traps or 2-D crystals in Penning traps. (It should be noted that the dimensionality of the qubit interaction
graph does not necessarily follow that of the spatial arrangement of qubits, as described below.)

Ions are typically loaded into traps by generating neutral atoms of the desired element and ionizing the atoms once
in the trapping volume via electron bombardment or photoionization. Ion trap depths are usually much larger than
room temperature, so rare collisions with background gas do not necessarily eject the ion from the trap, but they can
temporarily break up the crystal and scramble the atomic ions in space. Under typical ultra-high-vacuum conditions,
these interruptions occur roughly once per hour per ion [20], but cryogenic vacuum chambers can reduce the collision
rate by orders of magnitude, where the trapped ions can be undisturbed for weeks or longer between collisions.
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When atomic ions are laser-cooled and localized well below their mean spacing, they form a stable crystal, with the
Coulomb repulsion balancing the external confinement force. Typical spacings between adjacent ions in trapped ion
crystals are ∼ 3 − 20 µm, depending on the ion mass, number of ions in the crystal, the characteristic dimensions
of the electrodes, and the applied potential values. The equilibrium positions of ions in the crystal can be calculated
numerically [15, 21, 22]. The motion of the ions away from their equilibrium positions is well-described by harmonic
normal modes of oscillation (phonon modes), with frequencies in the range ωm/2π ∼ 0.1 − 10 MHz. The thermal
motion of laser-cooled ions and also the driven motion by external forces is typically at the 10 − 100 nm scale. This
is much smaller than the inter-ion spacing, so nonlinearities to the phonon modes [23] can be safely neglected and the
harmonic approximation to the phonon modes is justified. Calculations of the phonon mode frequencies and normal
mode eigenfunctions follow straighforwardly from the calculated ion spacings [15, 21, 22].

For the systems described here, we consider the motion along a single spatial dimension labeled X . We write the
X−component of position of the ith ion as X̂i = X̄i + x̂i, separating the mean (stationary) position X̄i of the ith
ion from the small harmonic oscillations described by the quantum position operator x̂i. The motion of ions in the
crystal is tightly coupled by the Coulomb interaction, so it is natural to express the position operator in terms of the
m = 1 . . . N normal (phonon) modes, x̂i =

∑N
m=1 bimξ̂m, where bim is the normal mode transformation matrix, with∑

i bimbin = δnm and
∑
m bimbjm = δij . Each phonon mode ξ̂m oscillates at frequency ωm, and can be described

as a quantum harmonic oscillator with zero-point spatial spread ξ(0)
m =

√
~/2Mωm, where M is the mass of a single

ion. In the interaction frame for each phonon mode, the position of the ith ion is thus written as

X̂i = X̄i +

N∑
m=1

bimξ
(0)
m (a†me

iωmt + ame
−iωmt), (5)

where a†m and am are bosonic raising and lowering operators for each mode, with [a†m, an] = δnm.

In general, the structure of transverse phonon modes of a 1D or 2D ion crystal has the center-of-mass mode as its
highest frequency, with the lowest frequency corresponding to zig-zag motion where adjacent ions move in opposite
directions, as shown in Fig. 3. The bandwidth of the modes can be controlled by tuning the spatial anisotropy of the
trap.
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Figure 3: Raman sideband spectra of the transverse motion of trapped atomic ion crystals. The spectrum is measured by preparing
all of the ions in state |↓〉 and driving them with global Raman laser beams with beatnote detuning µ from the qubit resonance and
measuring the total fluorescence of the chain. (a) 32 trapped 171Yb+atomic ions in a linear chain (see Fig. 2a). Here, the Raman
excitation is sensitive to both X and Y principal axes of transverse motion, and the theoretical position of both sets of 32 modes
are indicated at top in blue and red. The highest frequency sidebands correspond to center-of-mass modes at 4.19 MHz for the X
direction and 4.05 MHz for the Y direction. (b) Upper (blue) and lower (red) sideband spectra of 15 ions held in an anharmonic trap
that produces near-equal spatial spacings. (c) Measured (black) and calculated (red) sideband spectrum for 2D crystal of 345± 25
9Be+ions in a Penning trap (see Fig. 2b) with rotation frequency 43.2 kHz. As in the linear chain, the highest frequency sideband
corresponds to center-of-mass motion. Features at the rotation frequency and its harmonics harmonics (green) are due to residual
couplings to in-plane degrees of freedom from imperfect beam alignment [21].
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2 Interaction with Near-Resonant Fields

The lab frame Hamiltonian for ions illumated with near-resonant radiation tuned to frequency ωL = ω0 + µi is given
by

Hlab =
ω0

2

N∑
i=1

σiz +

N∑
m=1

ωmâ
†
mâm −

N∑
i=1

d̂i ·E(X̂i). (6)
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(a) (b) Figure 4: Qubit levels |↓〉 and |↑〉
in a single atomic ion, separated by
energy ~ω0 and coupled by (optical)
fields that drive qubit at frequency ω0+
µ. (a) Direct (optical) transition driven
by field at frequency ωL. (b) Two-
beam Raman transition with phase co-
herent fields that each virtually cou-
ple respective qubit levels with excited
state |e〉 and produce beat note at fre-
quency ω+ − ω−.

We assume a running wave field illuminating the ions at position X̂i with field Ei(X̂i) = Ei0 cos(kX̂i−ωLt−φi). The
field is assumed to be appropriately polarized to couple the two qubit levels and we write −d̂i ·Ei0 = Ωi(σ

i
+ + σi−),

where Ωi is the resonant Rabi frequency on ion i. Transforming to the interaction frame and ignoring fast rotating
terms at e±i(ωL+ω0)t (rotating wave approximation for ωL, ω0 � Ωi), we find

H =

N∑
i=1

Ωi
2

(
σi+e

i(kX̂i−µit−φi) + σi−e
−i(kX̂i+µit−φi)

)
+ siσ

i
z. (7)

The last term is an AC Stark shift of the ith qubit by amount si and arises from differential AC Stark shifts between
the two qubit levels from the Raman beams. This shift includes the “two-photon” differential Stark shift terms scaled
by (g2

1 + g2
2)ω0/4∆2 and summed over each excited state detuned by ∆, where ω0 � ∆ (see Fig. 1). There are

also “four-photon” Stark shifts scaled by Ω2
i /4µi and summed over each two-photon Raman resonance detuned by

µ, where Ωi � µi. The magnitude of these shifts depends greatly on the atomic energy level structure and light
polarization: see [24] for a discussion of Raman-coupled qubits (Fig 1) and [25] for direct optically-coupled qubits.
These Stark shifts can be either absorbed into the definition of the qubit energy levels, or used as an effective axial
magnetic field for simulations. Below we largely ignore these Stark shifts (si = 0).

For two-beam Raman transitions between |↓〉 and |↑〉, assumed as the default (see Fig 4b), the two beams have
wavevectors k±, frequencies ω± and optical phases φ±i where the ± sign refers to the beam with greater/lesser fre-
quency (ω+ > ω−). We assume the two beams are oriented to have a wavevector difference of δk = k+ − k−,
with δk = δk · X̂ its projection along the X−axis of motion. The Raman beatnote is detuned by frequency
ω+ − ω− = ω0 + µi from the resonance of qubit i with beat note phase δφi = φ+

i − φ−i . In this case, the car-
rier Hamiltonian is the same as Eq. 10, with k → δk, φi → δφi and Ωi = gi1g

i
2/2∆, where gi1,2 are the direct (single

field) Rabi frequencies of the associated transitions through the excited states, proportional to the respective applied
optical electric fields.

Substituting Eq. 5 into Eq. 7, we have

H =

N∑
i=1

Ωi
2
σi+e

i(δkX̄i−µit−δφi)
N∏
m=1

eiηim(â†me
iωmt+ame

−iωmt) + h.c., (8)
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where Lamb-Dicke parameter ηi,m = bi,mδkξ
(0)
m describes the coupling between ion i and mode m.

This equation is a mess, but by considering a Taylor expansion of the exponential operator, we will find time-stationary
terms by setting the detuning µi to particular values µi =

∑
m `mωm, where `m are integers. These are just sidebands

of order p =
∑
m |`m|, and come with prefactor ηpim/p!. Here we will be interested in just the zeroth and first order

terms

N∏
m=1

eiηim(â†me
iωmt+âme

−iωmt) ≈ 1 + i

N∑
m=1

ηim(â†me
iωmt + âme

−iωmt). (9)

3 Carrier and First Sideband Operations

Next, we specialize to the carrier and the first upper/lower sideband operations, by setting particular values of µi in
Eq. 8.

3.1 Carrier: µi = 0

By tuning the drive to resonance (µi = 0), we find

Hcar =

N∑
i=1

Ωi
2
D̂0
i

[
σi+e

i(δkX̄i−µit−δφi) + h.c.
]
. (10)

The carrier Debye-Waller operator D̂0
i =

∏N
m=1 D̂im is a product of terms for each spectator mode, where the Debye-

Waller operator for ion i on mode m is a function of the phonon number nm,

D̂im = e−η
2
im/2Lnm(η2

im) ≈ 1− η2
im

(
nm +

1

2

)
+
η4
im

4

(
n2
m + nm +

1

2

)
, (11)

where Lk(x) is a Laguerre polynomial of order k. The approximation is the lowest order Lamb-Dicke expansion in
nmη

2
im. The operator D̂im entangles qubit i with motional mode m from Eq. 10 for generic motional states (e.g.,

thermal), thus resulting in effective decoherence of the qubit. Of course for ηim → 0 (microwaves or co-propagating
Raman transitions with δk ∼ 0), then D̂0

i = D̂im = 1̂.

Ignoring Debye-Waller factors, we find the carrier Hamiltonian reduces to

H =
1

2

∑
i

Ωiσ
i
βi , (12)

where
σiθi ≡ σ

i
+e
−iθi + σi−e

iθi = σix cos θi + σiy sin θi (13)

is the Pauli spin operator in the xy plane of the Bloch sphere at an angle

βi = φi − kX̄i for direct transitions (Fig 4a) (14)
βi = δφi − δkX̄i for Raman transitions (Fig 4b). (15)

Tuning the Raman laser beat note away from the carrier with µ � Ωi generally results in a four-photon AC Stark
shift of the qubit levels as discussed above, given by the last term in Eq. (7) [25, 24]. When each qubit is exposed
to a unique intensity of light and/or detuning of a single beam, parametrized by si, this gives rise to a site-dependent
effective Z-phase operation.
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3.2 Upper/Blue Sideband: µi ≈ +ωm

By tuning the drive near the upper/blue sideband at µi = ωm + δm (detuned by δm from mode m), with phase φBi ,

Hbsb =

N∑
i=1

Ωi
2

N∑
m=1

D̂spec
im D̂B

imiηim

[
σi+â

†
me
−iδmtei(δkX̄i−δφ

B
i ) + h.c.

]
. (16)

The blue sideband Debye-Waller operator has two components, one for spectator modesm′ 6= m, D̂spec
im =

∏
m′ 6=m D̂im

(see Eq. 11) and the other for the driven mode

D̂B
im = e−η

2
im/2

[
L1
nm(η2

im)

nm + 1

]
≈ 1− η2

im

(
nm + 1

2

)
+
η4
im

12

(
(nm + 1)2 +

1

2

)
, (17)

where L1
k(x) is a first associated Laguerre polynomial of order k. The approximation is the lowest order Lamb-Dicke

expansion in nmη2
im.

3.3 Lower/Red Sideband: µi ≈ −ωm

By tuning the drive near the lower/red sideband at µi = −(ωm + δm) (detuned by δm from mode m), with phase φRi ,
we find similarly

Hrsb =

N∑
i=1

Ωi
2

N∑
m=1

D̂spec
im D̂R

imiηim

[
σi+âme

+iδmtei(δkX̄i−δφ
R
i ) + h.c.

]
. (18)

The red sideband Debye-Waller operator likewise has two components: one for spectator modes m′ 6= m, D̂spec
im =∏

m′ 6=m D̂im (see Eq. 11) and the other for the driven mode (nm ≥ 1)

D̂R
im = e−η

2
im/2

[
L1
nm−1(η2

im)

nm

]
≈ 1− η2

im

(nm
2

)
+
η4
im

12

(
n2
m +

1

2

)
. (19)

3.4 Red + Blue Sideband

When noncopropagating laser beams have bichromatic beat notes at frequencies ω0 ± µi symmetrically detuned from
the carrier with µi ≈ ωm, both upper and lower motion-induced sidebands of the normal modes of motion are driven
in the ion crystal, giving rise to a spin-dependent force at frequency µi [26, 27, 28, 29]. Owing to the symmetry of
the detuned beatnotes, the four-photon Stark shift is generally negligible. However, when the bichromatic beat notes
are asymmetrically detuned from the carrier by ω0 + µi+ and ω0 − µi−, the effective spin-dependent force occurs at
frequency µi = (µi+ + µi−)/2 and the asymmetry provides a Stark shift that gives rise to an effective uniform axial
magnetic field in Eq. (7) with si = µi+ − µi−.

Under the rotating wave approximation (ω0 � µi � Ωi) and within the Lamb-Dicke limit, we can add the upper and
lower sideband Hamiltonians above, resulting in (ignoring all Debye-Waller factors):

H(t) =
1

2

∑
i,m

ηi,mΩiσ
i
θi

[
â†me

−i(δimt+ψi) + âme
i(δimt+ψi)

]
. (20)

The above expression includes two phases: a “spin phase” θi that determines the angle of the ith spin operator in the
XY plane of the Bloch sphere that diagonalizes the spin-dependent force; and a “motion phase” ψi that determines the
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phase of the optical forces (but does not play a role in the effective spin-spin interactions as developed below). These
phases depend on the geometry of the bichromatic laser beams and there are two cases written in Eqs. 21-22 [30, 31].
When the upper and lower sideband running wave beat notes propagate in the same direction (δk is the same sign for
both), this is termed the “phase-sensitive” geometry. On the other hand, when the upper and lower sideband running
waves propagate in opposite directions (opposite sign of δk for the two beat notes), this is called “phase-insensitive.”
The phases for each configuration are written,

SPIN PHASE MOTION PHASE

PHASE-SENSITIVE θi =

(
δφBi + δφRi

2

)
− δkX̄i −

π

2
ψi =

(
δφBi − δφRi

2

)
(21)

PHASE-INSENSITIVE θi =

(
δφBi + δφRi

2

)
ψi =

(
δφBi − δφRi

2

)
− δkX̄i −

π

2
. (22)
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Figure 5: Configurations for driving qubit with bichromatic fields. Top panels are Raman configurations, where beat notes drive
the qubit. Bottom pannels are for direct transitions. Note that for Raman geometries, the relative optical phases of the three
tones allow for phase insensitivity to both δkX̄i and relative optial paths. But for direct qubit transitions, the spin phase is always
phase-sensitive to the sum of the two optical phases.

The sensitivity of the spin phase on δkX̄i has great importance on the practical implementation of spin-spin Hamil-
tonians. In the phase-sensitive geometry, this dependence may be desired when the phase of other Hamiltonian terms
(such as the carrier spin flip operation of Eq. 12) have the same form (see Eq. 15). However, sensitivity to δkX̄i can
lead to decoherence if there are drifts in the relative path length of non-copropagating beams or the ion chain along
the X-direction. The Phase Insensitive configuration is therefore useful for long simulation evolution times.

We finally note that the phase-insensitive geometry using Raman couplings (Fig. 4b) can remove the spin-phase
sensitivity to not only the absolute optical phase of the optical source, but also the relative optical path length difference
between the counterpropagating beams, by setting δφBi = −δφRi [30, 31]. The only remaining phase sensitivity is
then to the relative optical path length from two tones that can share the same path (see Fig. 5). This is not possible
with direct optical upper and lower sideband transitions on qubits with an optical energy splitting (see Fig. 5).
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3.5 Mølmer-Sørensen Operation

For either phase configuration of the bicrhomatic red+blue sideband operation, the evolution operator under this Hamil-
tonian can be written from the Magnus expansion, which terminates after the first two terms [32],

U(τ) = exp

[
−i
∫ τ

0

dtH(t)− 1

2

∫ τ

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)]

]
(23)

= exp

∑
i

ζ̂i(τ)σiθi − i
∑
i<j

χi,j(τ)σiθiσ
j
θi

 . (24)

The first term of Eq. (24) is a qubit-phonon coupling with operator

ζ̂i(τ) =
∑
m

[
αi,m(τ)a†m − α∗i,m(τ)am

]
, (25)

representing spin-dependent coherent displacements [33, 2] of the mth motional mode through phase space by

αi,m(τ) = − i
2
ηi,mΩi

∫ τ

0

dte−i(δimt+ψi) = −ηi,mΩie
−iψi

2δim

(
1− e−iδimτ

)
. (26)

The second term of Eq. (24) is the key result: a spin-spin or qubit-qubit interaction between ions i and j with coupling
strength

χi,j(τ) = ΩiΩj
∑
m

ηi,mηj,m

∫ τ

0

dt1

∫ t1

0

dt2 sin(δimt1 − δjmt2) (27)

= ΩiΩj
∑
m

ηi,mηj,m
δimδjm

[(
δim + δjm

2

)
τ −

(
sin δimτ + sin δjmτ

2

)]
(28)

= ΩiΩj
∑
m

ηi,mηj,m
δm

(
τ − sin δmτ

δm

)
, for δim = δm. (29)

Fractional corrections to this expression arising from higher-order terms in the Lamb-Dicke expansion leading to Eq.
20 can be shown to be of order η2

i,mη
2
j,mn̄

2
m from Debye-Waller factors above.

3.5.1 Resonant Regime: Digital Gates

In the “resonant” regime [34, 29, 28], the optical beatnote detuning µ is close to one or more normal modes and the
qubits become entangled with the motion through the spin-dependent displacements. However, at certain times of
the evolution αi,m(τ) ≈ 0 for all modes m and the motion nearly decouples from the qubit states, which is useful
for applying synchronous entangling quantum logic gates between the qubits. For closely-spaced modes such as the
transverse modes, resolving individual modes becomes difficult and may require laser-pulse-shaping techniques [32].

For the case of applying a spin-dependent force to just two ions i and j in the chain, which is common for the execution
of entangling two-qubit quantum logic gates, the evolution operator in Eq. 24 reduces to

Uij(τ) = e−iχij(τ)
∣∣↑θi↑θj〉 〈↑θi↑θj ∣∣ ∏

m

D̂m [αim(τ) + αjm(τ)] (30)

+e−iχij(τ)
∣∣↓θi↓θj〉 〈↓θi↓θj ∣∣ ∏

m

D̂m [−αim(τ)− αjm(τ)] (31)

+eiχij(τ)
∣∣↑θi↓θj〉 〈↑θi↓θj ∣∣ ∏

m

D̂m [αim(τ)− αjm(τ)] (32)

+eiχij(τ)
∣∣↓θi↑θj〉 〈↓θi↑θj ∣∣ ∏

m

D̂m [−αim(τ) + αjm(τ)] . (33)
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In this expression, the spin projection operators are eigenvectors of σθi :

|↑θi〉 =
|↑i〉+ e−iθi |↓i〉√

2
, (34)

|↓θi〉 =
|↓i〉 − e−iθi |↓i〉√

2
, (35)

with eigenvalues 〈↑θi |σθi |↑θi〉 = +1, 〈↓θi |σθi |↓θi〉 = −1. The coherent displacement operator on mode m is
D̂m(α) = eαa

†
m−α

∗am [33]. For full entanglement (as expressive as the CNOT gate), we set χij(τ) = π/4.

3.5.2 Dispersive Regime: Analog Simulation

For generating pure spin Hamiltonians, we instead operate in the “dispersive” regime [26, 35], where the optical
beatnote frequency is far from each normal mode compared to that mode’s sideband Rabi frequency (|µ − ωm| �
ηi,mΩi). In this case, the phonons are only virtually excited as the displacements become negligible (|αi,m| � 1),
and the result is a fully-connected Ising Hamiltonian from the first (secular) term of Eq. (29):

HJθ =
∑
i<j

Ji,jσ
i
θiσ

j
θj
, (36)

where the Ising matrix is given by

Ji,j = ΩiΩj
∑
m

ηi,mηj,m
δm

(37)

= ΩiΩjωrec

∑
m

bi,mbj,m
2ωm

(
1

δim
+

1

δjm

)
(38)

= ΩiΩjωrec

∑
m

bi,mbj,m
ωmδm

for δim = δm. (39)

and ωrec = ~(δk)2/2M is the recoil frequency associated with the transfer of momentum ~(δk) to a single ion.
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